Organic acid induced olefination reaction of lactones

Hikaru Yanai* and Takeo Taguchi* School of Pharmacy, Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan E-mail: yanai@toyaku.ac.jp (H. Yanai), taguchi@toyaku.ac.jp (T. Taguchi)

Supporting Information

Table of contents

1. General and materials	p. S1
2. Preparation of lactone substrates	p. S1
3. Carbon acid induced olefination reaction of lactones	p. S4
4. Preparation of Mukaiyama aldol products	p. S11
5. X-ray crystallographic data	p. S15
6. ¹ H and ¹³ C NMR spectra of all compounds	p. S17
7. References	p. S45

<u>1. General and materials</u>

All reactions were carried out under Ar atmosphere. Melting points were uncorrected. ¹H and ¹³C NMR spectra were taken on a 400 MHz spectrometer, and chemical shifts were reported in parts per million (ppm) using CHCl₃ (7.26 ppm) in CDCl₃ for ¹H NMR, and CDCl₃ (77.01 ppm) for ¹³C NMR as an internal standard, respectively. Mass spectra were recorded by an electrospray ionization-time of flight (ESI-TOF) mass spectrometer. Column chromatography was performed on neutral silica gel (Kanto Silica gel 60N, 63-210 µm and 40-100 µm) or basic alumina (ICN Alumina B–Super I). Tf₂CH₂ was supplied from Central Glass Co. and this compound can be also prepared by Waller's procedure in the laboratory.¹ Tf₂CHCH₂CHTf₂ **1a** and triple acid **1c** were prepared from Tf₂CH₂ by the reported procedure.²

2. Preparation of lactone substrates

Isochroman-1-one **2a**, 6H-benzo[*c*]chromen-6-one **2f**,³ and 6-bromoisobenzofuran-1(3*H*)-one **2g**⁴, 3-phenyl-1*H*-isochromen-1-one **2n**⁵ were prepared by the reported procedure. Isobenzofuran-1(3*H*)-one (phthalide) **2b** and 5-bromoisobenzofuran-1(3*H*)-one **2h**, and 6-aminoisobenzofuran-1(3*H*)-one were purchased.

7-Nitroisochroman-1-one 2c, 7-bromoisocroman-1-one 2d, N-(1-oxoisochroman-7-yl)acetamide 2e,

7-((trimethylsilyl)ethynyl)isochroman-1-one 2i, and 7-(2-(trimethylsilyl)ethyl)isochroman-1-one 2k were

7-Nitroisochroman-1-one (2c)

To a solution of potassium nitrate (2.5 g, 25 mmol) in concentrated sulfuric acid (6.0 mL), a suspension of isocroman-1-one **2a** (2.52 g, 17.0 mmol) in concentrated sulfuric acid (15 mL) was added at 0 °C. After being stirred for 1 h at room temperature, the reaction mixture was poured into iced water (15 mL) and filtrated through glass filter. The crude solid mass was carefully washed with water (15 mL x 3). The resulting solid was purified by column chromatography on silica gel (hexane/EtOAc = 1 : 1) to give nitrated 7-nitroisochroman-1-one **2c** in 71% yield (2.33 g, 12.1 mmol) as a sole product. Pale yellow crystals (EtOAc); Mp. 115-117 °C; IR (ATR) ν 3084, 1710, 1527, 1336, 1138, 851, 743, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.20 (2H, t, *J* = 5.8 Hz), 4.60 (2H, t, *J* = 5.8 Hz), 7.50 (1H, d, *J* = 8.2 Hz), 8.39 (2H, d, *J* = 8.2 Hz), 8.95 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ 27.9, 66.8, 125.7, 126.8, 127.9, 128.8, 145.9, 147.7, 162.8; MS (ESI-TOF) *m*/*z* 216 [M+Na]⁺; HRMS calcd for C₉H₇NNaO₄ [M+Na]⁺, 216.0273; found, 216.0273. Anal. Calcd for C₉H₇NO₄: C, 55.96; H, 3.65; N, 7.25. Found: C, 56.00; H, 3.59; N, 7.16.

7-Bromoisocroman-1-one (2d)

By stirring 7-nitroisochroman-1-one **2c** (1.31 g, 6.8 mmol) and 10% palladium on active carbon (50% wet, 200 mg) in EtOAc (50 mL) at room temperature for 10 h under H₂ atmosphere, hydrogenation completely proceeded. After removal of palladium on carbon by filtration, the reaction mixture was concentrated under reduced pressure to give 7-aminoisobenzofuran-1(*3H*)-one in 94% yield (1.05 g, 6.4 mmol). This lactone (718 mg, 4.4 mmol) was dissolved in a mixture of 46% aqueous hydrobromic acid (10 ml) and water (10 ml), then a solution of NaNO₂ (1.45 g, 21 mmol) in water (5 ml) was slowly added at 0 °C thereto. After being stirred for 20 min at 0 °C, a solution of copper(I) bromide (790 mg, 5.5 mmol) in 46% aqueous hydrobromic acid (5 ml) was added to the reaction mixture. The resulting mixture was stirred for 40 min at 80 °C and quenched with saturated NH₄Cl aqueous solution (50 mL). This mixture was extracted with EtOAc (50 mL x 3), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The obtained residue was purified by column chromatography on silica gel (hexane/EtOAc = 1 : 1) to give 7-bromoisocroman-1-one **2d** in 95% yield (950 mg, 4.2 mmol). Colorless crystals (Et₂O); Mp. 79.0-81.5 °C; IR (ATR) ν 3073, 1709, 1595, 1422, 1271, 1066 cm⁻¹; ⁻¹H NMR (400 MHz, CDCl₃) δ 3.02 (2H, t, *J* = 6.0 Hz), 4.54 (2H, t, *J* = 6.0 Hz), 7.16 (1H, d, *J* = 8.1 Hz), 7.66 (1H, d, *J* = 8.1 Hz), 8.24 (1H, s); ⁻¹³C NMR (100 MHz, CDCl₃) δ 27.1, 67.1, 121.0, 126.7, 128.9, 132.7, 136.4, 138.2, 163.6; MS (ESI-TOF) m/z 227 [M+H]⁺, 229 [M+2+H]⁺; HRMS calcd for C₉H₈BrO₂

[M+H]⁺, 226.9708; found, 226.9705. Anal. Calcd for C₉H₇BrO₂: C, 47.61; H, 3.11. Found: C, 47.39; H, 3.12.

N-(1-Oxoisochroman-7-yl)acetamide (2e)

7-Aminoisocroman-1-one (163 mg, 1.00 mmol) was dissolved with pyridine (1.0 mL) and acetic anhydride (1.0 mL). After being stirred for 0.5 h at 40 °C, the reaction mixture was concentrated under reduced pressure. Chromatographic purification of the residue (silica gel, CHCl₃/MeOH = 10 : 1) gave *N*-(1-oxoisochroman-7-yl)acetamide **2e** in 93% yield (190 mg, 0.93 mmol). Colorless crystals (CHCl₃); Mp. 165-167 °C; IR (ATR) *v* 3318, 1704, 1680, 1594, 1534, 1499, 1424, 1241, 1187, 839, 692, 537 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.22 (3H, s), 3.02 (2H, t, *J* = 6.0 Hz), 4.54 (2H, t, *J* = 6.0 Hz), 7.24 (1H, d, *J* = 8.3 Hz), 7.94 (1H, d, *J* = 2.1 Hz), 8.25 (1H, dd, *J* = 8.3, 2.1 Hz), 8.30 (1H, br, N*H*); ¹³C NMR (100 MHz, CDCl₃) δ 24.4, 27.2, 67.7, 120.8, 125.3, 125.8, 128.1, 134.8, 138.2, 165.3, 169.1; MS (ESI-TOF) *m*/*z* 206 [M+H]⁺; HRMS calcd for C₁₁H₁₂NO₃ [M+H]⁺, 206.0817; found, 206.0819. Anal. Calcd for C₁₁H₁₁NO₃: C, 64.38; H, 5.40; N, 6.83. Found: C, 64.02; H, 5.42; N, 6.90.

7-((Trimethylsilyl)ethynyl)isochroman-1-one (2i)

To a solution of 7-bromoisocroman-1-one **2i** (454 mg, 2.0 mmol), ethynyltrimethylsilane (786 mg, 8.0 mmol), and triethylamine (0.56 mL, 4.0 mmol) in DMF (4.0 mL), copper(I) iodide (133 mg, 0.7 mmol) and Pd(PPh₃)₄ (277 mg, 0.2 mmol) were added at room temperature. After being stirred for 17 h at 65 °C, the reaction mixture was poured into iced water (50 mL), extracted with Et₂O (30 mL x 3), and concentrated under reduced pressure. The resulting residue was purified by column chromatography on silica gel (hexane/EtOAc = 10 : 1) to give 7-((trimethylsilyl)ethynyl)isochroman-1-one **2i** in 97% yield (472 mg, 1.9 mmol). Colorless crystals (Et₂O); Mp. 104-105 °C; IR (ATR) ν 2157, 1718, 1610, 834, 757 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.24 (9H, s), 3.04 (2H, t, *J* = 5.8 Hz), 4.49-4.54 (2H, m), 7.19 (1H, d, *J* = 7.9 Hz), 7.57 (1H, d, *J* = 7.9 Hz), 8.17 (1H, brs); ¹³C NMR (100 MHz, CDCl₃) δ -0.2 (3C), 27.7, 67.1, 95.7, 103.2, 123.0, 125.4, 127.3, 133.8, 136.5, 139.4, 164.2; MS (ESI-TOF) *m*/*z* 245 [M+H]⁺; HRMS calcd for C₁₄H₁₇O₂Si [M+H]⁺, 245.0998; found, 245.0990.

7-(2-(Trimethylsilyl)ethyl)isochroman-1-one (2k)

By stirring alkynylisochroman-1-one **2d** (245 mg, 1.0 mmol) and 10% palladium on active carbon (50% wet, 100 mg) in MeOH (5.0 mL) at room temperature for 18 h under H₂ atmosphere, hydrogenation completely proceeded. The reaction mixture was purified by column chromatography on silica gel (hexane/EtOAc = 10 : 1) to give 5-phenethylisobenzofuran-1(*3H*)-one **2k** in 75% yield (186 mg, 0.75 mmol). Colorless oil; IR (ATR) v 1721, 1243, 858, 830 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.00 (9H, s), 0.81-0.88 (2H, m), 2.59-2.65 (2H, m), 3.00 (2H, t, *J* = 6.0 Hz), 4.49 (2H, t, *J* = 6.0 Hz), 7.14 (1H, d, *J* = 7.8 Hz), 7.35 (1H, d, *J* = 7.8 Hz), 7.92 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ –1.9 (3C), 18.6, 27.4, 29.6, 67.3, 125.0, 127.1, 129.3, 133.3, 136.6, 145.0, 165.4; MS (ESI-TOF) m/z 249 [M+H]⁺; HRMS calcd for C₁₄H₂₁O₂Si [M+H]⁺, 249.1311; found, 249.1316.

5-(Phenylethynyl)isobenzofuran-1(3H)-one 2j and 5-phenethylisobenzofuran-1(3H)-one 2m were prepared as

follows.

5-(Phenylethynyl)isobenzofuran-1(3H)-one (2j)

To a solution of 5-bromoisobenzofuran-1(3*H*)-one **2h** (0.33 g, 1.6 mmol), phenylacetylene (0.63 g, 6.2 mmol), CuI (72.3 mg, 0.38 mmol), and Et₃N (0.56 mL, 4.0 mmol) in DMF (3.0 mL), Pd(PPh₃)₄ (215 mg, 0.19 mmol) was added at room temperature. After being stirred at 65 °C for 5 h, the reaction mixture was quenched with H₂O (25 mL), and extracted with Et₂O (30 mL x 3). Combined organic layer was washed with brine (15 mL), dried over anhydrous Na₂SO₄, and evaporated. The oily residue was purified by flash column chromatography (hexane/EtOAc = 5 : 1) to give 5-(phenylethynyl)isobenzofuran-1(3*H*)-one **2j** in 83% yield (0.30 g, 1.3 mmol). Pale yellow crystals (EtOAc); Mp. 148-150 °C; IR (ATR) ν 2201, 1745, 1611, 1344, 1046, 997, 756, 683 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.33 (2H, s), 7.36-7.42 (3H, m), 7.53-7.58 (2H, m), 7.64 (1H, s), 7.68 (1H, brd, J = 7.9 Hz), 7.91 (1H, d, J = 7.9 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 69.3, 88.1, 93.3, 122.3, 124.9, 125.0, 125.7, 128.5 (2C), 129.1, 129.5, 131.8 (2C), 132.5, 146.6, 170.4; MS (ESI-TOF) m/z 235 [M+H]⁺; HRMS calcd for C₁₆H₁₁O₂ [M+H]⁺, 235.0759; found, 235.0767. Anal. Calcd for C₁₆H₁₀O₂: C, 82.04; H, 4.30. Found: C, 82.20; H, 4.25.

5-Phenethylisobenzofuran-1(3H)-one (2m)

By stirring alkynylisobenzofuranone **2j** (234.1 mg, 1.0 mmol) and 10% palladium on active carbon (50% wet, 100 mg) in EtOAc (20 mL) at room temperature for 3 h under H₂ atmosphere, hydrogenation completely proceeded. The reaction mixture was purified by column chromatography on silica gel (hexane/EtOAc = 5 : 1) to give 5-phenethylisobenzofuran-1(*3H*)-one **2m** in 95% yield (226.1 mg, 0.95 mmol). Pale yellow crystals (CHCl₃); Mp. 113-115 °C; IR (ATR) *v* 1744, 1616, 1597, 1046, 997, 697, 683 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.96 (2H, dd, *J* = 8.2, 6.0 Hz), 3.06 (2H, dd, *J* = 8.2, 6.0 Hz), 5.26 (2H, s), 7.14 (2H, d, *J* = 7.2 Hz), 7.18-7.36 (5H, m), 7.81 (1H, d, *J* = 7.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 37.6, 38.2, 69.5, 122.0, 123.7, 125.6, 126.3, 128.4 (2C), 128.5 (2C), 129.8, 140.7, 147.1, 148.9, 171.1; MS (ESI-TOF) *m*/*z* 239 [M+H]⁺; HRMS calcd for C₁₆H₁₅O₂ [M+H]⁺, 239.1072; found, 239.1078.

3,4-Dihydro-1*H***-[1,4]oxazino[4,3-***a***]indol-1-one** (20)

To a solution of ethyl 1-(2-(*tert*-butyldimethylsilyloxy)ethyl)-1*H*-indole-2-carboxylate⁶ (3.48 g, 10 mmol) in THF (100 mL), tetrabutylammonium fluroride (1.0 M in THF, 20 mL, 20 mmol) was added at 0 °C. After being stirred for 2 h at room temperature, the reaction mixture was concentrated under reduced pressure. The resulting mixture was poured into H₂O (25 mL) and extracted with EtOAc (25 mL x 3). Combined organic

layer was washed with brine (20 mL), dried over anhydrous MgSO₄, and evaporated. The residue was purified by column chromatography on silica gel to give 3,4-dihydro-1*H*-[1,4]oxazino[4,3-*a*]indol-1-one **20** in 81% yield (8.1 mmol, 1.52 g). Colorless crystals (EtOAc); Mp. 169-171 °C; IR (ATR) *v* 2924, 1703, 1089, 751, 433 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.35 (2H, t, *J* = 5.2 Hz), 4.76 (2H, t, *J* = 5.2 Hz), 7.19-7.25 (1H, m), 7.35 (1H, d, *J* = 8.4 Hz), 7.39-7.45 (1H, m), 7.47 (1H, s), 7.75 (1H, d, *J* = 8.1 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 39.9, 66.6, 109.9, 110.3, 121.5, 123.2, 123.6, 126.1, 126.9, 136.6, 159.6; MS (ESI-TOF) *m*/*z* 188 [M+H]⁺; HRMS calcd for C₁₁H₁₀NO₂ [M+H]⁺, 188.0712; found, 188.0717. Anal. Calcd for C₁₁H₉NO₂: C, 70.58; H, 4.85; N, 7.48. Found: C, 70.66; H, 4.80; N, 7.65.

4*H*-furo[3,2-*c*]chromen-4-one (2p)

This compound was prepared by modifying the procedure reported by Majumdar.⁷ To a mixture of K₂CO₃ (2.76 g, 20 mmol) and 4-hydroxycoumarin (1.62 g, 10 mmol) in water (20 mL), chloroacetaldehyde (40 % in water, 2.46 mL, 15 mmol) was slowly added. After being stirred for 1.5 h at room temperature, the precipitated solid was collected by filtration. The precipitate was treated by 1 M aqueous HCl (30 mL) for 1 h at 90 °C. The reaction mixture was extracted with EtOAc (30 mL x 3) and dried over anhydrous MgSO₄. The organic layer was concentrated under reduced pressure to give 4*H*-furo[3,2-*c*]chromen-4-one **2p** in 45% yield (0.84 g, 4.5 mmol). Colorless crystals (Et₂O); Mp. 81.0-82.5 °C; IR (ATR) *v* 1718, 959, 750, 725 cm⁻¹; ⁻¹H NMR (400 MHz, CDCl₃) δ 7.01 (1H, d, *J* = 2.1 Hz), 7.34-7.39 (1H, m), 7.46 (1H, dd, *J* = 8.4, 0.7 Hz), 7.53 (1H, ddd, *J* = 8.4, 7.2, 1.4 Hz), 7.66 (1H, d, *J* = 2.1 Hz), 7.89 (1H, dd, *J* = 7.8, 1.4 Hz); ⁻¹³C NMR (100 MHz, CDCl₃) δ 108.6, 110.6, 112.8, 117.3, 120.9, 124.5, 130.7, 144.8, 152.5, 157.6, 158.3; MS (ESI-TOF) *m/z* 187 [M+H]⁺; HRMS calcd for C₁₁H₇O₃ [M+H]⁺, 187.0395; found, 187.0389.

3. Carbon acid induced olefination reaction of lactones

(Z)-Ethyl 2-(isochroman-1-ylidene)acetate (4aa)

To a solution of isochroman-1-one **2a** (73.8 mg, 0.50 mmol) and carbon acid **1c** (10.1 mg, 10 µmol) in CH₂Cl₂ (1.0 mL), a solution of *tert*-butyl(1-ethoxyvinyloxy)dimethylsilane (202 mg, 1.00 mmol) in CH₂Cl₂ (0.5 mL) was slowly added at 0 °C over 1 h using a syringe pump. After being stirred for additional 3 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was directly purified by flash column chromatography on silica gel (hexane/EtOAc = 5 : 1) to give the vinyl ether **4aa** in 85% yield (91.2 mg, 0.42 mmol). Pale yellow oil; IR (ATR) ν 2979, 1707, 1618, 1150, 1126, 1090, 769 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.30 (3H, t, *J* = 7.2 Hz), 2.97 (2H, t, *J* = 5.7 Hz), 4.19 (2H, q, *J* = 7.2 Hz), 4.35 (2H,

t, J = 5.7 Hz), 5.60 (1H, s), 7.20 (1H, brd, J = 7.5 Hz), 7.26-7.31 (1H, m), 7.37 (1H, td, J = 7.5, 1.3 Hz), 7.64 (1H, d, J = 7.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 14.3, 28.6, 59.2, 65.6, 92.0, 125.4, 127.2, 127.9, 128.5, 130.4, 135.6, 162.0, 165.8; MS (ESI-TOF) m/z 241 [M+Na]⁺; HRMS calcd for C₁₃H₁₄NaO₃ [M+Na]⁺, 241.0841; found, 241.0837. Anal. Calcd for C₁₃H₁₄O₃: C, 71.54; H, 6.47. Found: C, 71.38; H, 6.50.

(Z)-Methyl 2-(isochroman-1-ylidene)acetate (4ab)

To a solution of isochroman-1-one **2a** (75.8 mg, 0.51 mmol) and carbon acid **1c** (9.8 mg, 10 µmol) in CH₂Cl₂ (1.0 mL), a solution of *tert*-butyldimethyl(1-methoxyvinyloxy)silane (188 mg, 1.00 mmol) in CH₂Cl₂ (0.5 mL) was slowly added at 0 °C over 1 h using a syringe pump and stirred at the same temperature for 1 h. After being stirred for additional 3 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was directly purified by column chromatography on silica gel (hexane/EtOAc = 3 : 1) to give the vinyl ether **4ab** in 82% yield (85.6 mg, 0.40 mmol). Pale yellow oil; IR (ATR) *v* 2948, 1709, 1616, 1153, 1125, 1089, 769 cm⁻¹; ⁻¹H NMR (400 MHz, CDCl₃) δ 2.92 (2H, t, *J* = 5.6 Hz), 3.68 (3H, s), 4.30 (1H, t, *J* = 5.6 Hz), 5.56 (1H, s), 7.15 (1H, d, *J* = 7.5 Hz), 7.24 (1H, t, *J* = 7.5 Hz), 7.33 (1H, t, *J* = 7.5 Hz), 7.58 (1H, d, *J* = 7.5 Hz); ⁻¹³C NMR (100 MHz, CDCl₃) δ 28.5, 50.7, 65.6, 91.6, 125.4, 127.2, 127.9, 128.4, 130.5, 135.6, 162.0, 166.2; MS (ESI-TOF) *m*/*z* 205 [M+H]⁺; HRMS calcd for C₁₂H₁₃O₃ [M+H]⁺, 205.0865; found, 205.0864.

(Z)-Ethyl 2-(isobenzofuran-1(3H)-ylidene)acetate (4ba)

To a solution of isobenzofuran-1(3*H*)-one **2b** (68.0 mg, 0.51 mmol) and carbon acid **1c** (9.9 mg, 10 µmol) in CH₂Cl₂ (1.0 mL), a solution of *tert*-butyl(1-ethoxyvinyloxy)dimethylsilane (201 mg, 1.00 mmol) in CH₂Cl₂ (0.5 mL) was slowly added at 0 °C over 1 h using a syringe pump and stirred at the same temperature for 1 h. After being stirred for additional 3 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was directly purified by flash column chromatography on silica gel (hexane/EtOAc = 3 : 1) to give the vinyl ether **4ba** in 83% yield (85.9 mg, 0.42 mmol). The structure of the product was also confirmed by comparison of ¹H and ¹³C NMR spectra in the literature.⁸ Pale yellow oil; IR (ATR) *v* 2980, 1702, 1635, 1146, 1065, 767 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.29 (3H, t, *J* = 7.1 Hz), 4.20 (2H, q, *J* = 7.1 Hz), 5.50 (1H, s), 5.55 (2H, s), 7.36-7.41 (2H, m), 7.44-7.50 (1H, m), 7.56 (1H, d, *J* = 8.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 14.4, 59.4, 76.5, 86.0, 121.2, 121.4, 128.4, 131.1, 132.9, 141.3, 166.2, 167.9; MS (ESI-TOF) *m/z* 227 [M+Na]⁺; HRMS calcd for C₁₂H₁₂NaO₃ [M+Na]⁺, 227.0680; found, 227.0684. Anal. Calcd for C₁₂H₁₂O₃: C, 70.57; H, 5.92. Found: C, 70.68; H, 5.70.

(Z)-Isopropyl 2-(isobenzofuran-1(3H)-ylidene)acetate (4bc)

To a solution of isobenzofuran-1(3*H*)-one **1b** (67.2 mg, 0.50 mmol) and carbon acid **1c** (10.0 mg, 10 µmol) in CH₂Cl₂ (1.0 mL), a solution of *tert*-butyl(1-isopropyloxyvinyloxy)dimethylsilane (218 mg, 1.00 mmol) in CH₂Cl₂ (0.5 mL) was slowly added at 0 °C over 1 h using a syringe pump and stirred at the same temperature for 1 h. After being stirred for additional 4 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was directly purified by flash column chromatography on silica gel (hexane/EtOAc = 3 : 1) to give the vinyl ether **4bc** in 78% yield (85.1 mg, 0.39 mmol). Pale yellow oil; IR (ATR) v 2981, 1732, 1102, 736 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.29 (3H, t, J = 7.1 Hz), 4.20 (2H, q, J = 7.1 Hz), 5.50 (1H, s), 5.55 (2H, s), 7.36-7.41 (2H, m), 7.44-7.50 (1H, m), 7.56 (1H, d, J = 8.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 14.4, 59.4, 76.5, 86.0, 121.2, 121.4, 128.4, 131.1, 132.9, 141.3, 166.2, 167.9; MS (ESI-TOF) m/z 241 [M+Na]⁺; HRMS calcd for C₁₃H₁₄NaO₃ [M+Na]⁺, 241.0841; found, 241.0850. Anal. Calcd for C₁₃H₁₄O₃: C, 71.54; H, 6.47. Found: C, 71.24; H, 6.30.

(Z)-Isopropyl 2-(7-nitroisochroman-1-ylidene)acetate (4cc)

To a solution of 7-nitroisochroman-1-one **2c** (47.6 mg, 0.25 mmol) and carbon acid **1c** (4.8 mg, 5 µmol) in CH₂Cl₂ (0.75 mL), a solution of *tert*-butyl(1-isopropyloxyvinyloxy)dimethylsilane (108 mg, 0.50 mmol) in CH₂Cl₂ (0.5 mL) was slowly added at 0 °C over 1 h using a syringe pump and stirred at the same temperature for 1 h. After being stirred for additional 5 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was directly purified by column chromatography on silica gel (hexane/EtOAc = 1 : 1) to give the vinyl ether **4cc** in 83% yield (57.0 mg, 0.21 mmol). Colorless crystals (CHCl₃); Mp. 85.5-88.0 °C; IR (ATR) *v* 2982, 1703, 1620, 1518, 1342, 1104, 809, 793, 741 cm⁻¹; ⁻¹H NMR (400 MHz, CDCl₃) δ 1.26 (6H, d, *J* = 6.2 Hz), 3.06 (2H, t, *J* = 5.7 Hz), 4.35 (2H, t, *J* = 5.7 Hz), 5.07 (1H, sept, *J* = 6.2 Hz), 5.68 (1H, s), 7.39 (1H, d, *J* = 8.4 Hz), 8.17 (1H, dd, *J* = 8.4, 2.1 Hz), 8.49 (1H, d, *J* = 2.1 Hz); ⁻¹³C NMR (100 MHz, CDCl₃) δ 21.9 (2C), 28.9, 65.0, 66.8, 95.1, 120.5, 124.5, 129.4, 130.0, 142.3, 147.3, 159.2, 164.6; MS (ESI-TOF) *m*/*z* 278 [M+H]⁺; HRMS calcd for C₁₄H₁₆NO₅ [M+H]⁺, 278.1028; found, 278.1037. Anal. Calcd for C₁₄H₁₅NO₅: C, 60.64; H, 5.45; N, 5.05. Found: C, 60.60; H, 5.49; N, 5.15.

(Z)-Isopropyl 2-(7-bromoisochroman-1-ylidene)acetate (4dc)

CO₂i-Pr Br

To a solution of 7-bromoisochroman-1-one **2d** (113.4 mg, 0.50 mmol) and carbon acid **1** (10.1 mg, 10 μ mol) in CH₂Cl₂ (1.0 mL), a solution of *tert*-butyl(1-isopropyloxyvinyloxy)dimethylsilane (216 mg, 1.0 mmol) in CH₂Cl₂ (0.5 mL) was slowly added at 0 °C over 1 h using a syringe pump and stirred at the same temperature

for 1 h. After being stirred for additional 6 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was directly purified by column chromatography on silica gel (hexane/EtOAc = 2 : 1) to give the vinyl ether **4dc** in 84% yield (129.9 mg, 0.42 mmol). Colorless crystals (EtOAc); Mp. 98.5-99.5 °C; IR (ATR) *v* 2982, 1698, 1612, 1161, 1091, 808 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.23 (6H, d, *J* = 6.2 Hz), 2.87 (2H, t, *J* = 5.6 Hz), 4.27 (2H, t, *J* = 5.6 Hz), 5.03 (1H, sept, *J* = 6.2 Hz), 5.49 (1H, s), 7.03 (1H, d, *J* = 8.1 Hz), 7.41 (1H, d, *J* = 8.1 Hz), 7.72 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ 21.9, 28.1, 65.4, 66.4, 93..6, 120.7, 128.1, 129.6, 130.4, 133.1, 134.4, 160.1, 164.9; MS (ESI-TOF) *m/z* 311 [M+H]⁺, 313 [M+2+H]⁺; HRMS calcd for C₁₄H₁₆BrO₃ [M+H]⁺, 311.0283; found, 311.0292. Anal. Calcd for C₁₄H₁₅BrO₃: C, 54.04; H, 4.86. Found: C, 54.32; H, 4.71.

(Z)-Ethyl 2-(7-acetamidoisochroman-1-ylidene)acetate (4ea)

To a solution of *N*-(1-oxoisochroman-7-yl)acetamide **2e** (51.1 mg, 0.25 mmol) and carbon acid **1c** (5.1 mg, 5 μ mol) in CH₂Cl₂ (1.0 mL), a solution of *tert*-butyl(1-ethoxyvinyloxy)dimethylsilane (152 mg, 0.75 mmol) in CH₂Cl₂ (0.5 mL) was slowly added at 0 °C over 1 h using a syringe pump and stirred at the same temperature for 1 h. After being stirred for additional 4 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was directly purified by column chromatography on silica gel (CHCl₃/MeOH = 10 : 1) to give the vinyl ether **4ea** in 87% yield (59.9 mg, 0.22 mmol). Colorless crystals (CHCl₃); Mp. 140-142 °C; IR (ATR) *v* 3262, 2976, 1705, 1656, 1605, 1581, 1150, 1091, 798 cm⁻¹; ⁻¹H NMR (400 MHz, CDCl₃) δ 1.24 (3H, t, *J* = 7.1 Hz), 2.15 (3H, s), 2.81 (2H, t, *J* = 5.6 Hz), 4.13 (2H, q, *J* = 7.1 Hz), 4.13-4.17 (2H, m), 7.05 (1H, d, *J* = 8.2 Hz), 7.53 (1H, dd, *J* = 8.2, 1.8 Hz), 7.87 (1H, d, *J* = 1.8 Hz), 8.68 (1H, br, N*H*); ⁻¹³C NMR (100 MHz, CDCl₃) δ 14.3, 24.2, 28.0, 59.4, 65.6, 92.2, 116.7, 122.6, 128.4, 128.6, 131.6, 137.6, 162.0, 166.3, 169.1; MS (ESI-TOF) *m*/*z* 276 [M+H]⁺; HRMS calcd for C₁₅H₁₈NO₄ [M+H]⁺, 276.1236; found, 276.1230.

(Z)-Ethyl 2-(6H-benzo[c]chromen-6-ylidene)acetate (4fa)

To a solution of 6*H*-benzo[*c*]chromen-6-one **2f** (98.5 mg, 0.50 mmol) and carbon acid **1c** (9.9 mg, 10 µmol) in CH₂Cl₂ (0.75 mL), a solution of *tert*-butyl(1-ethoxyvinyloxy)dimethylsilane (201 mg, 1.00 mmol) in CH₂Cl₂ (0.5 mL) was slowly added at 0 °C over 1 h using a syringe pump and stirred at the same temperature for 1 h. After being stirred for additional 8 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was directly purified by column chromatography on alumina (hexane/EtOAc = 5 : 1) to give the vinyl ether **4fa** in 85% yield (113.6 mg, 0.43 mmol). Pale yellow oil; IR (ATR) *v* 2970, 1695, 1627, 1588, 1277, 1143, 1107, 746 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.36 (3H, t, *J* = 7.1 Hz), 4.25 (2H, q, *J* =

7.1 Hz), 5.85 (1H, s), 7.15-7.21 (1H, m), 7.29-7.42 (3H, m), 7.53-7.59 (1H, m), 7.78 (1H, dd, J = 8.1, 1.0 Hz), 7.88 (1H, dd, J = 7.9, 1.4 Hz), 7.96 (1H, brd, J = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 14.5, 59.5, 91.3, 117.4, 118.3, 121.9, 122.2, 123.6, 124.3, 124.8, 128.8, 129.4, 130.1, 131.8, 150.6, 158.8, 165.4; MS (ESI-TOF) m/z 267 [M+H]⁺; HRMS calcd for C₁₇H₁₅O₃ [M+H]⁺, 267.1021; found, 267.1024. Anal. Calcd for C₁₇H₁₄O₃: C, 76.68; H, 5.30;. Found: C, 76.38; H, 5.27.

(Z)-Ethyl 2-(6-bromoisobenzofuran-1(3H)-ylidene)acetate (4ga)

To a solution of 6-bromoisobenzofuran-1(3*H*)-one **2g** (105.5 mg, 0.50 mmol) and carbon acid **1c** (9.9 mg, 10 μ mol) in CH₂Cl₂ (1.0 mL), a solution of *tert*-butyl(1-ethoxyvinyloxy)dimethylsilane (202 mg, 1.00 mmol) in CH₂Cl₂ (0.5 mL) was slowly added at 0 °C over 1 h using a syringe pump and stirred for 1 h at the same temperature. After being stirred for additional 7 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was directly purified by column chromatography on silica gel (hexane/EtOAc = 5 : 1) to give the vinyl ether **4ga** in 72% yield (101.7 mg, 0.36 mmol). Colorless crystals (EtOAc); Mp. 105-107 °C; IR (ATR) ν 1701, 1639, 1154, 1078, 796 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.30 (3H, t, *J* = 7.1 Hz), 4.21 (2H, q, *J* = 7.1 Hz), 5.48 (1H, s), 5.51 (2H, s), 7.28 (1H, d, *J* = 8.1 Hz), 7.59 (1H, brd, *J* = 8.1 Hz), 7.70 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ 14.4, 59.7, 76.3, 87.2, 122.5, 122.9, 124.5, 134.3, 135.2, 140.1, 165.9, 166.3; MS (ESI-TOF) *m*/*z* 283 [M+H]⁺, 285 [M+2+H]⁺; HRMS calcd for C₁₂H₁₂BrO₃ [M+H]⁺, 282.9970; found, 282.9974. Anal. Calcd for C₁₂H₁₁BrO₃: C, 50.91; H, 3.92. Found: C, 50.77; H, 3.88.

(Z)-Ethyl 2-(5-bromoisobenzofuran-1(3H)-ylidene)acetate (4ha)

To a solution of 5-bromoisobenzofuran-1(3*H*)-one **2h** (104.5 mg, 0.49 mmol) and carbon acid **1c** (10.1 mg, 10 μ mol) in CH₂Cl₂ (1.0 mL), a solution of *tert*-butyl(1-ethoxyvinyloxy)dimethylsilane (200 mg, 1.00 mmol) in CH₂Cl₂ (0.5 mL) was slowly added at 0 °C over 1 h using a syringe pump and stirred for 1 h at the same temperature. After being stirred for additional 7 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was directly purified by column chromatography on silica gel (hexane/EtOAc = 5 : 1) to give the vinyl ether **4ha** in 75% yield (104.0 mg, 0.37 mmol). Colorless crystals (EtOAc); Mp. 121-124 °C; IR (ATR) *v* 1709, 1654, 1145, 1059, 789 cm⁻¹; ⁻¹H NMR (400 MHz, CDCl₃) δ 1.30 (3H, t, *J* = 7.1 Hz), 4.21 (2H, q, *J* = 7.1 Hz), 5.49 (1H, s), 5.54 (2H, s), 7.43 (1H, d, *J* = 8.2 Hz), 7.51-7.59 (2H, m); ⁻¹³C NMR (100 MHz, CDCl₃) δ 14.4, 59.6, 75.8, 86.7, 122.67, 124.8, 125.7, 132.0, 132.1, 143.1, 166.0, 166.8; MS (ESI-TOF) *m*/*z* 305 [M+Na]⁺, 307 [M+2+Na]⁺; HRMS calcd for C₁₂H₁₁BrNaO₃ [M+Na]⁺, 304.9789; found, 304.9790.

(Z)-Ethyl 2-(7-((trimethylsilyl)ethynyl)isochroman-1-ylidene)acetate (4ia)

To a solution of 7-((trimethylsilyl)ethynyl)isochroman-1-one **2i** (60.7 mg, 0.25 mmol) and carbon acid **1c** (4.9 mg, 5 µmol) in CH₂Cl₂ (1.0 mL), a solution of *tert*-butyldimethyl(1-ethoxyvinyloxy)silane (102 mg, 0.50 mmol) in CH₂Cl₂ (0.5 mL) was slowly added at 0 °C over 1 h using a syringe pump and stirred for 1 h at the same temperature. After being stirred for additional 5 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was directly purified by column chromatography on silica gel (hexane/EtOAc = 5 : 1) to give the vinyl ether **4ia** in 70% yield (54.4 mg, 0.17 mmol). Colorless crystals (Et₂O); Mp. 90.5-93.0 °C; IR (ATR) *v* 2956, 2160, 1703, 1616, 1601, 1149, 1084, 838 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ –0.26 (9H, s), 1.29 (3H, t, *J* = 7.1 Hz), 2.95 (2H, t, *J* = 5.5 Hz), 4.18 (2H, q, *J* = 7.1 Hz), 4.32 (2H, t, *J* = 5.5 Hz), 5.61 (1H, s), 7.13 (1H, d, *J* = 7.8 Hz), 7.43 (1H, d, *J* = 7.8 Hz), 7.76 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ –0.2 (3C), 14.4, 28.6, 59.4, 65.5, 92.8, 95.0, 103.8, 122.4, 128.1, 128.7, 129.0, 133.5, 135.9, 161.1, 165.7; MS (ESI-TOF) *m*/*z* 315 [M+H]⁺; HRMS calcd for C₁₈H₂₃O₃Si [M+H]⁺, 315.1416; found, 315.1430. Anal. Calcd for C₁₈H₂₂O₃Si: C, 68.75; H, 7.05. Found: C, 68.99; H, 7.26.

(Z)-Ethyl 2-(5-(phenylethynyl)isobenzofuran-1(3H)-ylidene)acetate (4ja)

Ph

CO₂Et

To a solution of 5-(phenylethynyl)isobenzofuran-1(*3H*)-one **2j** (58.7 mg, 0.25 mmol) and carbon acid **1c** (5.1 mg, 5 µmol) in CH₂Cl₂ (1.0 mL), a solution of *tert*-butyldimethyl(1-ethoxyvinyloxy)silane (101 mg, 0.50 mmol) in CH₂Cl₂ (0.5 mL) was slowly added at 0 °C over 1 h using a syringe pump and stirred for 1 h at the same temperature. After being stirred for additional 7 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was directly purified by column chromatography on silica gel (hexane/EtOAc = 5 : 1) to give the vinyl ether **4ja** in 70% yield (53.1 mg, 0.17 mmol). Colorless crystals (Et₂O); Mp. 143-146 °C; IR (ATR) ν 1706, 1650, 1153, 1143, 1066, 794, 757, 689 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.31 (3H, t, *J* = 7.1 Hz), 4.22 (2H, q, *J* = 7.1 Hz), 5.52 (1H, s), 5.55 (2H, s), 7.32-7.40 (3H, m), 7.50-7.59 (5H, m); ¹³C NMR (100 MHz, CDCl₃) δ 14.4, 59.6, 76.2, 86.8, 88.5, 92.1, 121.3, 122.5, 124.2, 126.5, 128.4, 128.8, 131.7, 131.9, 132.6, 141.4, 166.1, 167.2; MS (ESI-TOF) *m*/*z* 327 [M+Na]⁺; HRMS calcd for C₂₀H₁₆NaO₃ [M+Na]⁺, 327.0997; found, 327.1011. Anal. Calcd for C₂₀H₁₆O₃: C, 78.93; H, 5.30. Found: C, 78.60; H, 5.49.

(Z)-Methyl 2-(7-(2-(trimethylsilyl)ethyl)isochroman-1-ylidene)acetate (4kb)

To a solution of 7-(2-(trimethylsilyl)ethyl)isochroman-1-one 2k (63.2 mg, 0.25 mmol) and carbon acid 1c (5.0

mg, 5 μmol) in CH₂Cl₂ (0.5 mL), a solution of *tert*-butyldimethyl(1-methoxyvinyloxy)silane (94 mg, 0.50 mmol) in CH₂Cl₂ (0.5 mL) was slowly added at 0 °C over 1 h using a syringe pump and stirred for 1 h at the same temperature. After being stirred for additional 5 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was directly purified by column chromatography on silica gel (hexane/EtOAc = 5 : 1) to give the vinyl ether **4kb** in 72% yield (55.8 mg, 0.18 mmol). Colorless oil; IR (ATR) *v* 2949, 1715, 1622, 1604, 1246, 1152, 1091, 830 cm⁻¹; ⁻¹H NMR (400 MHz, CDCl₃) δ 0.02 (9H, s), 0.81-0.88 (2H, m), 2.57-2.64 (2H, m), 2.92 (2H, t, *J* = 5.6 Hz), 3.72 (2H, s), 4.32 (2H, t, *J* = 5.6 Hz), 5.60 (1H, s), 7.09 (1H, d, *J* = 7.8 Hz), 7.21 (1H, brd, *J* = 7.8 Hz), 7.46 (1H, s); ⁻¹³C NMR (100 MHz, CDCl₃) δ 0.0, 20.5, 30.1, 31.6, 52.6, 67.7, 93.2, 126.4, 129.7, 130.1, 132.2, 134.7, 146.3, 164.3, 168.2; MS (ESI-TOF) *m/z* 305 [M+H]⁺; HRMS calcd for C₁₇H₂₅O₃Si [M+H]⁺, 305.1573; found, 305.1581.

(Z)-Ethyl 2-(5-phenethylisobenzofuran-1(3H)-ylidene)acetate (4ma)

To a solution of 5-phenethylisobenzofuran-1(3*H*)-one **2m** (59.7 mg, 0.25 mmol) and carbon acid **1c** (5.0 mg, 5 μ mol) in chloroform (1.5 mL), a solution of *tert*-butyl(1-ethoxyvinyloxy)dimethylsilane (101 mg, 0.50 mmol) in chloroform (0.5 mL) was slowly added at 0 °C over 1 h using a syringe pump and stirred at the same temperature for 1 h. After being stirred for additional 8 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was directly purified by column chromatography on silica gel (hexane/EtOAc = 5 : 1) to give the vinyl ether **4ma** in 63% yield (48.6 mg, 0.16 mmol). Colorless oil; IR (ATR) *v* 2935, 1695, 1624, 1153, 1063, 793 cm⁻¹; ⁻¹H NMR (400 MHz, CDCl₃) δ 1.32 (3H, t, *J* = 7.1 Hz), 2.90-2.96 (2H, m), 2.97-3.04 (2H, m), 4.22 (2H, q, *J* = 7.1 Hz), 5.48 (1H, s), 5.52 (2H, s), 7.11-7.18 (3H, m), 7.19-7.23 (2H, m), 7.28 (2H, t, *J* = 7.0 Hz), 7.48 (1H, d, *J* = 8.0 Hz); ⁻¹³C NMR (100 MHz, CDCl₃) δ 14.5, 37.6, 38.0, 59.4, 76.4, 85.5, 121.2, 121.3, 126.2, 128.4 (4C), 129.1, 131.0, 140.9, 141.8, 145.9, 166.4, 168.2; MS (ESI-TOF) *m/z* 309 [M+H]⁺; HRMS calcd for C₂₀H₂₁O₃ [M+H]⁺, 309.1491; found, 304.1498.

(Z)-Methyl 2-(3-phenyl-1*H*-isochromen-1-ylidene)acetate (4nb)

To a solution of 3-phenyl-1*H*-isochromen-1-one **2n** (108.7 mg, 0.49 mmol) and carbon acid **1c** (9.9 mg, 10 μ mol) in CH₂Cl₂ (0.75 mL), a solution of *tert*-butyldimethyl(1-methoxyvinyloxy)silane (188 mg, 1.00 mmol) in CH₂Cl₂ (0.50 mL) was slowly added at 0 °C over 1 h using a syringe pump and stirred at the same temperature for 1 h. After being stirred for additional 8 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was directly purified by column chromatography on alumina (hexane/EtOAc = 5 : 1) to give the vinyl ether **4nb** in 81% yield (110.2 mg, 0.40 mmol). Colorless oil; IR (ATR) ν 2946, 1702, 1649, 1590, 1271, 1148, 1127, 1093, 761, 688 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.81 (3H, s), 5.82

(1H, s), 6.68 (1H, s), 7.23-7.34 (2H, m), 7.37-7.51 (4H, m), 7.67-7.72 (1H, m), 8.09 (2H, d, J = 7.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 50.8, 88.8, 100.4 (2C), 123.2, 123.9, 125.0 (2C), 126.2, 128.0, 128.7 (2C), 129.6, 132.0, 132.1, 151.6, 160.4, 166.0; MS (ESI-TOF) m/z 279 [M+H]⁺; HRMS calcd for C₁₈H₁₅O₃ [M+H]⁺, 279.1021; found, 279.1022.

(Z)-Ethyl 2-(3,4-dihydro-1*H*-[1,4]oxazino[4,3-*a*]indol-1-ylidene)acetate (40a)

To a solution of 3,4-dihydro-1*H*-[1,4]oxazino[4,3-*a*]indol-1-one **20** (93.5 mg, 0.50 mmol) and carbon acid **1c** (10.1 mg, 10 µmol) in CH₂Cl₂ (1.5 mL), a solution of *tert*-butyldimethyl(1-ethoxyvinyloxy)silane (202 mg, 1.00 mmol) in CH₂Cl₂ (0.5 mL) was slowly added at 0 °C over 1 h using a syringe pump and stirred for 1 h at the same temperature. After being stirred for additional 4 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was directly purified by column chromatography on silica gel (hexane/EtOAc = 1 : 1) to give the vinyl ether **40a** in 90% yield (116.7 mg, 0.45 mmol). Pale yellow crystals (EtOAc); Mp. 85.5-87.0 °C; IR (ATR) *v* 2980, 1686, 1613,1140, 1087, 734 cm⁻¹; ⁻¹H NMR (400 MHz, CDCl₃) δ 1.31 (3H, t, *J* = 7.1 Hz), 4.17-4.27 (2H, m), 4.19 (2H, q, *J* = 7.1 Hz), 4.50 (2H, t, *J* = 5.0 Hz), 5.71 (1H, s), 6.91 (1H, s), 7.10-7.19 (1H, m), 7.23-7.30 (2H, m), 7.62 (1H, d, *J* = 8.0 Hz); ⁻¹³C NMR (100 MHz, CDCl₃) δ 143, 40.2, 59.4, 65.6, 93.0, 101.6, 108.8, 120.9, 121.7, 123.8, 127.2, 127.3, 136.4, 156.3, 165.3; MS (ESI-TOF) *m*/*z* 258 [M+H]⁺; HRMS calcd for C₁₅H₁₆NO₃ [M+H]⁺, 258.1130; found, 258.1133.

(Z)-Ethyl 2-(4*H*-furo[3,2-*c*]chromen-4-ylidene)acetate (4pa)

To a solution of 4*H*-furo[3,2-*c*]chromen-4-one **2p** (93.2 mg, 0.50 mmol) and carbon acid **1c** (10.0 mg, 10 µmol) in CH₂Cl₂ (1.0 mL), a solution of *tert*-butyldimethyl(1-ethoxyvinyloxy)silane (202 mg, 1.00 mmol) in CH₂Cl₂ (0.5 mL) was slowly added at 0 °C over 1 h using a syringe pump and stirred for 1 h at the same temperature. After being stirred for additional 9 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was directly purified by column chromatography on alumina (hexane/EtOAc = 10 : 1) to give the vinyl ether **4pa** in 75% yield (88.9 mg, 0.37 mmol). Yellow crystals (EtOAc-hexane); Mp. 94.5-95.5 °C; IR (ATR) *v* 3158, 2973, 1704, 1630, 1584, 1159, 739 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.33 (3H, t, *J* = 7.2 Hz), 4.22 (2H, q, *J* = 7.2 Hz), 5.53 (1H, s), 6.60 (1H, d, *J* = 2.0 Hz), 7.16-7.21 (1H, m), 7.34-7.40 (2H, m), 7.52 (1H, d, *J* = 2.0 Hz), 7.63 (1H, brd, *J* = 8.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 14.5, 59.3, 88.8, 106.5, 113.9, 114.0, 117.0, 119.9, 123.9, 129.9, 144.6, 150.2, 152.3, 156.9, 165.4; MS (ESI-TOF) *m*/*z* 257 [M+H]⁺; HRMS calcd for C₁₅H₁₃O₄ [M+H]⁺, 257.0814; found, 257.0806.

4. Preparation of Mukaiyama aldol products

$Ethyl\ 2-(2-(tert-butyl dimethyl sily loxy) tetrahydro-2H-pyran-2-yl) acetate$

TBSO CO₂Et

To a solution of δ -valerolactone (50.1 mg, 0.50 mmol) and carbon acid **1c** (5.0 mg, 5 µmol) in CH₂Cl₂ (0.5 mL), a solution of *tert*-butyl(1-ethyloxyvinyloxy)dimethylsilane (122 mg, 0.60 mmol) in CH₂Cl₂ (0.5 mL) was slowly added at -78 °C over 1 h using a syringe pump. After being stirred at the same temperature for 1 h, the reaction mixture was quenched with saturated NaHCO₃ aqueous solution (20 mL) and extracted with Et₂O (20 mL x 3). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Chromatographic purification of the resulting residue using silica gel (hexane/EtOAc = 50 : 1) gave the Mukaiyama aldol adduct in 71% yield (107.5 mg, 0.43 mmol). Colorless oil; IR (neat) *v* 2936, 2857, 1741, 1017, 837, 778 cm⁻¹; ⁻¹H NMR (400 MHz, CDCl₃) δ 0.12 (3H, s), 0.15 (3H, s), 0.90 (9H, s), 1.25 (3H, t, *J* = 7.1 Hz), 1.40-1.62 (3H, m), 1.67-1.94 (3H, m), 2.57 (1H, d, *J* = 13.6 Hz), 2.70 (1H, d, *J* = 13.6 Hz), 3.57-3.66 (1H, m), 3.86 (1H, td, *J* = 11.2, 3.9 Hz), 4.13 (1H, q, *J* = 7.1 Hz); ⁻¹³C NMR (100 MHz, CDCl₃) δ –2.9 and –2.6, 14.2, 18.3, 19.2, 25.0, 25.9 (3C), 35.0, 47.1, 60.3, 62.0, 97.0, 169.7; MS (ESI-TOF) *m/z* 325 [M+Na]⁺; HRMS calcd for C₁₅H₃₀NaO₄Si [M+Na]⁺, 325.1811; found, 325.1810. Anal. Calcd for C₁₅H₃₀O₄Si: C, 59.56; H, 10.00. Found: C, 59.71; H, 9.76.

Isopropyl 2-(7-bromo-1-(tert-butyldimethylsilyloxy)isochroman-1-yl)acetate (3dc)

To a solution of 7-bromoisochroman-1-one **2d** (112.6 mg, 0.50 mmol) and carbon acid **1c** (9.9 mg, 10 µmol) in CH₂Cl₂ (1.0 mL), a solution of *tert*-butyl(1-isopropyloxyvinyloxy)dimethylsilane (215 mg, 1.00 mmol) in CH₂Cl₂ (0.5 mL) was slowly added at -10 °C over 1 h using a syringe pump. After being stirred at the same temperature for 1 h, the reaction mixture was quenched with saturated NaHCO₃ aqueous solution (20 mL) and extracted with Et₂O (20 mL x 3). The combined organic layer was dried over anhydrous MgSO₄ and concentrated under reduced pressure. Chromatographic purification of the resulting residue using silica gel (hexane/EtOAc = 30 : 1) gave the Mukaiyama aldol adduct **3dc** in 86% yield (189.6 mg, 0.43 mmol). Colorless oil; IR (ATR) *v* 2956, 1732, 1104, 1082, 1048, 835, 777 cm⁻¹; ⁻¹H NMR (400 MHz, CDCl₃) δ 0.03 (3H, s), 0.16 (3H, s), 0.87 (9H, s), 0.93 (3H, d, *J* = 6.3 Hz), 1.05 (3H, d, *J* = 6.3 Hz), 2.56 (1H, dt, *J* = 16.1, 3.3 Hz), 2.86 (1H, ddd, *J* = 16.1, 11.2, 5.1 Hz), 2.95 (2H, s), 3.86 (1H, td, *J* = 11.2, 3.3 Hz), 4.00 (1H, ddd, *J* = 11.2, 5.1, 3.3 Hz), 4.76 (1H, sept, *J* = 6.3 Hz), 6.93 (1H, d, *J* = 8.1 Hz), 7.29 (1H, dd, *J* = 8.1, 2.0 Hz), 7.46 (1H, d, *J* = 2.0 Hz); ⁻¹³C NMR (100 MHz, CDCl₃) δ -3.3 and -2.8, 17.9, 21.3 and 21.5, 25.7 (3C), 28.2, 49.0, 60.3, 67.4, 96.9, 119.6, 129.4, 130.0, 130.4, 133.0, 140.5, 168.0; MS (ESI-TOF) *m*/z 465 [M+Na]⁺, 467 [M+2+H]⁺; HRMS calcd for C₂₀H₃₁BrNaO₄Si [M+Na]⁺, 465.1073; found, 465.1077.

A solution of Mukaiyama aldol adduct 3dc (38.5 mg, 87 µmol) in CH₂Cl₂ (1.0 mL) was treated with carbon

acid **1c** (2.0 mg, 2 μ mol) at room temperature for 5 min. The reaction mixture was quenched with saturated NaHCO₃ aqueous solution (15 mL), extracted with Et₂O (20 mL x 3), and concentrated under reduced pressure. The resulting residue was purified by column chromatography on basic alumina (hexane/EtOAc = 5 : 1) to give the vinyl ether **4dc** in 98% yield (26.5 mg, 0.85 mmol). The structure of the product was confirmed by comparison of ¹H and ¹³C NMR spectra with those of the authentic sample.

5. X-ray crystallographic data

X-ray crystallographic data of **4ha** and **4ia** have been deposited with Cambridge Crystallographic Data Center (CCDC) as supplementary publication Nos. CCDC 881214 (**4ha**) and 881215 (**4ia**). These data can be obtained free of charge from the CCDC *via* www.ccdc.cam.ac.uk/data_request/cif.

X-ray structure of 4ha

X-ray structure of 4ia

Empirical formula	$C_{12}H_{11}BrO_3$		
Formula weight	283.12		
Temperature	90 K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 21/c		
Unit cell dimensions	a = 13.2003(10) Å	$\alpha = 90^{\circ}.$	
	b = 11.6716(9) Å	$\beta = 91.8430(10)^{\circ}.$	
	c = 7.2810(6) Å	$\gamma = 90^{\circ}.$	
Volume	1121.19(15) Å ³		
Z	4		
Density (calculated)	1.677 Mg/m ³		
Absorption coefficient	3.654 mm ⁻¹		
F(000)	568		
Crystal size	0.21 x 0.14 x 0.06 mm ³		
Theta range for data collection	2.33 to 25.03°.		
Index ranges	-15<=h<=9, -13<=k<=13, -8<=l<=8		
Reflections collected	5250		
Independent reflections	1974 [R(int) = 0.0210]		
Completeness to theta = 25.03°	99.6 %		
Absorption correction	Analytical		
Max. and min. transmission	0.8106 and 0.5141		

Table S1. Crystal data and structure refinement for 4ha.

Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	1974 / 0 / 147
Goodness-of-fit on F ²	1.042
Final R indices [I>2sigma(I)]	R1 = 0.0217, wR2 = 0.0507
R indices (all data)	R1 = 0.0258, wR2 = 0.0520
Largest diff. peak and hole	0.368 and -0.299 e.Å ⁻³

Table S2. Crystal data and structure refinement	ent for 4ia .		
Empirical formula	C ₁₈ H ₂₂ O ₃ Si		
Formula weight	314.45		
Temperature	90 K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 21/c		
Unit cell dimensions	a = 19.733(5) Å	$\alpha = 90^{\circ}$.	
	b = 12.199(3) Å	$\beta = 100.236(3)^{\circ}.$	
	c = 7.4044(17) Å	$\gamma = 90^{\circ}.$	
Volume	1754.0(7) Å ³		
Z	4		
Density (calculated)	1.191 Mg/m ³		
Absorption coefficient	0.143 mm ⁻¹		
F(000)	672		
Crystal size	0.27 x 0.27 x 0.08 mm ³		
Theta range for data collection	2.10 to 25.02°.		
Index ranges	-23<=h<=17, -14<=k<=13, -8<=l<=8		
Reflections collected	7915		
Independent reflections	3091 [R(int) = 0.0248]		
Completeness to theta = 25.02°	99.6 %		
Absorption correction	Analytical		
Max. and min. transmission	0.9886 and 0.9623		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3091 / 0 / 203		
Goodness-of-fit on F ²	1.025		
Final R indices [I>2sigma(I)]	R1 = 0.0375, $wR2 = 0.0921$		
R indices (all data)	R1 = 0.0432, wR2 = 0.0959		
Largest diff. peak and hole	0.419 and -0.322 e.Å ⁻³		

6. ¹H and ¹³C NMR spectra of all compounds

7. References

- (a) F. J. Waller, A. G. M. Barrett, D. C. Braddock, D. Ramprasad, R. M. McKinnell, A. J. P. White, D. J. Williams and R. J. Ducray, *J. Org. Chem.*, 1999, **64**, 2910–2913; (b) H. Yanai, A. Takahashi, T. Taguchi, *Tetrahedron*, 2007, **63**, 12149–12159.
- 2. H. Yanai, H. Ogura, H. Fukaya, A. Kotani, F. Kusu, T. Taguchi, Chem.-Eur. J., 2011, 17, 11742-11751.
- 3. K. Ruhland, A. Brück and E. Herdtweck, Eur. J. Inorg. Chem., 2007, 944–964.
- 4. M. Mori, Y. Kagoshima, T. Uchida, T. Konosu, T. Shibayama, Eur. Pat., 2003, 1362856.
- 5. M. Hellal, J.-J. Bourguignon and F. J.-J. Bihel, Tetrahedron Lett., 2008, 49, 62-65
- 6. J. T. Bamberg, T. Gabriel, N. E. Krauss, T. Mirzadegan, W. S. Palmer, D. B. Smith, US Pat. 77 646, 2004.
- 7. K. C. Majumdar, T. Bhattacharyya, J. Chem. Res. (S), 1997, 244-245.
- 8. G. Sabitha, M. M. Reddy, D. Srinivas and J. S. Yadov, Tetrahedron Lett., 1999, 40, 165–166.