Supporting Information

Ru-Catalyzed Hydrogenation of 3,5-Diketo Amides: Simultaneous Control of Chemo- and Enantioselectivity

Wanfang Li[†], Weizheng Fan[†], Xin Ma[†], Xiaoming Tao[†], Xiaoming Li[†], Xiaomin Xie[†], and Zhaoguo Zhang^{†§}*

[†]School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China, [§]State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, China

zhaoguo@sjtu.edu.cn

Table of Contents

1. Preparation of 1a-g	2
2. Preparation of 2a-g	4
3. Preparation of 3a-t	6
4. Preparation of 4a-t	13
5. References	19
6. NMR Copies for 1-5	20
7. HPLC diagrams for ee determination	96

General and Materials

General: All reactions were carried out under an atmosphere of nitrogen using standard Schlenk techniques unless otherwise noted. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were obtained on a 400 MHz NMR spectrometer. The chemical shifts for ¹H NMR were recorded in ppm downfield from tetramethylsilane (TMS) with the solvent resonance as the internal standard. The chemical shifts for ¹³C NMR were recorded in ppm downfield using the central peak of CDCl₃ (77.00 ppm) as the internal standard. Coupling constants (*J*) are reported in Hz and refer to apparent peak multiplications. Flash column chromatography was performed on silica gel (300-400 mesh).

Materials: Commercially available reagents were used throughout without further purification other than those detailed below. The solvents used in catalyst preparation and hydrogenation reactions were pretreated by the following procedures: THF was distilled over sodium benzopheneone ketyl under nitrogen. CH_2Cl_2 was distilled over calcium hydride. EtOH was distilled over magnesium under nitrogen.

`1. Preparation of 1a-h

*Method 1:*¹

N, *N*-dimethyl-3, 5-dioxohexanamide (1a): 2, 4-Pentadione (9.0 g, 89.9 mmol) was added dropwise to a solution of LDA (180 mmol) (prepared from 19.1 g of ${}^{i}Pr_{2}NH$ and 75 mL of 2.4 M *n*-BuLi in hexane) in 150 mL of THF at -78 °C during half an hour. Then warmed to -5 °C, ethyl dimethylcarbamate (9.5 g, 58.5 mmol) was added dropwise. The mixture was stirred overnight and the solvent was evaporated. The residue was dissolved in 50 mL water and washed with 20 mL Et₂O to remove the unreacted 2, 4-pentadione. The water phase was acidified with cold 10% HCl to pH=3 and extracted with CHCl₃, washed with brine and dried over Na₂SO₄. Flash column chromatography (PE/EA=3/1) to give **1a** (11.5 g, 83% yield).

1c and **1d** were prepared similarly with corresponding carbamates. Ethyl dibenzylcarbamate² was prepared according to the literature. Ethyl diphenylcarbamate was prepared by the following modified procedure: ³

To a solution of diphenylamine (12.0 g, 70.9 mmol) in 150 mL of THF at room temperature was added NaH (60% dispersion in mineral oil, 3.4 g, 85.1 mmol) and then ethyl chloroformate (9.6 g, 88.6 mmol). The reaction mixture was refluxed overnight and quenched with cold 10% HCl to pH=3. The aqueous phase was extracted with EtOAc and the combined organic phased was dried over Na₂SO₄. The solvent was removed in vacuum to give the desired product as yellow oil which was used directly for the following step. ¹H NMR (400 MHz, CDCl₃) δ = 7.40-7.15 (m, 10H), 4.29-4.20 (q, *J*=7.1 Hz 2H), 1.30- 1.20 (t, *J*=7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 142.6, 128.8, 126.9, 125.9, 61.9, 14.4.

tert-Butyl 3,5-dioxohexanoate (1g)⁴: tert-Butyl acetoacetate (20 g, 126.4 mmol) was added dropwise to a suspension of NaH (60% dispersion in mineral oil, 5.6 g, 139.1 mmol) in 200 mL of anhydrous THF at 0 °C. The mixture was stirred for an additional 10 min. The clear solution was cooled to -10 °C, and *n*-BuLi (58 mL, 2.4 M in hexane) was added dropwise. After stirring for an additional 30 min at this temperature, *N*-methoxy-*N*-methylacetamide (14.4 g, 139.1 mmol) was added dropwise at -40 °C. Then the mixture was warmed to room temperature within 2 h and quenched with 10% aqueous HCl to pH=3-4. The solvent was rotoevaporated for the sake of better extraction. The residue and aqueous phase was combined and extracted with EtOAc three times, washed with aqueous NaHCO₃, brine and

dried over Na₂SO₄. Flash column chromatography (PE/EA=15/1) to give (24.1 g, 95% yield) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) & 5.60 (s, 0.73H), 3.74-3.71 (m, 0.26H), 3.47-3.44 (m, 1H), 3.24 (s, 2H), 2.25 (s, 1H), 2.07 (s, 2H), 1.47 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 190.0, 187.5, 166.6, 100.3, 81.7, 57.1, 50.6, 46.1, 27.8, 24.2.

1b, **1e** and **1f** were prepared by amminolysis of the *tert*-butyl 5-dioxohexanoate⁵ with the corresponding amines with good yields (85-90%).

NMe₂ NMe₂ N, N-dimethyl-3, 5-dioxohexanamide¹ Light yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 15.16 (s, 1H), 15.04 (s, 1H), 5.64 (s, 0.72H), 5.21 (s, 0.07H), 3.76 (s, 0.35H), 3.62 (s, 0.35H), 3.42 (s, 1.72H), 2.99 (t, J = 18.8 Hz, 6H), 2.27 (s, 0.23H), 2.23 (s, 0.22H), 2.05 (s, 2.5H). ¹³C NMR (100 MHz, CDCl₃) & 202.4, 198.4, 189.5, 188.7, 169.7, 166.6, 99.9, 88.7, 56.8, 50.6, 48.8, 44.9, 37.6, 37.4, 35.2, 34.9, 30.5, 23.7.

N, N-diethyl-3, 5-dioxohexanamide Light yellow liquid. ¹Η NMR (400 MHz, CDCl₃) δ 5.67 (s, 0.51H), 5.16 (s, 0.18H), 3.79 (s, 0.28H), 3.58 (s, 0.30H), 3.38 (s, 1.78H), 3.44-3.22 (m, 4H), 2.26 (d, J = 10.6 Hz, 1H), 2.05 (s, 2H), 1.22-1.09 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 198.8, 189.7,

188.8, 170.5, 169.9, 165.8, 165.5, 100.0, 88.9, 56.9, 50.8, 48.6, 44.8, 42.4, 41.8, 40.0, 30.5, 29.4, 23.8, 13.9, 13.8, 12.9, 12.6. HRMS Calculated for C₁₀H₁₇NO₃ (M+H): 200.1287, found: 200.1264.

N, N-dibenzyl-3, 5-dioxohexanamide Thick yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.12 (m, 10H), 5.65 (s, 0.7H), 5.30-5.27 (m, 0.19H), 4.63 (s, 2H), 4.49 (s, 2H), 3.78 (s, 0.29H), 3.71

(s, 0.30H), 3.51 (s, 1.59H), 3.24 (s, 0.25H), 2.24 (d, J = 2.0 Hz, 0.77H), 2.05 (s, 2.23H). ¹³C NMR (100 MHz, CDCl₃) δ 202.8, 202.2, 198.4, 189.4, 188.8, 172.0, 170.9, 167.5, 167.2, 136.6, 135.8, 128.8, 128.4, 128.0, 127.9, 127.6, 127.3, 126.4, 126.2, 100.2, 89.0, 57.1, 50.8, 50.4, 49.6, 48.8, 48.2, 48.1, 47.7, 45.0, 30.6, 29.5, 23.8. HRMS Calculated for C₂₀H₂₁NO₃ (M+Na): 346.1419, found: 346.1423.

3, 5-dioxo-*N*, *N***-diphenylhexanamide** Pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.13 (m, 10H), 5.57 (s, 0.58H), 4.96 (s, 0.18H), 3.73 (s, 0.35H), 3.55 (s, 0.37H), 3.37 (s, 1.35H), 3.16

(s, 0.40H), 2.23 (s, 0.49H), 2.21 (s, 0.46H), 2.03 (s, 1.89H). ¹³C NMR (100 MHz, CDCl₃) δ 198.3, 189.1, 188.8, 171.3, 170.5, 166.8, 142.1, 141.6, 129.7, 129.0, 128.7, 128.4, 128.3, 128.1, 126.2, 120.5, 117.4, 100.4, 92.0, 57.3, 50.5, 50.0, 45.9, 30.6, 29.6, 23.9. HRMS Calculated for C₁₈H₁₇NO₃ (M+Na): 318.1106, found: 318.1104.

1-morpholinohexane-1, 3, 5-trione

Yellow oil. ¹H NMR (400 MHz, CDCl₃) & 5.65 (s, 0.66H), 3.68-3.63 (m, 6H), 3.52-3.50(m, 2H), 3.41 (s, 2.25H), 2.26(s, 0.77H), 2.04 (s, 2.22H).¹³C NMR (100 MHz, CDCl₃) δ 202.2, 198.1, 189.4, 188.4, 165.0,

164.7, 99.8, 88.0, 66.2, 66.12, 56.7, 50.4, 48.6, 46.4, 46.2, 44.7, 41.9, 41.7, 30.4, 23.4. HRMS Calculated for C₁₀H₁₅NO₄ (M+Na): 236.0899, found: 236.0893.

N-(tert-butyl)-3, 5-dioxohexanamide Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 6.40 (s, 1H), 5.61 (s, 0.61H), 3.74 (s, 0.18H), 3.37 (s, 0.18H), 3.32 (s, 0.35H), 3.17 (s, 1.44H), 2.25 (s,

1H), 2.07 (s, 2H), 1.34 (d, J = 1.4 Hz, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 190.2, 189.4, 165.2, 100.6, 57.1, 51.4, 51.1, 47.4, 28.3, 23.8. HRMS Calculated for C₁₀H₁₇NO₃ (M+Na): 222.1106, found: 222.1081.

2. Preparation of 2a-g

Typical procedure for asymmetric hydrogenation reactions⁶: To a 20 mL Schlenk tube were added [Ru(benzene)Cl₂]₂ (6.2 mg, 12.5 µmol) and (S)-SunPhos (18.3 mg, 27.5 µmol). The tube was vacuumed and purged with nitrogen three times before addition of freshly distilled and freeze-and-thaw degassed EtOH/CH₂Cl₂ (1 mL/1 mL). The resulting mixture was heated at 50 °C for 1 h and then cooled to room temperature. The solvent was then removed under vacuum to give the catalyst as a brownish yellow solid. The catalyst was dissolved in degassed THF (10 mL) and then the solution was equally divided into five vials which contained 1 mmol of substrates. To each vial 3 mL more of THF was added. Then the vials were taken into an autoclave. The autoclave was purged three times with H_2 and the required pressure of H₂ was set. Then the autoclave was stirred under specified reaction conditions. After being cooled to ambient temperature and careful release of the hydrogen, the autoclave was opened and the solvent was evaporated. The enantiomeric excess was determined by HPLC (derivation by 4-nitrobenzoyl chloride if needed) after passing the samples through a short pad of silica gel eluted with petroleum ether and ethyl acetate.

3-hydroxy-N, N-dimethyl-5-oxohexanamide. NMe₂ Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 4.43 (dd, J = 3.6, 2.4 Hz, 1H), 4.42-4.39 (m, 1H), 2.98 (s, 3H), 2.94 (s, 3H), 2.77-2.66 (m, 2H), 2.60-2.33 (m, 2H), 2.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 207.9, 171.6, 64.5, 49.4, 38.5, 36.9, 34.9, 30.6. HPLC (Chiralcel AD-H column, hexane/ⁱPrOH 89/11, 0.75 mL min⁻¹, 220 nm): $t_1 = 23.1$ min, $t_2 = 27.6$ min. HRMS Calculated for $C_8H_{15}NO_3$ (M+Na): 196.0950, found: 196.0957. $[\alpha]_{D}^{25} = 40.4$ (c 0.41, CH_2Cl_2).

3-hydroxy-*N*, *N*-diethyl-5-oxohexanamide. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 5.67 (s, 0.51H), 5.16 (s, 0.18H), 3.79 (s, 0.28H), 3.58 (s, 0.30H), 3.38 (s, 1.78H), 3.44-3.22 (m, 4H), 2.26 (d, J = 10.6 Hz, 1H), 2.05 (s, 2H), 1.22-1.09 (m, 6H).¹³C NMR (100 MHz, CDCl₃) δ 198.8, 189.7, 188.8, 170.5, 169.9, 165.8, 165.5, 100.0, 88.9, 56.9, 50.8, 48.6, 44.8, 42.4, 41.8, 40.0, 30.5, 29.4, 23.8, 13.9, 13.9, 12.9, 12.6. HPLC (Chiralcel IA-3 column, hexane/ⁱPrOH/EtOH 90/5/5, 0.7 mL min⁻¹, 220 nm): t₁ = 26.3 min, t_2 =28.5 min. HRMS Calculated for $C_{10}H_{19}NO_3$ (M+H): 224.1263, found: 224.1259. $[\alpha]^{25}_{D}$ = 40.9 (c 0.49, CH₂Cl₂).

N, N-dibenzyl-3-hydroxy-5-oxohexanamide

Thick yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.03 (m, 10H), 4.60 (q, *J* = 15.0 Hz, 2H), 4.51-4.56 (m, 1H), 4.44 (s, 2H), 4.36 (d, *J* = 3.3 Hz, 1H),

2.78-2.48 (m, 4H), 2.18 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 207.4, 172.0, 136.4, 135.5, 128.5, 128.2, 127.6, 127.2, 127.0, 126.0, 64.5, 49.4, 49.2, 47.6, 38.5, 30.2. HPLC (Chiralcel OJ-H column, hexane/ⁱPrOH 88/12, 0.8 mL min⁻¹, 220 nm): $t_1 = 35.6$ min, $t_2 = 38.8$ min. HRMS Calculated for $C_{20}H_{23}NO_3$ (M+Na): 348.1576, found: 348.1574. $[\alpha]_{D}^{25} = 14.1$ (c 0.51, CH₂Cl₂).

3-hydroxy-5-oxo-N, N-diphenylhexanamide

Thick yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.10 (m, 10H), 4.54-4.43 (m, 1H), 4.12 (d, *J* = 3.4 Hz, 1H), 2.70-2.55 (m, 2H), 2.51-2.38 (m, 2H), 2.15 (d, J = 2.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 207.7, 171.8,

141. 9, 129.7, 128.8, 128.4, 128.0, 126.2, 64.8, 49.3, 40.8, 30.5. HPLC (Chiralcel AD-H column, hexane/ⁱPrOH 87/13, 0.8 mL min⁻¹, 254 nm): $t_1 = 38.9$ min, $t_2 = 42.3$ min. HRMS Calculated for $C_{18}H_{19}NO_3$ (M+Na): 320.1263, found: 320.1255. [α]²⁵_D = -4.7 (c 0.90, CH₂Cl₂).

3-hydroxy-1-morpholinohexane-1, 5-dione

Yellow oil. ¹H NMR (400 MHz, CDCl₃) & 4.45 (s, 1H), 4.14 (s, 1H), 3.70-3.64 (m, 4H), 3.64-3.58 (m, 2H), 3.50-3.41 (m, 2H), 2.71 (dd, J =12.6, 6.3 Hz, 2H), 2.56-2.20 (m, 2H), 2.20 (s, 3H). ¹³C NMR (100 MHz,

CDCl₃) & 207.9, 170.09, 66.4, 66.2, 64.4, 49.3, 45.6, 41.5, 38.4, 30.6. HPLC (Chiralcel AS-H column, hexane/ⁱPrOH 84/16, 0.9 mL min⁻¹, 220 nm): $t_1 = 32.7$ min, $t_2 = 45.4$ min. HRMS Calculated for $C_{10}H_{17}NO_4$ (M+Na): 238.1055, found: 238.1050. $[\alpha]^{25}_{D} = 35.6$ (c 0.56, CH₂Cl₂).

N-(tert-butyl)-3-hydroxy-5-oxohexanamide Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 5.84 (s, 1H), 4.39-4.33 (m, 1H), 4.15 (s, 1H), 2.65 (t, J = 6.5 Hz, 2H), 2.27 (dd, J = 8.6, 5.9 Hz, 2H), 2.18 (s,

3H), 1.34 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) & 208.3, 170.7, 64.8, 50.8, 49.4, 42.5, 30.4, 28.4. HRMS Calculated for C₁₀H₁₉NO₃ (M+H): 202.1443, found: 202.1433.

1-(tert-butylamino)-1, 5-dioxohexan-3-yl 4-nitrobenzoate

White solid. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 9.0 Hz, 2H), 8.15 (d, J = 9.0 Hz, 2H, 5.76-5.68 (m, 1H), 5.49 (s, 1H), 3.08 (qd, J = 17.3, 6.2 Hz, 2H), 2.61 (d, J = 6.1 Hz, 2H), 2.20 (s, 3H), 1.29 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 205.2, 167.9, 163.7, 150.4, 135.2, 130.6, 123.4, 69.2, 51.2, 46.5, 40.9, 30.3, 28.5. HPLC (Chiralcel IA-3 column, hexane/PrOH 88/12, 0.8 mL min⁻¹, 254

nm): $t_1 = 22.7$ min, $t_2 = 31.4$ min. HRMS Calculated for $C_{17}H_{22}N_2O_6$ (M+Na): 373.1376, found: 373.1374.

tert-butyl 3-hydroxy-5-oxohexanoate

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 4.47 – 4.35 (m, 1H), 3.48 (s, 1H), 2.65 (dd, *J* = 8.3, 6.2 Hz, 2H), 2.42 (d, *J* = 6.4 Hz, 2H), 2.19 (s, 3H), 1.44 (d, J = 5.2 Hz, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 208.1, 171.0, 80.9,

64.2, 49.1, 41.6, 30.5, 27.8. HRMS Calculated for C₁₀H₁₈O₄ (M+Na): 225.1103, found: 225.1126.

374.1198, found: 374.1216.

3. Preparation of 3a-t

3a-t were prepared by the following route **A** or **B**:

The Weinreb amides were prepared from the corresponding acid or acid chlorides with the standard methods in the literature.⁷

or NMeOMe

Note: Route A^8 have the occasional purification problem as the starting material *tert*-butyl acetoacetate were difficult to be separated from several β , δ -diketo esters 5, which were obtained by the similar procedure for **1h** on page S2. The one-step route \mathbf{B}^{9} is relatively convenient except that the poor solubility of the sodium enolate of the N, N-diethyl-3-oxobutanamide in THF at low temperature (0 °C) made magnetic stirring problematic until n-BuLi was carefully added. Two equivalence of LDA can avoid the trouble. Both methyl esters and Weinreb amides can be used as the acylation reagents, the latter were preferred as they usually gave better yields.

3H).¹³C NMR (100 MHz, CDCl₃) δ 204.3, 198.6, 191.4, 189.8, 169.9, 165.6, 99.1, 88.6, 55.9, 49.7, 48.5, 45.0, 44.8, 43.8, 42.2, 41.6, 39.8, 38.9, 18.6, 16.3, 13.7, 13.1, 13.0, 12.3. HRMS Calculated for C₁₂H₂₁NO₃ (M+H): 228.1600, found: 228.1588.

N, *N*-diethyl-3, 5-dioxotridecanamide

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 5.66 (s, 0.59H), 5.15 (s, NEt₂ 0.09H), 3.76 (s, 0.35H), 3.59 (s, 0.35H), 3.39-2.42(m, 1.44H), 3.42-3.27(m. 4H), 2.52 (dd, J = 19.9, 12.5 Hz, 0.52H), 2.30-2.22 (m,

1.29H), 1.57 (dd, J = 15.1, 7.5 Hz, 3H), 1.25 (t, J = 7.1 Hz, 9H), 1.21-1.08 (m, 6H), 0.95-0.79 (m, 3H).¹³C NMR (100 MHz, CDCl₃) & 204.5, 198.6, 191.8, 189.7, 170.4, 170.0, 165.6, 165.4, 99.1, 88.6, 55.9, 49.8, 48.5, 44.8, 43.2, 42.2, 42.1, 41.6, 39.8, 37.1, 31.4, 28.8, 28.7, 28.7, 25.3, 23.1, 22.9, 22.2, 13.7, 13.6, 12.8, 12.4. HRMS Calculated for C₁₇H₃₁NO₃ (M+H): 298.2382, found: 298.2379.

5-cyclohexyl-N, N-diethyl-3, 5-dioxopentanamide

Yellow liquid. 1 H NMR (400 MHz, CDCl₃) δ 5.65 (s, 1H), 5.14 (s, 1H), 3.81 (s, 0.28H), 3.59 (s, 0.27H), 3.40 (s, 1.79H), 3.40-3.23 (m, 4H), 2.12-2.19 (m, 1H), 1.93-1.56 (m, 6H), 1.42-1.20 (m, 4H),

1.19-1.09 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 207.7, 199.2, 194.9, 190.6, 170.3, 165.8, 97.4, 88.8, 54.1, 51.1, 48.7, 47.7, 45.4, 45.2, 42.4, 39.9, 29.2, 28.0, 27.7, 25.4, 25.4, 25.2, 25.1, 13.9, 12.5. HRMS Calculated for C₁₅H₂₅NO₃ (M+H): 268.1913, found: 268.1917.

N, N-diethyl-6, 6-dimethyl-3, 5-dioxoheptanamide $NEt_2 \qquad \text{Yellow liquid. }^{1}\text{H NMR (400 MHz, CDCl_3) } \delta 5.75 \text{ (s, 0.59H), 3.88 (s,$

0.25H), 3.60 (s, 0.24H), 3.42 (s, 1.53H), 3.42-3.25 (m, 4H), 1.24-1.06 (m, 6H), 1.17-1.14 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 198.2, 190.5, 165.7, 95.2, 88.9, 50.6, 48.7, 45.1, 42.3, 39.8, 38.2, 26.8, 25.7, 25.6, 13.8, 12.5, 12.4. HRMS Calculated for C₁₃H₂₃NO₃ (M+H): 242.1756, found: 242.1750.

N, N-diethyl-3, 5-dioxo-7-phenylheptanamide

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.08 (m, 5H), 5.65 (s, 0.55H), 5.11 (s, 0.13H), 3.76 (s, 0.35H), 3.38 (s, 1.79H), 3.41-3.23 (m, 4H), 2.96-2.84 (m, 2H), 2.62-2.58 (m, 1.43H),

2.28 (s, 0.31H), 1.20-1.08 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 203.9, 203.3, 198.5, 190.8, 189.3, 169.7, 165.5, 140.0, 128.0, 127.8, 125.8, 125.7, 99.5, 88.8, 56.1, 49.9, 48.4, 44.5, 43.4, 42.2, 39.8, 38.8, 31.1, 29.0, 28.9, 13.8, 12.4. HRMS Calculated for C₁₇H₂₃NO₃ (M+Na): 312.1576, found: 312.1577.

N, *N*-diethyl-7-methyl-3, 5-dioxooct-6-enamide

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 5.64 (d, J = 1.2 Hz, 1H), NEt₂ 5.57 (s, 1H), 3.76 (s, 1H), 3.61 (s, 1H), 3.42-3.40 (m, 2H), 3.40-3.25(m, 4H), 2.17 (s, 3H), 1.91 (s, 3H), 1.15 (dt, J = 14.2, 7.1 Hz, 6H). ¹³C

NMR (100 MHz, CDCl₃) & 191.3, 181.2, 165.8, 153.9, 122.9, 122.3, 120.4, 100.3, 88.6, 57.5, 51.0, 48.6, 45.5, 42.3, 39.8, 27.9, 27.3, 20.6, 13.8, 12.4. HRMS Calculated for C₁₃H₂₁NO₃ (M+H): 240.1600, found: 240.1579.

N, N-diethyl-3, 5-dioxo-5-phenylpentanamide

Thick yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.03-7.83 (m, 2H), 7.61-7.39 (m, 3H), 6.37 (s, 1H), 4.34 (s, 1H), 3.68 (s, 1H), 3.54 (s, 1H), 3.46-3.26 (m, 4H), 2.28 (s, 1H), 1.24-1.08 (m, 6H).¹³C NMR (100

MHz, CDCl₃) δ 191.9, 181.5, 165.9, 133.9, 132.4, 128.6, 128.5, 128.4, 126.9, 96.4, 52.9, 49.8, 48.8, 46.0, 42.6, 42.5, 40.2, 40.1, 14.1, 12.8. HRMS Calculated for C₁₅H₁₉NO₃ (M+Na): 284.1263, found: 284.1239.

N, N-diethyl-3, 5-dioxo-5-(o-tolyl)pentanamide

Thick yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.54-7.45 (m, 1H), 7.34 (d, J = 6.5 Hz, 1H), 7.31-7.17 (m, 2H), 6.03 (s, 0.78H), 4.30 (s, 0.18H), 3.68 (s, 0.19H), 3.52 (s, 1.93H), 3.49-3.29 (m, 4H), 2.50 (s, 1.93H), 3.49-3.29 (m, 2000) (s, 0.18H), 2.50 (s, 0.18H), 3.51 (s, 0.19H), 3.52 (s, 0.19H), 3.52 (s, 0.19H), 3.51 (s, 0.19H), 3.52 (s, 0.19H), 3.52 (s, 0.19H), 3.51 (s, 0.19H), 3.52 (s, 0.19H), 3.51 (s, 0.19H), 3.52 (s,

3H), 1.18 (dt, J = 22.8, 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 198.7, 196.7, 190.6, 185.3, 170.3, 165.1, 136.3, 134.1, 131.3, 130.6, 130.1, 129.0, 127.7, 125.1, 125.0, 100.0, 88.5, 54.5, 48.1, 47.6, 44.6, 41.9, 41.8, 41.2, 39.5, 39.3, 20.7, 20.0, 13.4, 12.1. HRMS Calculated for C₁₆H₂₁NO₃ (M+H): 276.1600, found: 276.1584.

N, N-diethyl-5-(2-methoxyphenyl)-3, 5-dioxopentanamide

Thick yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.89 (m, 1H), 7.55-7.37 (m, 1H), 7.07-6.89 (m, 2H), 6.62 (s, 0.79H), 4.26 (s, 0.38H), 3.89 (d, J = 5.0 Hz, 3H), 3.66 (s, 0.35H), 3.52 (s, 1.60H), 3.44-3.27 (m,

4H), 1.16 (dt, J = 16.1, 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 198.8, 194.0, 192.0, 178.7, 165.4, 157.9, 134.0, 132.6, 129.7, 129.2, 122.0, 119.9, 119.8, 111.1, 111.0, 101.0, 88.2, 57.0, 54.8, 49.7, 48.4, 45.2, 42.0, 41.9, 39.5, 39.3, 13.4, 12.1.HRMS Calculated for C₁₆H₂₁NO₄ (M+H): 192.1549, found: 192.1555.

N, N-diethyl-5-(2-fluorophenyl)-3,5-dioxopentanamide

Thick yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.96-7.87 (m, 1H), 7.56-7.41 (m, 1H), 7.27-7.19 (m, 1H), 7.11 (m, 1H), 6.43 (s, 1H), 4.30 (s, 0.20H), 3.68-3.66 (m, 0.19H), 3.54 (s, 1.70H), 3.38 (dd, J = 21.3,

7.1 Hz, 4H), 1.22-1.13 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 192.7, 177.2, 165.8, 162.3, 159.8, 135.4, 135.3, 133.6, 133.5, 130.6, 129.9, 124.4, 124.4, 122.4, 122.3, 116.8, 116.6, 116.3, 101.3, 101.1, 56.7, 49.4, 45.9, 42.7, 40.2, 14.2, 12.7. HRMS Calculated for C₁₅H₁₈NO₃F (M+H): 280.1349, found: 280.1342.

5-(3-chlorophenyl)-N, N-diethyl-3, 5-dioxopentanamide

Thick yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (t, J = 1.9 Hz, 1H), 7.74 (ddd, J = 7.8, 1.6, 1.1 Hz, 1H), 7.47 (dd, J = 2.1, 1.1 Hz, 1H), 7.38 (t, J = 7.9 Hz, 1H), 6.34 (s, 1H), 3.81 (s, 1H),

3.66 (s, 1H), 3.54 (s, 2H), 3.40 (dd, J = 17.0, 7.2 Hz, 4H), 1.18 (dt, J = 19.2, 7.1 Hz, 6H). ¹³C NMR (100MHz, CDCl₃) δ 198.6, 191.9, 179.0, 165.2, 135.2, 134.0, 131.6, 129.5, 129.3, 126.2, 124.4, 96.5, 88.8, 52.4, 48.0, 45.0, 42.1, 39.7, 13.6, 12.3. HRMS Calculated for C₁₅H₁₈NO₃Cl (M+H): 296.1053, found: 296.1054.

N, *N*-diethyl-3, 5-dioxo-5-(m-tolyl)pentanamide

Thick yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.66 (m, 2H), 7.44-7.28 (m, 2H), 6.35 (s, 0.79H), 4.33 (s, 0.22H), 3.68 (s, 0.21H), 3.53 (s, 1.68H), 3.48-3.26 (m, 4H), 2.40 (s, 3H),

1.29-1.03 (m, 6H).¹³C NMR (100 MHz, CDCl₃) δ 199.5, 191.8, 181.7, 165.9, 138.2, 134.4, 133.8, 133.2, 128.8, 128.5, 128.4, 127.4, 125.7, 124.1, 96.3, 89.0, 52.9, 48.8, 46.0, 42.6, 42.5, 40.2, 21.2, 14.1, 14.0, 12.7. HRMS Calculated for C₁₆H₂₁NO₃ (M+H): 276.1600, found: 276.1588.

5-(4-chlorophenyl)-N, N-diethyl-3, 5-dioxopentanamide

Thick yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.02-7.69 (m, 2H), 7.52-7.30 (m, 2H), 6.34 (s, 0.77H), 4.32 (s, 0.1H), (s, 0.1H), 3.51 (s, 1.67H), 3.45-3.35 (m, 4H), 1.22-1.11 (m, 6H). ¹³C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \delta$ 191.8, 180.0, 165.6, 138.3, 132.2, 129.7, 128.7, 128.6, 128.1, 96.3, 2.8, 48.4, 45.5, 42.4, 40.1, 14.0, 12.6. HRMS Calculated for HRMS Calculated for C₁₅H₁₈NO₃Cl (M+H): 296.1053, found: 296.1050.

5-(4-bromophenyl)-N, N-diethyl-3, 5-dioxopentanamide

Thick yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.90-7.69 (m, 2H), 7.64-7.51 (m, 2H), 6.33 (s, 0.79H), 4.31 (s, 0.16H), 3.64 (s, 0.15H), 3.52 (s, 1.76H), 3.43-3.34 (m, 4H), 1.17 (dt, *J* = 20.0, 7.1

Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 198.8, 191.8, 179.7, 170.0, 165.4, 132.4, 131.4, 131.3, 129.6, 129.6, 128.0, 126.7, 96.18, 88.7, 52.5, 48.1, 45.2, 42.2, 42.1, 39.8, 39.7, 13.7, 12.4. HRMS Calculated for C₁₅H₁₈NO₃Br (M+Na): 362.0368, found: 362.0355.

N, N-diethyl-5-(4-methoxyphenyl)-3, 5-dioxopentanamide

Thick yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.03-7.83 (m, 2H), 6.97-6.87 (m, 2H), 6.29 (s, 0.73H), 5.20 (s, 0.08H), 4.28 (s, 0.35H), 3.86 (s, 2.82H), 3.79-3.77 (m, 0.17H), 3.67 (s, 0.36H),

3.50 (s, 1.53H), 3.44-3.36 (m, 4H), 1.27-1.06 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 199.1, 192.4, 189.5, 181.9, 170.7, 165.6, 162.7, 130.4, 130.3, 128.6, 125.9, 113.4, 95.1, 88.5, 54.8, 52.3, 48.2, 44.7, 42.1, 42.0, 39.7, 39.6, 13.6, 12.3. HRMS Calculated for C₁₆H₂₁NO₄ (M+H): 292.1525, found: 292.1540.

N,*N*-diethyl-3,5-dioxo-5-(4-(trifluoromethyl)phenyl)pentanemide Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.2 Hz, 2H), 7.69 (d, *J* = 8.3 Hz, 2H), 6.41 (s, 0.82H), 4.38 (s, 0.11H), 3.65 (s, 0.11H), 3.56 (s, 1.70H), 3.45-3.35 (m, 4H), 1.18 (dt, *J* = 21.5, 7.1 Hz,

6H). ¹³C NMR (100 MHz, CDCl₃) δ 193.3, 178.8, 165.6, 137.2, 133.7, 133.3, 129.0, 128.9, 127.2, 125.5, 125.4, 124.9, 122.1, 97.3, 89.2, 53.2, 48.4, 46.1, 42.6, 40.3, 14.1, 12.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.61, -63.78. HRMS Calculated for $C_{16}H_{18}NO_4F_3$ (M+H): 330.1317, found: 330.1310.

N, N-diethyl-5-(naphthalen-1-yl)-3, 5-dioxopentanamide

Thick yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.45 (dd, J = 8.3, 1.0 Hz, 1H), 8.04-7.85 (m, 2H), 7.74 (dd, J = 7.2, 1.2 Hz, 1H),

7.58-7.48 (m, 3H), 6.21 (s, 1H), 4.46 (s, 0.16H), 3.55 (s, 1.78H), 3.47-3.35 (m, 4H), 1.19 (dt, J = 28.2, 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 190.4, 186.2, 165.7, 133.6, 133.5, 133.0, 131.7, 129.8, 128.3, 128.1, 127.2, 127.0, 126.3, 126.1, 125.5, 125.2, 124.5, 124.2, 101.46, 55.6, 48.8, 45.1, 42.5, 40.2, 14.0, 12.7. HRMS Calculated for C₁₉H₂₁NO₃ (M+H): 312.1600, found: 312.1584.

N, N-diethyl-5-(naphthalen-2-yl)-3, 5-dioxopentanamide

Thick yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 8.09-7.79 (m, 4H), 7.64-7.48 (m, 2H), 6.52 (s, 0.89H), 3.97 (s, 0.1H), 3.72 (s, 0.2H), 3.58 (s, 1.77H), 3.37-3.49 (m, 4H),

1.26-1.12 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 199.3, 194.3, 191.8, 181.2, 165.9, 135.0, 132.4, 131.0, 130.7, 129.0, 128.4, 128.2, 128.1, 127.9, 127.5, 126.7, 126.5, 122.8, 96.6, 89.0, 52.9, 48.6, 45.8, 42.5, 42.4, 40.1, 40.0, 14.0, 12.7. HRMS Calculated for C₁₉H₂₁NO₃ (M+H): 312.1600, found: 312.1595.

N, N-diethyl-5-(furan-2-yl)-3, 5-dioxopentanamide

Pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.62-7.56 (m, 1H), 7.33-7.14 (m, 1H), 6.56-6.53 (m, 1H), 6.23 (s, 0.57H), 5.24 (s, 0.1H), 4.17 (s, 0.34H), 3.68 (d, J = 6.7 Hz, 0.51H), 3.48 (s,1.39H), 3.47-3.25

(m, 4H), 1.10-1.22 (m, 6H). 13 C NMR (100 MHz, CDCl₃) δ 198.4, 187.8, 174.2, 165.8, 149.5, 147.2, 145.0, 146.2, 118.9, 118.7, 115.9, 112.6, 112.4, 96.0, 52.6, 48.8, 45.6, 44.5, 42.6, 40.2, 40.1, 14.1, 14.0, 12.7. HRMS Calculated for C₁₃H₁₇NO₄ (M+Na): 274.1055, found: 274.1044.

N, N-diethyl-3, 5-dioxo-5-(thiophen-2-yl)pentanamide

Brownish solid. ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.58 (m, 2H),
7.15 (d, J = 4.1 Hz, 1H), 6.19 (s, 0.55H), 5.26 (s, 0.11H), 4.27 (s, 0.40H), 3.75 (s, 0.21H), 3.67 (s,0.41H), 3.48 (s, 1.29H), 3.46-3.19 (m, 1.20H)

4H), 1.22-1.11 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 198.2, 186.4, 185.1, 180.0, 169.9, 165.6, 165.4, 143.0, 140.2, 134.7, 134.3, 133.6, 133.2, 132.4, 130.3, 128.1, 128.0, 96.3, 88.8, 53.3, 49.3, 48.2, 46.3, 43.3, 42.3, 42.2, 41.7, 39.9, 39.8, 13.8, 13.7, 12.5. HRMS Calculated for C₁₃H₁₇NO₃S (M+Na): 290.0827, found: 290.0825.

tert-butyl 3, 5-dioxooctanoate

Colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 5.59 (s, 0.77H), 3.71 (s, 0.34H), 3.47 (s, 0.35H), 3.25 (s, 2H), 2.31- 2.24 (m, 2H), 1.64 (dd, *J* = 14.9, 7.5 Hz, 2H), 1.48-1.46 (m, 9H), 0.95 (dd, *J* = 13.6, 6.2 Hz,

3H).¹³C NMR (100 MHz, CDCl₃) δ 192.8, 187.9, 166.7, 99.7, 81.8, 56.4, 50.6, 46.5, 39.6, 27.8, 19.0, 13.6. HRMS Calculated for C₁₂H₂₀O₄ (M+Na): 251.1259, found: 251.1242.

tert-butyl 3, 5-dioxotridecanoate

Light yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 5.58 (s, 0.68H), 3.70 (s, 0.26H), 3.46 (s, 0.28H), 3.24 (s, 1.45H), 2.54-2.47 (m, 0.36H), 2.33-2.24 (m, 1.56H), 1.59 (d, *J* = 7.6 Hz, 2H), 1.57-1.39 (m, 9H), 1.24-1.30 (m, 10H), 0.87 (t, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 204.8, 203.9, 197.3, 193.0, 187.7, 166.61, 99.5, 81.6, 56.3, 50.5, 46.3, 43.5, 37.7, 31.6, 29.1, 29.0, 28.9, 28.8, 28.1, 27.7, 25.5, 23.2, 22.5, 13.9. HRMS Calculated for C₁₇H₃₀O₄ (M+H): 299.2222, found: 299.2209.

tert-butyl 6,6-dimethyl-3, 5-dioxoheptanoate

Colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 5.66 (d, J = 1.3 Hz, 1H), 5.50 (s, 1H), 3.70 (s, 0.21H), 3.48 (s, 0.22H), 3.26 (s, 1.87H), 2.19 (d, J = 1.1 Hz, 3H), 1.92 (d, J = 1.2 Hz, 3H), 1.47-1.45 (m, 9H).¹³C NMR (100

MHz, CDCl₃) δ 189.4, 182.3, 166.8, 154.4, 120.8, 100.9, 81.6, 58.0, 50.6, 46.9, 28.2, 27.8, 20.9. HRMS Calculated for C₁₃H₂₂O₄ (M+Na): 265.1416, found: 265.1426.

tert-butyl 3, 5-dioxo-7-phenylheptanoate

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.14 (m, 5H), 5.57 (s, 0.69H), 3.70 (s, 0.28H), 3.43 (s, 0.28H), 3.35 (s, 0.34H), 3.23 (s, 1.44H), 2.97-2.83 (m, 2H), 2.62 (dd, *J* = 8.7, 7.1 Hz,

2H), 1.49-1.43 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 192.2, 187.2, 166.6, 140.4, 128.4, 128.2, 126.2, 99.9, 81.8, 56.6, 51.4, 50.6, 46.2, 45.0, 39.6, 31.4, 29.3, 27.9. HRMS Calculated for C₁₇H₂₂O₄ (M+Na): 313.1428, found: 313.1416.

tert-butyl 7-methyl-3, 5-dioxooct-6-enoate

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 5.66 (d, J = 1.3 Hz, 1H), 5.50 (s, 1H), 3.70 (s, 0.21H), 3.48 (s, 0.22H), 3.26 (s, 1.87H), 2.19 (d, J = 1.1 Hz, 3H), 1.92 (d, J = 1.2 Hz, 3H), 1.47-1.45 (m, 9H). ¹³C

NMR (100 MHz, CDCl₃) δ 189.4, 182.3, 166.8, 154.4, 120.8, 100.9, 81.6, 58.0, 50.6, 46.9, 28.2, 27.8, 20.9. HRMS Calculated for C₁₃H₂₀O₄ (M+Na): 263.1259, found: 263.1245.

tert-butyl 3, 5-dioxo-5-phenylpentanoate¹⁰

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (ddd, J = 7.0, 2.4, 1.0 Hz, 2H), 7.60-7.40 (m, 3H), 6.28 (s, 0.92H), 4.29-4.24 (m, 0.12H), 3.57-3.54 (m, 0.13H), 3.39 (s, 2.07H), 1.51-1.46 (m, 9H). ¹³C NMR

(100 MHz, CDCl₃) δ 189.7, 182.3, 166.6, 134.0, 132.4, 128.6, 128.5, 128.4, 126.9, 96.5, 81.8, 52.9, 50.4, 47.0, 27.8.

tert-butyl 3, 5-dioxo-5-(o-tolyl)pentanoate

Thick oil. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 7.4 Hz, 1H), 7.34 (d, J = 7.6 Hz, 1H), 7.25 (dd, J = 7.0, 3.9 Hz, 2H), 5.95 (s, 1H), 3.36 (d, J = 0.5 Hz, 2H), 2.50 (s, 3H), 1.48 (d, J = 0.5 Hz, 9H). ¹³C

NMR (100 MHz, CDCl₃) δ 189.0, 186.9, 166.6, 137.1, 135.1, 132.2, 131.4, 130.8, 128.4, 125.7, 100.7, 81.9, 46.9, 27.9. HRMS Calculated for C₁₆H₂₀O₄ (M+Na): 299.1259, found: 299.1269.

tert-butyl 5-(2-methoxyphenyl)-3, 5-dioxopentanoate

Thick yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.49-7.45 (m, 1H), 7.00-6.95(m, 2H), 6.57 (s, 0.77H), 4.19 (s, 0.32H), 3.91 (s, 3H), 3.50 (s, 0.33H), 3.38 (s, 1.69H), 1.48 (s, 9H).

 13 C NMR (100 MHz, CDCl₃) δ 190.5, 180.1, 166.8, 158.4, 134.7, 133.2, 130.7, 130.1, 123.0, 120.8, 120.6, 111.6, 111.4, 101.5, 81.6, 57.7, 55.5, 55.4, 50.6, 47.4, 27.8. HRMS Calculated for $C_{16}H_{20}O_5$ (M+Na): 315.1208, found: 315.1217.

tert-butyl 5-(2-fluorophenyl)-3, 5-dioxopentanoate

Light yellow solid.¹H NMR (400 MHz, CDCl₃) δ 7.93-7.97 (m, 1H), 7.45-7.51 (m, 1H), 7.26-7.22 (m, 1H), 7.10-7.15 (m, 1H), 6.40 (d, *J* = 0.9 Hz, 1H), 3.53 (s, 1H), 3.39 (s, 2H), 1.49 (s, 9H).¹³C NMR (100

MHz, CDCl₃) δ 190.9, 177.6, 166.4, 162.3, 159.7, 133.7, 133.6, 129.9, 124.4, 124.4, 116.5, 116.3, 101.3, 101.1, 81.9, 47.3, 27.8. HRMS Calculated for C₁₅H₁₇FO₄ (M+Na): 303.1009, found: 303.1009.

tert-butyl 5-(3-chlorophenyl)-3, 5-dioxopentanoate

Thick oil. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (t, J = 1.9 Hz, 1H), 7.78-7.71 (m, 1H), 7.50 (ddd, J = 8.0, 2.1, 1.1 Hz, 1H), 7.39 (t, J = 7.9 Hz, 1H), 6.25 (s, 1H), 3.56-3.53 (m, 0.15H), 3.40 (s,

2.14H), 1.49 (s, 9H).¹³C NMR (100 MHz, CDCl₃) δ 190.0, 180.8, 166.4, 135.9, 134.85, 132.2, 129.8, 127.0, 125.0, 96.9, 47.0, 27.8. HRMS Calculated for C₁₅H₁₇ClO₄ (M+Na): 319.0713, found: 319.0730.

tert-butyl 5-(4-chlorophenyl)-3, 5-dioxopentanoate

White solid upon cooling. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.6 Hz, 2H), 7.43 (d, J = 8.6 Hz, 2H), 6.25 (s, 1H), 3.38 (s, 2H), 1.49 (s, 9H).¹³C NMR (100 MHz, CDCl₃) δ 189.7, 181.4,

166.6, 138.7, 132.7, 129.9, 129.1, 128.9, 128.3, 96.6, 82.0, 47.0, 27.9. HRMS Calculated for $C_{15}H_{17}ClO_4$ (M+Na): 319.0713, found: 319.0700

tert-butyl 5-(4-bromophenyl)-3, 5-dioxopentanoate

Thick yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.8 Hz, 2H), 7.59 (d, *J* = 8.8 Hz, 2H), 6.25 (s, 1H), 3.38 (s, 1.89H), 3.36-3.35 (m, 0.36H), 1.48 (s, 9H).¹³C NMR (100 MHz, CDCl₃)

 δ 189.4, 182.3, 166.8, 154.4, 120.8, 100.9, 81.6, 58.0, 50.6, 46.9, 28.2, 27.8, 20.9. HRMS Calculated for $C_{15}H_{17}BrO_4(M+Na)$: 363.0208, found:363.0218.

tert-butyl 5-(4-methoxyphenyl)-3, 5-dioxopentanoate

Thick oil, solidified upon cooling. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.9 Hz, 2H), 6.88 (d, J = 8.9 Hz, 2H), 6.17 (s, 1H), 4.15 (s, 0.24H), 3.78 (s, 3H), 3.50 (s, 0.22H), 3.34-3.27

(m, 1.65H), 1.44 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 187.53, 183.12, 166.75, 163.13, 130.75, 128.98, 126.60, 113.80, 95.60, 81.6155.21, 52.82, 50.32, 46.44, 27.77. HRMS Calculated for C₁₆H₂₀O₅ (M+Na): 315.1208, found: 315.1202.

tert-butyl 3, 5-dioxo-5-(4-(trifluoromethyl)phenyl) pentanoate White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 8.7 Hz, 2H), 6.32 (s, 1H), 4.31 (s, 0.1H), 3.55 (s, 0.1H), 3.42 (s, 1.8H), 1.49 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 191.1, 180.0, 166.5, 137.4, 128.9, 127.3, 125.6, 125.6, 124.9, 97.4, 82.2, 47.3, 27.9. HRMS Calculated for C₁₆H₁₇F₃O₄ (M+Na): 353.0977, found: 353.0974.

tert-butyl 5-(naphthalen-1-yl)-3,5-dioxopentanoate

Thick oil. ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 8.3 Hz, 1H), 8.00-7.80 (m, 2H), 7.74 (dd, J = 7.2, 1.2 Hz, 1H), 7.59-7.44 (m, 3H), 6.15 (s, 0.95H), 4.39 (s, 0.13H), 3.61 (s, 0.12H), 3.40 (d, J =

2.7 Hz, 1.75H), 1.56-1.38 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 188.4, 187.0, 166.5, 133.6, 133.2, 131.8, 129.9, 128.4, 127.1, 126.2, 125.4, 124.6, 101.6, 81.9, 46.5, 27.8. HRMS Calculated for C₁₉H₂₀O₄ (M+Na): 355.1259, found: 355.1264.

tert-butyl-(naphthalen-2-yl)-3, 5-dioxopentanoate Thick oil, solidified upon cooling. ¹H NMR (400 MHz, CDCl₃)

8.40 (s, 1H), 7.95-7.72 (m, 4H), 7.60-7.40 (m, 2H), 6.40 (s, 1H), 3.41 (s, 2H), 1.49 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 189.6,

 $182.2, 166.7, 135.8, 132.5, 131.3, 129.2, 128.3, 128.2, 128.1, 127.6, 126.7, 122.8, 96.9, 81.9, 47.1, 27.9. HRMS Calculated for C_{19}H_{20}O_4 (M+Na): 355.1259, found: 355.1266.$

tert-butyl 5-(furan-2-yl)-3,5-dioxopentanoate

Light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (dd, J = 1.7, 0.7 Hz, 1H), 7.17 (dd, J = 3.6, 0.7 Hz, 1H), 6.55 (dd, J = 3.6, 1.7 Hz, 1H), 6.18 (s, 1H), 4.11 (s, 1H), 3.54 (s, 1H), 3.33 (d, J = 1.0 Hz, 2H), 1.48 (s,

9H). ¹³C NMR (100 MHz, CDCl₃) δ 185.6, 175.0, 166.6, 149.8, 147.1, 146.2, 118.6, 116.0, 112.7, 112.5, 96.2, 81.9, 52.8, 50.6, 45.8, 27.8. HRMS Calculated for C₁₃H₁₆O₅ (M+Na): 275.0895, found: 275.0898.

tert-butyl -dioxo-5-(thiophen-2-yl)pentanoate

Thick brown yellow. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (dd, J = 3.8, 0.7 Hz, 1H), 7.61 (dd, J = 4.8, 0.9 Hz, 1H), 7.13 (dd, J = 4.7, 4.1 Hz, 1H), 6.13 (s, 0.69H), 4.19 (s, 0.28H), 3.56 (s, 0.28H), 3.32 (s, 1.52H),

1.51-1.44 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 183.1, 180.9, 166.6, 140.7, 135.0, 133.6, 132.6, 130.5, 128.3, 128.2, 96.7, 81.9, 53.7, 50.3, 45.1, 27.8. HRMS Calculated for C₁₃H₁₆O₄S (M+H): 291.0667, found: 291.0666.

4. Preparation of 4a-t

The same procedure as described on page **S3**. The ee of **4q** was determined upon its bromoacetate: To a stirred solution of **4q** (120 mg, 383 μ mol) in 2 mL anhydrous THF was added pyridine (48 mg, 612 μ mol) and bromoacetyl bromide (116 mg, 574 μ mol) at 0 °C. The solution was stirred at 0 °C for 3 h and then purified by flash column chromatography (PE/EA=5/1) to gave the desired product in quantitative yield.

N, N-diethyl-3-hydroxy-5-oxooctanamide

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 4.58 (d, *J* = 3.2 Hz, 1H), 4.50-4.36 (m, 1H), 3.32 (dq, J = 21.8, 7.1 Hz, 4H), 2.80-2.55 (m, 3H), 2.52-2.31 (m, 3H), 1.73-1.52 (m, 2H), 1.14 (dt, J = 19.9, 7.1 Hz, 6H),

0.91 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 209.6, 170.6, 64.5, 48.4, 45.0, 41.5, 39.6, 38.0, 16.5, 13.6, 13.2, 12.5. HPLC (Chiralcel IA-3 column, hexane/ 1 PrOH 94/6, 0.65 mL min⁻¹, 220 nm): t₁ = 29.6 min, $t_2 = 32.2$ min. HRMS Calculated for $C_{12}H_{23}NO_3$ (M+H): 230.1756, found: 230.1735. $[\alpha]^{25}_{D} =$ 31.4 (c 0.65, CH₂Cl₂).

N, N-diethyl-3-hydroxy-5-oxotridecanamide

Yellow liduid. ¹H NMR (400 MHz, CDCl₃) δ 4.57 (d, J = 3.3 Hz, 1H), 4.41 (dd, *J* = 7.3, 4.1 Hz, 1H), 3.39-3.25 (m, 4H), 2.79-2.53 (m, 3H), 2.49-2.31 (m, 3H), 1.55 (d, J = 6.9 Hz, 2H), 1.34-1.18 (m, 10H),

1.20-1.06 (m, 6H), 0.87 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 209.7, 170.1, 64.2, 48.3, 43.1, 41.5, 39.6, 38.2, 31.3, 28.8, 28.6, 23.0, 22.1, 13.6, 12.5. HPLC (Chiralcel IA-3 column, hexane/ⁱPrOH 90/10, 0.7 mL min⁻¹, 220 nm): $t_1 = 24.8$ min, $t_2 = 30.1$ min. HRMS Calculated for $C_{17}H_{33}NO_3$ (M+H): 300.2539, found: 300.2556. $[\alpha]^{25}_{D} = 23.2$ (c 0.71, CH₂Cl₂).

5-cyclohexyl-N, N-diethyl-3-hydroxy-5-oxopentanamide

Yellow liquid.¹H NMR (400 MHz, CDCl₃) δ 4.57 (d, *J* = 3.4 Hz, 1H), 4.46-4.35 (m, 1H), 3.42-3.23 (m, 4H), 2.84-2.63 (m, 2H), 2.61-2.34 (m, 2H), 2.40-2.30 (m, 1H), 1.92-1.60 (m, 6H), 1.40-1.20 (m, 4H),

1.20-1.05 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 212.3, 212.2, 170.4, 64.3, 50.4, 46.1, 41.3, 39.3, 37.8, 27.5, 25.1, 24.9, 13.4, 12.3. HPLC (Chiralcel IA-3 column, hexane/PrOH 93/7, 0.6 mL min⁻¹, 220 nm): $t_1 = 29.7$ min, $t_2 = 32.3$ min. HRMS Calculated for $C_{15}H_{27}NO_3$ (M+H): 270.2069, found: 270.2052. $[\alpha]^{25}_{D} = 22.6$ (c 0.61, CH₂Cl₂).

NEt₂ N. N-diethyl-3-hydroxy-6, 6-dimethyl-5-oxoheptanamide Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 4.56 (s, 1H), 4.39 (s, 1H), 3.42-3.23 (m, 4H), 2.89-2.68 (m, 2H), 2.65-2.26 (m, 2H), 1.16 (t, J = 7.2

Hz, 3H), 1.14-1.11 (m, 9H), 1.10 (t, J = 7.1 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 214.7, 170.7, 64.7, 43.8, 42.4, 41.6, 39.6, 37.9, 25.7, 13.6, 12.5. HPLC (Chiralcel IA-3 column, hexane/PrOH 93/7, 0.6 mL min⁻¹, 220 nm): $t_1 = 21.7$ min, $t_2 = 23.4$ min. HRMS Calculated for $C_{13}H_{25}NO_3$ (M+H): 244.1913, found: 244.1892. $[\alpha]_{D}^{25} = 26.1$ (c 0.55, CH₂Cl₂).

N, N-diethyl-3-hydroxy-5-oxo-7-phenylheptanamide

Yellow oil. ¹H NMR (400 MHz, CDCl₃) & 7.16-7.29 (m, 5H), 4.58 (d, J = 3.3 Hz, 1H), 4.40-4.45 (m, 1H), 3.31 (dq, J = 21.9, 7.1 Hz, 4H), 2.92-2.70 (m, 4H), 2.62-2.53 (m, 2H), 2.34 (dd, J =

16.1, 8.4 Hz, 2H), 1.19-1.10 (m, 6H). ¹³C NMR (100MHz, CDCl₃) δ 208.6, 170.7, 140.5, 128.0, 127.9, 125.6, 64.6, 48.7, 44.6, 41.6, 39.7, 38.0, 29.1, 22.0, 13.7, 12.6. HPLC (Chiralcel AD-H column, hexane/ⁱPrOH 88/12, 0.7 mL min⁻¹, 220 nm): $t_1 = 18.7$ min, $t_2 = 20.7$ min. HRMS Calculated for $C_{17}H_{25}NO_3$ (M+Na): 314.1732, found: 314.1725. $[\alpha]_{D}^{25} = 23.6$ (c 0.88, CH₂Cl₂).

N, N-diethyl-3-hydroxy-7-methyl-5-oxooct-6-enamide

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 6.13-6.06 (m, 0.91H), 4.61 (s, 0.07H), 4.49-4.36 (m, 1H), 3.42-3.21 (m, 4H), 2.79-2.61 (m, 2H), 2.59-2.29 (m, 2H), 2.14 (d, J = 1.1 Hz, 2H), 1.88 (d, J = 1.2 Hz, 2H),

1.18-1.09(m, 6H), 0.90 (d, J = 6.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 210.0, 199.3, 171.1, 156.2, 123.8, 65.2, 64.8, 52.5, 50.0, 49.0, 41.9, 40.0, 38.3, 38.2, 27.6, 24.3, 22.4, 20.7, 13.9, 12.4. HPLC (Chiralcel AS-H column, hexane/ⁱPrOH 91/9, 0.65 mL min⁻¹, 254 nm): t₁ = 22.9 min, t₂ =25.6 min. HRMS Calculated for C₁₃H₂₃NO₃ (M+H): 242.1756, found: 242.1743. [α]²⁵_D = 30.6 (c 0.30, CH₂Cl₂).

N, N-diethyl-3-hydroxy-5-oxo-5-phenylpentanamide

Thick oil.¹H NMR (400 MHz, CDCl₃) δ 8.03-7.91 (m, 2H), 7.56 (d, *J* = 7.4 Hz, 1H), 7.47 (dd, *J* = 10.7, 4.5 Hz, 2H), 4.72 (d, *J* = 3.5 Hz, 1H), 4.66-4.55 (m, 1H), 3.43-3.16 (m, 6H), 2.77-2.44 (m, 2H), 1.15 (dt, *J* =

18.0, 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 198.7, 170.8, 136.5, 132.9, 128.2, 127.7, 65.0, 44.5, 41.6, 39.7, 38.2, 13.7, 12.6. HPLC (Chiralcel IA-3 column, hexane/ⁱPrOH 90/10, 0.75 mL min⁻¹, 254 nm): $t_1 = 22.2$ min, $t_2 = 24.5$ min. HRMS Calculated for $C_{15}H_{21}NO_3$ (M+Na): 286.1419, found: 286.1411. [α]²⁵_D = 36.4 (c 0.50, CH₂Cl₂).

N, N -diethyl-3-hydroxy-5-oxo-5-(o-tolyl)pentanamide

Thick oil.¹H NMR (400 MHz, CDCl₃) δ 7.72-7.64 (m, 1H), 7.35 (td, *J* = 7.5, 1.3 Hz, 1H), 7.28-7.18 (m, 2H), 4.64 (s, 1H), 4.60-4.52 (m, 1H), 3.41-3.26 (m, 4H), 3.22-3.08 (m, 2H), 2.72-2.43 (m, 2H), 2.49 (s, 3H),

1.19-1.07 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 202.6, 170.8, 137.7, 137.3, 131.6, 131.1, 128.4, 125.4, 65.2, 47.4, 41.7, 39.8, 38.2, 20.9, 13.7, 12.7. HPLC (Chiralcel IA-3 column, hexane/ⁱPrOH 90/10, 0.75 mL min⁻¹, 254 nm): t₁ = 17.9 min, t₂ =20.1 min. HRMS Calculated for C₁₆H₂₃NO₃ (M+H): 278.1756, found: 278.1739. [α]²⁵_p = 19.5 (c 0.52, CH₂Cl₂).

N, *N* -diethyl-3-hydroxy-5-(2-methoxyphenyl)-5-oxopentanamide Thick oil.¹H NMR (400 MHz, CDCl₃) δ 7.70 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.45 (ddd, *J* = 8.4, 7.3, 1.8 Hz, 1H), 7.02-6.92 (m, 2H), 4.68 (d, *J* = 3.0 Hz, 1H), 4.60-4.50 (m, 1H), 3.89 (s, 3H), 3.40-3.35 (m, 2H), 3.35-3.13

(m, 4H), 2.56 (m, 2H), 1.13 (dt, J = 21.4, 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 200.2, 170.9, 158.2, 133.3, 129.7, 127.3, 120.0, 111.1, 64.8, 55.0, 49.7, 41.5, 39.6, 38.0, 13.6, 12.5. HPLC (Chiralcel AD-H column, hexane/ⁱPrOH 90/10, 0.75 mL min⁻¹, 254 nm): t₁ = 33.0 min, t₂ =35.1 min. HRMS Calculated for C₁₆H₂₃NO₄ (M+Na): 316.1525, found: 316.1550. [α]²⁵_D = 57.2 (c 0.53, CH₂Cl₂).

N, N -diethyl-5-(2-fluorophenyl)-3-hydroxy-5-oxopentanamide

Thick oil. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (td, *J* = 7.6, 1.9 Hz, 1H), 7.56-7.45 (m, 1H), 7.28-7.07 (m, 2H), 4.62 (s, 1H), 4.63-4.58 (m, 1H), 3.37 (q, *J* = 7.1 Hz, 2H), 328 ((q, *J* = 7.1 Hz, 2H), 3.28-3.15 (m, 2H),

2.43-2.71 (m, 2H), 1.14 (dt, J = 22.8, 7.2 Hz, 6H). ¹³C NMR (100MHz, CDCl₃) δ 196.8, 171.0, 162.9, 160.4, 134.6, 134.5, 130.3, 125.4, 125.3, 124.2, 124.2, 116.6, 116.4, 64.7, 49.6, 49.5, 41.8, 39.9, 38.2, 13.9, 12.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -109.93. HPLC (Chiralcel IA-3 column, hexane/ⁱPrOH 90/10,

0.75 mL min⁻¹, 254 nm): $t_1 = 24.1$ min, $t_2 = 26.7$ min. HRMS Calculated for $C_{15}H_{20}NO_3F$ (M+Na): 304.1325, found: 304.1314. $[\alpha]^{2_{5_{D}}} = 25.3$ (c 0.57, CH₂Cl₂).

5-(3-chlorophenyl)-*N*, *N* -diethyl-3-hydroxy-5-oxopentanamide Thick yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 1.8 Hz, 1H), 7.85 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.57-7.51 (m, 1H), 7.41 (t, *J* = 7.9 Hz, 1H), 4.69 (d, = 3.5 Hz, 1H), 4.65-4.54 (m, 1H), 3.42-3.29 (m,

4H), 3.27-3.14 (m, 2H), 2.76-2.44 (m, 2H), 1.21-1.08 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 170.7, 138.1, 134.5, 132.7, 129.6, 127.8, 126.0, 64.9, 44.7, 41.7, 39.8, 38.1, 13.8, 12.7. HPLC (Chiralcel OJ-H column, hexane/ⁱPrOH 92/8, 0.65 mL min⁻¹, 254 nm): t₁ = 16.4 min, t₂ =17.7 min. HRMS Calculated for C₁₅H₂₀NO₃Cl (M+H): 298.1210, found: 298.1196. [α]²⁵_D = 21.1 (c 0.59, CH₂Cl₂).

N, N -diethyl-3-hydroxy-5-oxo-5-(m-tolyl)pentanamide

Thick yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (ddd, J = 7.1, 1.6, 0.6 Hz, 2H), 7.41-7.30 (m, 2H), 4.74 (d, J = 3.4 Hz, 1H), 4.60 (s, 1H), 3.46-3.20 (m, 4H), 3.34-3.16 (m, 2H), 2.77-2.43 (m,

2H), 2.40 (s, 3H), 1.14 (dt, J = 17.8, 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 198.8, 170.8, 137.9, 136.5, 133. 7, 128.2, 128.1, 125.0, 65.0, 44.5, 41.6, 39.7, 38.1, 20.9, 13.7, 12.6. HPLC (Chiralcel AD-H column, hexane/ⁱPrOH 90/10, 0.75 mL min⁻¹, 254 nm): t₁ = 20.1 min, t₂ =21.1 min. HRMS Calculated for C₁₆H₂₃NO₃ (M+H): 278.1756, found: 278.1768. [α]²⁵_D = 23.8 (c 0.57, CH₂Cl₂).

5-(4-chlorophenyl)-*N*, *N* -diethyl- 3-hydroxy-5-oxopentanamide

Thick yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.6 Hz, 2H), 7.44 (d, J = 8.6 Hz, 2H), 4.69 (d, J = 3.6 Hz, 1H),

4.63-4.54 (m, 1H), 3.42-3.30 (m, 4H), 3.29-3.13 (m, 2H), 2.76-2.44 (m, 3H), 1.15 (dt, J = 19.0, 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 170.7, 139.2, 134.9, 129.3, 128.4, 64.9, 44.5, 41.6, 39.7, 38.1, 13.7, 12.6. HPLC (Chiralcel OJ-H column, hexane/ⁱPrOH 92/8, 0.65 mL min⁻¹, 254 nm): t₁ = 16.5 min, t₂ =18.2 min. HRMS Calculated for C₁₅H₂₀NO₃Cl (M+Na): 320.1029, found: 320.1014. [α]²⁵_D = 14.5 (c 0.55, CH₂Cl₂).

5-(4-bromophenyl)-*N*, *N*-diethyl-3-hydroxy-5-oxopentanamide

Thick yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.7 Hz, 2H), 7.61 (d, J = 8.7 Hz, 2H), 4.70 (s, 1H), 4.59 (d, J = 4.3

Hz, 1H), 3.44-3.24 (m, 4H), 3.29-3.12 (m, 2H), 2.76-2.44(m, 2H), 1.28-1.08 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 198.1, 171.2, 135.6, 131.9, 129.7, 128.6, 128.5, 128.1, 65.3, 44.8, 42.0, 40.1, 38.3, 14.1, 13.0. HPLC (Chiralcel OB-H column, hexane/ⁱPrOH 90/10, 0.7 mL min⁻¹, 254 nm): t₁ = 23.2 min, t₂ = 36.7 min. HRMS Calculated for C₁₅H₂₀NO₃Br (M+Na): 364.0524, found: 364.0508. [α]²⁵_D = 12.5 (c 0.51, CH₂Cl₂).

N, *N* -diethyl-3-hydroxy-5-(4-methoxyphenyl)-5-oxopentanamide

Thick yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.6 Hz, 2H), 6.93 (d, J = 8.7 Hz, 2H), 4.73 (d, J = 3.4 Hz, 1H),

4.65-4.53 (m, 1H), 3.87 (s, 3H), 3.41-3.28 (m, 4H), 3.77-3.44 (m, 2H), 2.77-2.44 (m, 2H), 1.14 (dt, J = 17.1, 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 170.8, 163.2, 130.0, 129.6, 113.3, 65.1, 55.0, 44.1, 41.6, 39.7, 38.2, 13.7, 12.6. HPLC (Chiralcel IA-3 column, hexane/ⁱPrOH 90/10, 0.75 mL min⁻¹, 254 nm): t₁ = 37.0 min, t₂ =41.2 min. HRMS Calculated for C₁₆H₂₃NO₄ (M+Na): 316.1525, found: 316.1520. [α]²⁵_D = 14.6 (c 0.75, CH₂Cl₂).

N, N -diethyl-3-hydroxy-5-oxo-5-(4-(trifluoromethyl)phenyl)pentanamide

Thick yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (dd, J = 8.8, 0.7 Hz, 2H), 7.78-7.63 (m, 2H), 4.70 (s, 1H), 4.64-4.56 (m, 1H), 3.42-3.29 (m, 4H), 3.28-3.14 (m, 2H), 2.75-2.45 (m, 2H),

1.14 (dt, J = 21.4, 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 197.8, 170.7, 139.3, 134.3, 134.0, 133.7, 133.3, 128.2, 125.2, 125.2, 64.9, 44.9, 41.6, 39.8, 38.2, 13.6, 12.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.67. HPLC (Chiralcel OJ-H column, hexane/ⁱPrOH 94/6, 0.6 mL min⁻¹, 254 nm): t₁ = 19.6 min, t₂ = 21.5 min. HRMS Calculated for C₁₆H₂₀NO₄F₃ (M+H): 332.1474, found: 332.1456. [α]²⁵_D = 12.1 (c 0.53, CH₂Cl₂).

N, *N*-diethyl-3-hydroxy-5-(naphthalen-1-yl)-5-oxopentanamide Thick yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.68-8.61 (m, 1H), 8.03-7.86 (m, 3H), 7.64-7.48 (m, 3H), 4.71 (d, *J* = 3.5 Hz, 1H), 4.70-4.64 (m, 1H), 3.47-3.31 (m, 4H), 3.31-3.25 (m, 2H), 2.65 (ddd,

J = 24.0, 16.0, 5.8 Hz, 2H), 1.15 (dt, J = 16.1, 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 202.8, 170.9, 135.3, 133.6, 132.6, 129.8, 128.2, 128.0, 127.7, 126.2, 125.5, 124.1, 65.5, 48.0, 41.7, 39.8, 38.2, 13.8, 12.8. HRMS Calculated for C₁₉H₂₃NO₃ (M+H):314.1756, found: 314.1762.

1-(diethylamino)-5-(naphthalen-1-yl)-1, 5-dioxopentan-3-yl 2-bromoacetate

Thick brown oil. ¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, J = 8.0 Hz, 1H), 8.07-7.83 (m, 3H), 7.67-7.48 (m, 3H), 5.84-5.81 (m, 1H), 3.75 (d, J = 1.0 Hz, 2H), 3.73-3.48 (m, 2H), 3.37 (dd, J = 14.5, 7.4 Hz, 4H),

276-2.92 (m, 2H), 1.20 (t, J = 7.1 Hz, 3H), 1.12 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 200.6, 167.9, 166.4, 134.9, 133.9, 133.1, 130.0, 128.4, 128.4, 128.0, 126.4, 125.6, 124.4, 70.6, 45.2, 42.1, 40.1, 36.7, 25.8, 14.3, 13.0. HPLC (Chiralcel AD-H column, hexane/ⁱPrOH 90/10, 0.75 mL min⁻¹, 254 nm): t₁ = 17.9 min, t₂ =20.1 min. HRMS Calculated for C₂₁H₂₄NO₄Br (M+H): 434.0967, found: 434.0986.

N, N-diethyl-3-hydroxy-5-(naphthalen-2-yl)-5-oxopentanamide

Thick yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 8.07-7.86 (m, 4H), 7.64-7.53 (m, 2H), 4.78 (d, *J* = 3.4 Hz, 1H),

4.67 (s, 1H), 3.43-3.25 (m, 4H), 3.55-3.38 (m, 2H), 2.83-2.50(m, 2H), 1.16 (dt, J = 17.5, 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 198.5, 170.8, 135.2, 133.8, 132.0, 129.7, 129.2, 128.2, 128.0, 127.3, 126.4, 123.3, 65.2, 44.6, 41.6, 39.7, 38.2, 13.7, 12.7. HPLC (Chiralcel AS-H column, hexane/ⁱPrOH 91/9, 0.7 mL min⁻¹, 254 nm): $t_1 = 40.2$ min, $t_2 = 45.5$ min. HRMS Calculated for $C_{19}H_{23}NO_3$ (M+H): 314.1756, found: 314.1763. $[\alpha]_{^{25}D}^{^{25}} = 7.1$ (c 0.56, CH₂Cl₂).

N, N-diethyl-5-(furan-2-yl)-3-hydroxy-5-oxopentanamide

Pale solid. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (dd, J = 1.6, 0.7 Hz, 1H), NEt₂ 7.26-7.22 (m, 1H), 6.54 (dd, J = 3.6, 1.7 Hz, 1H), 4.71 (d, J = 3.6 Hz, 1H), 4.62-4.48 (m, 1H), 3.45-3.24 (m, 4H), 3.24-3.00 (m, 2H),

2.73-2.44 (m, 2H), 1.14 (dt, J = 17.7, 7.1 Hz, 6H).¹³C NMR (100 MHz, CDCl₃) δ 187.0, 170.6, 152.1, 146.3, 117.5, 111.9, 64.8, 44.3, 41.5, 39.6, 38.0, 13.6, 12.5. HPLC (Chiralcel IA-3 column, hexane/ⁱPrOH 90/10, 0.7 mL min⁻¹, 254 nm): t₁ = 34.2 min, t₂ =43.7 min. HRMS Calculated for C₁₃H₁₉NO₄ (M+Na): 276.1212, found: 276.1203. [α]²⁵_D = 18.3 (c 0.53, CH₂Cl₂).

Determination of the absolute configuration of 4s by X-ray crystallography:

Figure S1 The Structure of (S)-4s.

Single crystal of **4s** was obtained from hexane/CH₂Cl₂. The data was collected on a Bruker Smart 1000 CCD diffractometer with Cu-K α radiation ($\lambda = 1.54178$ Å). The empirical absorption correction was applied by using the SADABS program (G. M. Sheldrick, SADABS, program for empirical absorption correction of area detector data; University of Göttingen, Göttingen, Germany, 1996). The structure was solved using direct method, and refined by full-matrix least-squares on F^2 (G. M. Sheldrick, SHELXTL97, program for crystal structure refinement, University of Göttingen, Germany, 1997) The related crystallographic data are listed in the **Table S1**:

Table S1 Crystal Data and Structure Refinement for (S)-4s.

Identification code	(S)- 4s
Empirical Formula	C ₁₃ H ₁₉ NO ₄
Temperature (K)	293(2)
Crystal system	Orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
Unit cell dimensions	$a = 7.7341(4) \text{ Å} \qquad \alpha = 90^{\circ}$
	$b = 8.4900(5) \text{ Å} \qquad \beta = 90^{\circ}$
	$c = 20.9282(11) \text{ Å} \gamma = 90^{\circ}$

Volume (Å ³), Z	1374.20(13), 4
Density (calculated) (mg/m ³)	1.224
Absorption coefficient (mm ⁻¹)	0.748
F(000)	544
θ range for data collection (°)	4.22 to 68.33
Limiting indices	-6<=h<=9, -10<=k<=8, -25<=l<=25
Reflections collected / unique	2426
Completeness to theta	0.0268
Data / restraints / parameters	2426/0/163
Goodness-of-fit on F ²	0.681
Final R indices [I > 2sigma(I)]	R1=0.0415, wR2 = 0.1369
R indices (all data)	R1=0.0420, wR2 = 0.1389
Absolute structure parameter	0.0(2)
Largest diff. peak and hole	0.354 and -0.16 e.Å ⁻³

N, *N*-diethyl-3-hydroxy-5-oxo-5-(thiophen-2-yl)pentanamide

¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, J = 3.8, 1.1 Hz, 1H), 7.65 (dd, J = 5.0, 1.1 Hz, 1H), 7.14 (dd, J = 4.9, 3.8 Hz, 1H), 4.75 (d, J = 3.7 Hz, 1H), 4.63-4.50 (m, 1H), 3.42-3.28 (m, 4H), 3.27-3.10 (m, 2H),

2.76-2.44 (m, 2H), 1.19-1.07 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 191.2, 170.5, 143.8, 133.6, 132.3, 127.8, 65.0, 45.1, 41.5, 39.5, 38.0, 13.5, 12.5. HPLC (Chiralcel AD-H column, hexane/ⁱPrOH 89/11, 0.7 mL min⁻¹, 254 nm): t₁ = 27.7 min, t₂ =31.7 min. HRMS Calculated for C₁₃H₁₇NO₃S (M+Na): 290.0827, found: 290.0825. [α]²⁵_D = 24.6 (c 0.56, CH₂Cl₂).

$N, N\mbox{-diethyl-3,5-dihydroxy-5-(naphthalen-2-yl)pentanamide}$

¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.71 (m, 4H), 7.59 – 7.35 (m, 3H), 5.21 – 5.11 (m, 2H), 4.44 (d, *J* = 17.6 Hz, 2H), 3.46 – 3.16 (m, 4H), 2.43 (qd, *J* = 16.4, 6.0 Hz, 2H), 2.06 – 1.79 (m, 2H), 1.22 – 1.10

(m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 141.8, 133.1, 132.6, 127.8, 127.8, 127.4, 125.8, 125.4, 124.2, 124.0, 74.0, 68.8, 44.8, 41.7, 40.0, 39.0, 25.1, 13.8, 12.8.

5. References

- 1 J. S. Hubbard and T. M. Harris, J. Org. Chem., 1981, 46, 2566.
- 2 H. T. Ravert, W. B. Mathews, J. L. Musachio and R. F. Dannals, J. Labelled Compd. Radiopharm., 1995, 36, 365.
- 3 P. Wipf and J. P. Maciejewski, Org. Lett., 2008, 10, 4383 Page S14 of Supporting Information.
- 4 T. N. Yoshino, Fay; Danishefsky, Samuel J., J. Am. Chem. Soc., 2006, 128, 14185.
- 5 J. Stewart Witzeman and W. Dell Nottingham, J. Org. Chem., 1991, 56, 1713.
- 6 W.-F. Li, X. Ma, W.-Z. Fan, X.-M. Tao, X.-M. Li, X.-M. Xie and Z.-G. Zhang, Org. Lett., 2011, 13, 3876.
- 7 (a) T. Persson and J. Nielsen, Org. Lett., 2006, 8, 3219; (b) K. Uehara, C. B. Wagner, T. Vogler, H.

Luftmann and A. Studer, *Angew. Chem. Int. Ed.*, 2010, 49, 3073; (c) J. M. Kraus, C. L. M. J. Verlinde, M. Karimi, G. I. Lepesheva, M. H. Gelb and F. S. Buckner, *J. Med. Chem.*, 2009, 52, 1639;
(d) D. K. Friel, M. L. Snapper and A. H. Hoveyda, *J. Am. Chem. Soc.*, 2008, 130, 9942; (e) K.-H. Lee, C.-E. Park, K.-H. Min, Y.-J. Shin, C.-M. Chung, H.-H. Kim, H.-J. Yoon, K. Won, E.-J. Ryu, Y.-J. Shin, H.-S. Nam, J.-W. Cho and H.-Y. Lee, *Bioorg. Med. Chem. Lett.*, 2010, 20, 5567; (f) T. Hiyama, G. B. Reddy, T. Minami and T. Hanamoto, *Bull. Chem. Soc. Jpn.*, 1995, 68, 350.

8 M. Wolberg, W. Hummel and M. Müller, Chem.-Eur. J., 2001, 7, 4562.

9 J. S. Hubbard and T. M. Harris, Tetrahedron Lett., 1978, 47, 4601.

10 B. Lygo, Tetrahedron, 1995, 51, 12859.

6. NMR Copies for 1-5

(1a) N, N-dimethyl-3, 5-dioxohexanamide

(1c) N, N-dibenzyl-3, 5-dioxohexanamide

(1d) 3, 5-dioxo-N, N-diphenylhexanamide

(1e) 1-morpholinohexane-1, 3, 5-trione

(1f) N-(tert-butyl)-3, 5-dioxohexanamide

(1g) tert-butyl 3, 5-dioxohexanoate

(2a) 3-Hydroxy-N, N-dimethyl-5-oxohexanamide

(2b) 3-Hydroxy-N, N-diethyl-5-oxohexanamide

(2c) N, N-dibenzyl-3-hydroxy-5-oxohexanamide

(2d) 3-hydroxy-5-oxo-N, N-diphenylhexanamide

(2e) 3-hydroxy-1-morpholinohexane-1, 5-dione

(2f) N-(tert-butyl)-3-hydroxy-5-oxohexanamide

(2g) tert-butyl 3-hydroxy-5-oxohexanoate

2g-derivative: 1-(tert-butoxy)-1,5-dioxohexan-3-yl 4-nitrobenzoate

(3a) N, N-diethyl-3, 5-dioxooctanamide

(3b) N, N-diethyl-3, 5-dioxotridecanamide

(3c) 5-cyclohexyl-N, N-diethyl-3, 5-dioxopentanamide

(3d) N, N-diethyl-6, 6-dimethyl-3, 5-dioxoheptanamide

(3e) N, N-diethyl-3, 5-dioxo-7-phenylheptanamide

(3f) N, N-diethyl-7-methyl-3, 5-dioxooct-6-enamide

(3g) N, N-diethyl-3, 5-dioxo-5-phenylpentanamide

(3h) N, N-diethyl-3, 5-dioxo-5-(o-tolyl)pentanamide

(3i) N, N-diethyl-5-(2-methoxyphenyl)-3, 5-dioxopentanamide

(3j) N, N-diethyl-5-(2-fluorophenyl)-3, 5-dioxopentanamide

(3k) 5-(3-chlorophenyl)-N, N-diethyl-3, 5-dioxopentanamide

(31) N, N-diethyl-3, 5-dioxo-5-(m-tolyl)pentanamide

(3m) 5-(4-chlorophenyl)-N,N-diethyl-3, 5-dioxopentanamide

(3n) 5-(4-bromophenyl)-N,N-diethyl-3, 5-dioxopentanamide

(30) N, N-diethyl-5-(4-methoxyphenyl)-3, 5-dioxopentanamide

(3p) N, N-diethyl-3, 5-dioxo-5-(4-(trifluoromethyl)phenyl)pentanamide

(3q) N, N-diethyl-5-(naphthalen-1-yl)-3, 5-dioxopentanamide

(3r) N, N-diethyl-5-(naphthalen-2-yl)-3, 5-dioxopentanamide

(3s) N, N-diethyl-5-(furan-2-yl)-3, 5-dioxopentanamide

S54

(3t) N, N-diethyl-3, 5-dioxo-5-(thiophen-2-yl)pentanamide

(4a) N, N-diethyl-3-hydroxy-5-oxooctanamide

(4b) N, N-diethyl-3-hydroxy-5-oxotridecanamide

(4c) 5-cyclohexyl-N, N-diethyl-3-hydroxy-5-oxopentanamide

(4d) N, N-diethyl-3-hydroxy-6, 6-dimethyl-5-oxoheptanamide

(4e) N, N-diethyl-3-hydroxy-5-oxo-7-phenylheptanamide

(4f) N, N-diethyl-3-hydroxy-7-methyl-5-oxooct-6-enamide

(4g) N, N-diethyl-3-hydroxy-5-oxo-5-phenylpentanamide

(4h) N, N-diethyl-3, 5-dioxo-5-(o-tolyl)pentanamide

(4i) N, N-diethyl-3-hydroxy-5-(2-methoxyphenyl)-5-oxopentanamide

(4j) N, N-diethyl-5-(2-fluorophenyl)-3-hydroxy-5-oxopentanamide

(4k) 5-(3-chlorophenyl)-N, N-diethyl-3-hydroxy-5-oxopentanamide

(4l) N, N-diethyl-3-hydroxy-5-oxo-5-(m-tolyl)pentanamide

(4m) 5-(4-chlorophenyl)-N, N-diethyl-3-hydroxy-5-oxopentanamide

(4n) 5-(4-bromophenyl)-N, N-diethyl-3-hydroxy-5-oxopentanamide

(40) N, N-diethyl-3-hydroxy-5-(4-methoxyphenyl)-5-oxopentanamide

(4p) N, N-diethyl-3-hydroxy-5-oxo-5-(4-(trifluoromethyl)phenyl)pentanamide

(4q) N, N-diethyl-3-hydroxy-5-(naphthalen-1-yl)-5-oxopentanamide

(4r) N, N-diethyl-3-hydroxy-5-(naphthalen-2-yl)-5-oxopentanamide

(4s) N, N-diethyl-5-(furan-2-yl)-3-hydroxy-5-oxopentanamide

(5a) tert-butyl 3, 5-dioxooctanoate

(5b) tert-butyl 3, 5-dioxotridecanoate

(5d) tert-butyl 6, 6-dimethyl-3, 5-dioxoheptanoate

(5e) tert-butyl 3, 5-dioxo-7-phenylheptanoate

(5f) tert-butyl 7-methyl-3, 5-dioxooct-6-enoate

(5g) tert-butyl 3, 5-dioxo-5-phenylpentanoate

(5i) tert-butyl 5-(2-methoxyphenyl)-3, 5-dioxopentanoate

(5j) tert-butyl 5-(2-fluorophenyl)-3, 5-dioxopentanoate

(5k) tert-butyl 5-(3-chlorophenyl)-3, 5-dioxopentanoate

(5m) tert-butyl 5-(4-chlorophenyl)-3, 5-dioxopentanoate

(5n) tert-butyl 5-(4-bromophenyl)-3, 5-dioxopentanoate

(50) tert-butyl 5-(4-methoxyphenyl)-3, 5-dioxopentanoate

(5p) tert-butyl 3, 5-dioxo-5-(4-(trifluoromethyl)phenyl) -pentanoate

(5r) tert-butyl 5-(naphthalen-2-yl)-3, 5-dioxopentanoate

(5s) tert-butyl 5-(furan-2-yl)-3, 5-dioxopentanoate

(5t) tert-butyl -dioxo-5-(thiophen-2-yl)pentanoate

5r in the maintext: N,N-diethyl-3,5-dihydroxy-5-(naphthalen-2-yl)pentanamide

7. HPLC diagrams for ee determination.

Pk #	Retention Time	Area	Area %	Height	Height %
1	26.149	13216768	98.575	262673	98.449
2	28.504	191123	1.425	4138	1.551

Equation 2 (ee in MeOH):

Pk #	Retention Time	Area	Area %	Height	Height %
1	39.325	866711	3.223	14921	3.478
2	42.553	26021155	96.777	414081	96.522

Equation 3 (ee in MeOH)

30611128

Pk #	Retention Time	Area	Area %	Height	Height %
1	34.233	1760546	3.726	20649	8.377
2	45.024	45490975	96.274	225862	91.623

Table 1 entry 6

S100

Pk #	Retention Time	Area	Area %	Height	Height %
1	23.130	2182428	6.427	41596	9.675
2	31.616	31773242	93.573	388330	90.325

Table 1 entry 7

Table 1, 1-7,

on the peak height: 198196/4747=41.7/1, thus the ee of **4a** was *ca*. 95.3% (41.7-1)/(41.7+1)X100% **Table 2, entry 2/ Table 3, entry 1**

Table 2, entry 3

Table 2, entry 4

Table 2, entry 5 (with L2= (S)-BINAP)

Table 2, entry 6 (L3= (S)-SegPhos)

Pk #	Retention Time	Area	Area %	Height	Height %
1	19.075	461648	3.232	13337	4.263
2	20.169	13820329	96.768	299558	95.737

Pk #	Retention Time	Area	Area %	Height	Height %
1	21.705	9692100	49.473	281202	51.768
2	23.409	9898522	50.527	261997	48.232

Table 3 entry 5

Pk #	Retention Time	Area	Area %	Height	Height %
1	18.708	23355360	49.708	677936	51.799
2	20.668	23630076	50.292	630836	48.201

PK #	Referition 1 line	Агеа	Area %	Height	Height %
1	22.712	31478289	95.777	561636	96.170
2	25.906	1387944	4.223	22369	3.830

Pk #	Retention Time	Area	Area %	Height	Height %
1	21.896	22037759	97.793	456374	97.592
2	24.826	497462	2.207	11260	2.408

Table 3 entry 8

Pk #	Retention Time	Area	Area %	Height	Height %
1	33.035	22281346	49.592	420762	52.322
2	35.132	22648001	50.408	383409	47.678

Pk #	Retention Time	Area	Area %	Height	Height %
1	24.104	4691691	49.947	124032	52.063
2	26.705	4701592	50.053	114203	47.937

Pk #	Retention Time	Area	Area %	Height	Height %
1	16.379	20291223	50.392	595951	53.041
2	17.745	19975880	49.608	527618	46.959

Table 3 entry 12

ГK #	Ketention 1 mie	Alta	Alta 70	meight	ffeight 70
1	32.595	50503002	49.658	928039	52.328
2	35.520	51198144	50.342	845464	47.672

Table 3 entry 13

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Pk #	Retention Time	Area	Area %	Height	Height %
1	16.550	388882	2.254	13753	2.544
2	18.153	16863143	97.746	526771	97.456

Table 3 entry 14

2

36.660

50.031

152385

26697173

33.910

Table 3 entry 16

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Table 3 entry 17

Table 3 entry 18

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

