Supporting Information for

Recognition of *myo*-Inositol 1,4,5-Trisphosphate using Fluorescent Imidazolium Receptor †

Ji Young Jung,^{a‡} Eun Jin Jun,^{b‡} Yong-Uk Kwon,^b* and Juyoung Yoon^{a,b}*

^aDepartment of Bioinspired Science (WCU), Ewha Womans University, Seoul 120-750, Korea ^bDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea

jyoon@ewha.ac.kr; yukwon@ewha.ac.kr

Figure S1	S4 page
Figure S2	S4 page
Figure S3	S5 page
Figure S4	S5 page
Figure S5	S6 page
Figure S6	S6 page
Figure S7	S7 page
Figure S8	S7 page

Experimental

1. General methods

Unless otherwise noted, materials were obtained from commercial suppliers and were used without further purification. Thin layer chromatography (TLC) was carried out using Merck 60 F_{254} plates with thickness of 0.25 mm. Preparative TLC was performed using Merck 60 F_{254} plates with the thickness of 1 mm.

Melting points were measured using a Büchi 530 melting point apparatus. ¹H NMR and ¹³C NMR spectra were recorded using Bruker 250 MHz, 300 MHz or Varian 500 MHz. Chemical shifts were given in ppm and coupling constants (*J*) in Hz. Mass spectra were obtained using a JMS-HX 110A/110A Tandem Mass Spectrometer (JEOL). UV absorption spectra were obtained on UVIKON 933 Double Beam UV/VIS Spectrometer. Fluorescence emission spectra were obtained using RF-5301/PC Spectrofluorophotometer (Shimadzu).

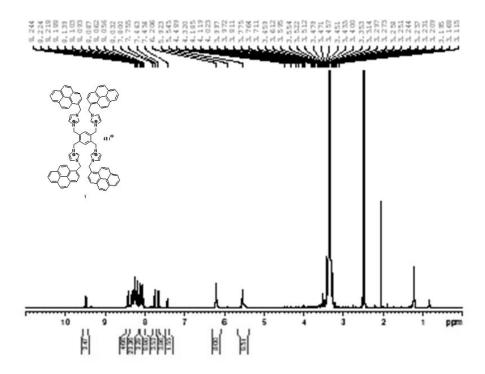
2. Synthesis

Synthesis of 1-((pyren-3-yl)methyl)-1H-imidazole 3 (*Tetrahedron Letter*, 46(39), 6617-20, 2005)

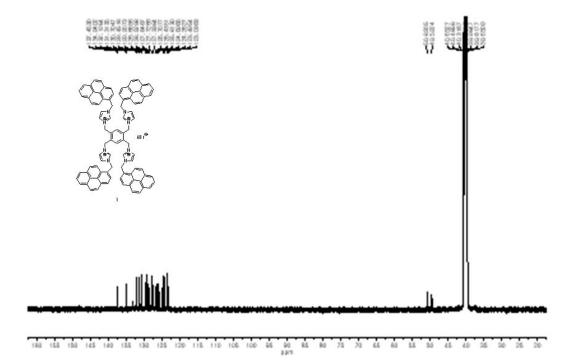
NaH (36.7mg, 0.92mmol, 60% in mineral oil) was added to a mixture of imidazole (57mg, 0.84mmol) in THF (20mL) at 0°C. After the reaction mixture had been stirred for 20min at 0°C, 1-bromomethylpyrene (200mg, 0.68mmol) was added. After additional stirring for 1h at room temperature, water (50mL) was added to the reaction mixture and the mixture extracted with CHCl₃. The organic layer was separated, dried with anhydrous magnesium sulfate, and concentrated under reduced pressure. Purification by flash chromatography on silica gel (Hexane:EA=1:2) afforded **2** (142mg, 74.3%) as a pale-yellow solid. ¹H NMR (CD₃CN, 250 MHz) : δ 8.34 (d, *J* = 3.35 Hz, 2H), 8.30-8.24 (m, 3H), 8.17-8.10 (m, 3H), 7.85 (d, *J* = 7.82 Hz,

1H), 7.68 (s, 1H), 7.08 (s, 1H), 6.96 (s, 1H), 5.93 (s, 2H). 13 C NMR (CD₃CN, 62.5 MHz) : δ 137.54, 131.36, 131.24, 130.62, 128.70, 128.32, 127.70, 127.31, 126.78, 126.45, 125.69, 125.54, 125.09, 122.25, 119.64, 48.13. HRMS (FAB) calcd for C₂₀H₁₅N₂ [M+H]⁺ 283.1157; found 283.1232.

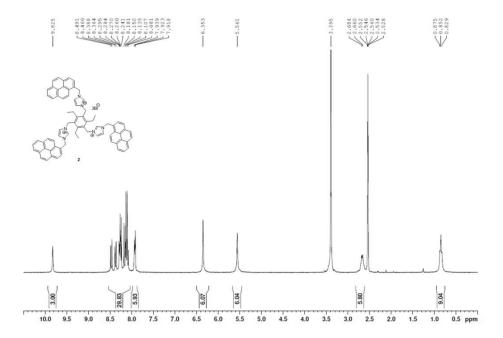
Synthesis of 1

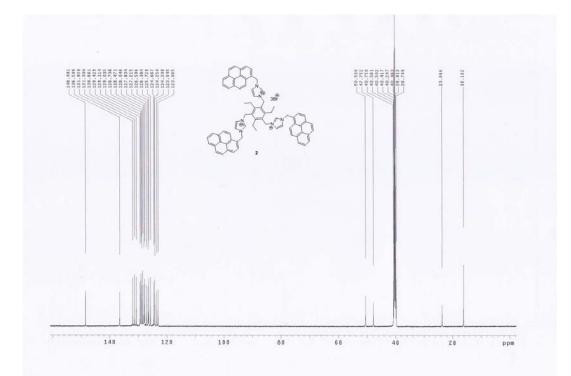

A mixture of **3** (263mg, 0.93mmol) and 1,2,4,5-tetrakis(bromomethyl)benzene (100mg, 0.22mmol) in acetonitrile (10mL) was heated at reflux for 24h under N₂. After cooling to room temperature, the precipitate was filtered and washed with cold CH₂Cl₂ to give **1** as a white solid (320mg, 91%). m.p. decompose. ¹H NMR (D₂O, 250 MHz) : δ 9.45 (s, 4H), 8.43 (d, *J* = 9.29 Hz, 4H), 8.33-8.19 (m, 20H), 8.14 (s, 4H), 8.10-8.03 (m, 8H), 7.75 (s, 4H), 7.66 (s, 4H), 7.44 (s, 2H), 6.21 (s, 8H), 5.54 (s, 8H). ¹³C NMR (D₂O, 62.5 MHz) : δ 137.47, 134.95, 133.18, 132.14, 131.32, 130.72, 129.47, 129.22, 128.88, 128.54, 127.86, 127.74, 127.35, 126.72, 126.45, 125.83, 124.71, 124.27, 123.51, 123.05, 50.83, 49.53. HRMS (FAB) calcd for C₅₈H₅₀Br₃N₈ [M-Br]⁺ 1495.2955; found 1495.2957.

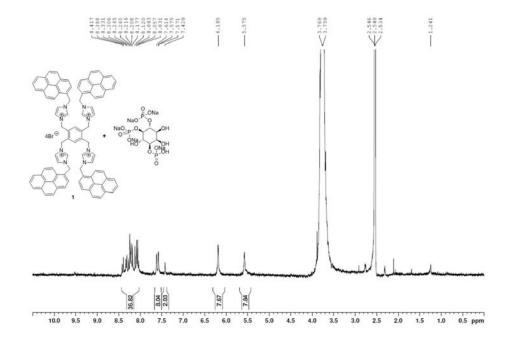
Synthesis of 2

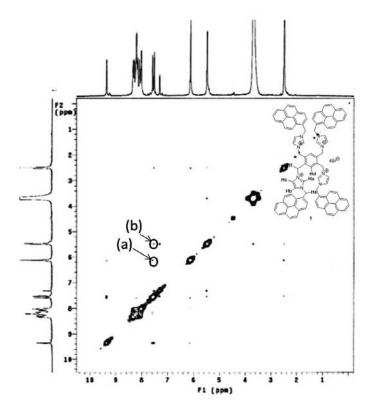

A mixture of **3** (200mg, 0.71mmol) and 1,3,5-tris(bromomethyl)-2,4,6-triethylbenzene (89.3mg, 0.20mmol) in acetonitrile (10mL) was heated at reflux for 24h under N₂. After cooling to room temperature, the precipitate was filtered and washed with cold CH₂Cl₂ to give **2** as a yellow solid (225mg, 88%). ¹H NMR (DMSO-*d*₆, 300 MHz) : δ 9.83 (s, 3H), 8.49-8.11 (m, 27H), 7.93 (m, 6H), 6.35 (s, 6H), 5.56 (s, 6H), 2.67 (d, *J* = 7.2 Hz, 6H), 0.85 (t, 9H). ¹³C NMR (DMSO-*d*₆, 500 MHz) : δ 148.49, 136.51, 131.96, 131.30, 130.66, 129.43, 129.11, 129.04, 128.74, 128.47, 128.05, 127.83, 127.22, 126.60, 126.38, 125.73, 124.67, 124.25, 124.20, 123.55, 123.07, 50.53, 47.75, 23.67, 16.16. HRMS (FAB) calcd for C₇₅H₆₃Br₂N₆ [M-Br]⁺ 1205.3475; found 1205.3477.

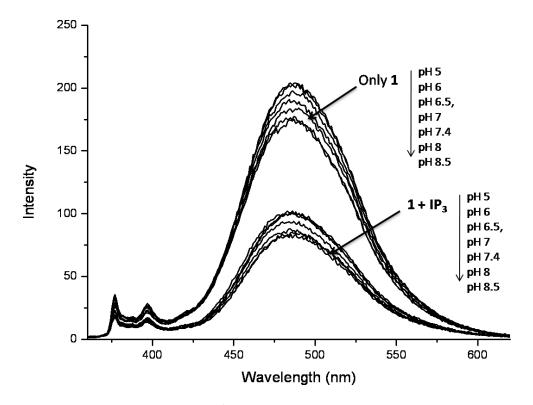
3. Fluorescent study


Stock solutions (1 mM) of IP₁, IP₂, IP₃, IP₄, IP₅, IP₆, *scyllo*-IP₃, PPi, and ATP in doubly distilled water were prepared. Stock solution of host **1** (0.1 mM) was also prepared in DMSO. Test solutions were prepared by placing 300 μ L of the probe stock solution into a test tube, adding an appropriate aliquot of each stock, and diluting the solution to 3 mL with DMSO-HEPES buffer (0.02 M, pH 7.4) (1:9, v/v).


Fig. S1. ¹H NMR (250 MHz) of compound **1** in D_2O .


Fig. S2. 13 C NMR (62.5 MHz) of compound **1** in D₂O.


Fig. S3. ¹H NMR (300 MHz) of compound **2** in DMSO- d_6 .


Fig. S4. ¹³C NMR (300 MHz) of compound **2** in DMSO- d_6 .

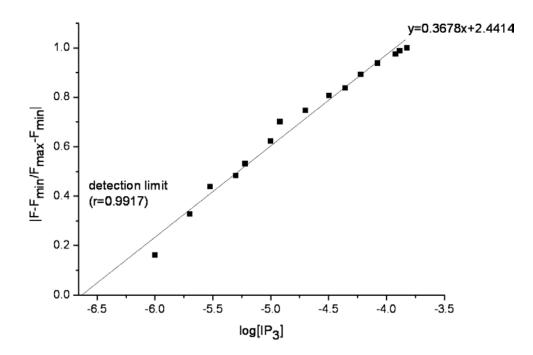

Fig. S5. ¹H NMR (300 MHz) of compound **1** with IP₃ in DMSO- d_6 -D₂O (9:1, v/v).

Fig. S6. Partial 2D-COSY NMR spectra of **1** in DMSO- d_6 -D₂O (9:1, v/v) cross peak **A** between Hb and He(a), cross peak **B** between Hc and Hf(b).

Fig. S7. Fluorescent changes of **1** (1×10^{-5} M, DMSO-HEPES buffer (0.02 M, pH 7.4) (1: 9, v/v) and **1**+IP₃(2.0 equiv.) at different pHs (excitation at 340 nm).

Fig. S8. Normalized fluorescence responses of **1** (1×10^{-5} M) to changing IP₃ concentrations in DMSO-HEPES buffer (0.02 M, pH = 7.4) (1:9, v/v).