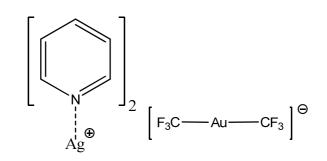
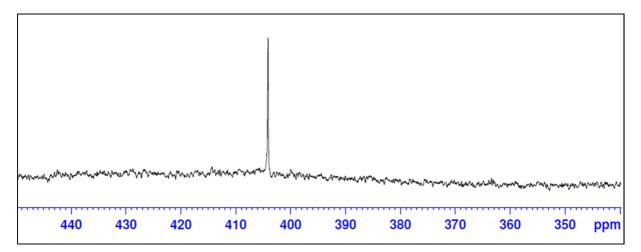
Electronic Supporting information:

$[(CF_3)_4Au_2(C_5H_4N)_2] - \mbox{ the first alkyl gold}(II) \mbox{ derivative with an extremely short Au-Au bond}$


David Zopes,^[a] Corinna Hegemann,^[a] Wieland Tyrra^{*[a]} and Sanjay Mathur^{*[a]}

Routine NMR spectra were recorded on the Bruker spectrometer AVANCE II 300 at 298 K; frequencies (external standards): ¹³C 75.5 MHz (TMS), ¹⁹F 282.4 MHz (CCl₃F), ¹H 300.1 MHz (TMS); positive shifts denote downfield resonances. ¹⁰⁹Ag NMR experiment was run on a Bruker Avance 400 spectrometer (resonance frequency for ¹H 400.13 MHz, ¹³C 100.6 MHz and ¹⁰⁹Ag 18.61 MHz) at ambient temperature. C, H and N analyses were carried out with a HEKAtech Euro EA 3000 apparatus. Light irradiation experiments were enforced by an UV reactor of Helios Italquartz ($\lambda = 352$ nm).

Reaction procedure [Ag(Py)₂][Au(CF₃)₂]:


 $[NMe_4][Au(CF_3)_2]$ was synthesized as reported recently.^[1] 0.463 g (1 eq, 1.13 mmol) of $[NMe_4][Au(CF_3)_2]$ was solved in a mixture of 15 ml dried methylene chloride and 2 ml of pyridine in an N₂ atmosphere. 0.219 g (1 eq, 1.13 mmol) Ag[BF₄] was added to the colourless, light protected and well stirred solution; Instantly $[NMe_4][BF_4]$ precipitated as white flocculation. After 3 h of stirring the reaction was finished and the solution was cooled down to -19 °C to achieve complete precipitation of $[NMe_4][BF_4]$. To obtain the solid yellowish white product in nearly quantitative yield, all volatile products were removed carefully at 0 °C under reduced pressure (1.10⁻² mbar).

Formula:

¹H NMR (400.13 MHz, CD₃CN, ppm) δ : 8.62 (H-2,6), 7.95 (H4), 7.54(H-3,5); ¹³C APT NMR (100.6 MHz, CD₃CN, ppm) δ : 163.0 ([Au(CF₃)₂]⁻ qq, (¹J(F,C) = 347 Hz, ³J(F,C) = 19 Hz), 151.9 (C-2,6), 139.2 (C-3,5), 126.0 (C4); ¹⁹F NMR (282.4 MHz, CD₃CN, ppm) δ :

- 28.0 s, $({}^{1}J(F,C) = 347 \text{ Hz}, {}^{3}J(F,C) = 19 \text{ Hz}, {}^{4}J(F,F) = 2 \text{ Hz}); {}^{109}\text{Ag NMR}$ (18.61 MHz, pyridine-d₅, ppm) δ : +404 s; CHNS analytic data for $[Ag(Py)_2][Au(CF_3)_2]$ in %: C: 23.7 (calculated 24.0); H: 2.4 (1.7); N: 5.0 (4.7).

Figure 1: ¹⁰⁹Ag NMR of [Ag(Py)₂][Au(CF₃)₂] in pyridine-d₅.

Behaviour of [Ag(Py)₂][Au(CF₃)₂] in solution upon irradiation:

Time dependent ¹⁹F NMR measurements (282.4 MHz, CD₃CN) shows the advancing oxidation of the $[Au^{(+I)}(CF_3)_2]^-$ unit by silver^(+I) leading to $[Au_2^{(+II)}(CF_3)_4(Py)_2]$, which spontaneously disproportionated in solution into the couple $[Au^{(+II)}(CF_3)_4]^-$ and $[Au^{(+III)}(CF_3)_3)^-Py]$ (equation 3). At the moment we can not exclude $[Au^{(+III)}(CF_3)_4]^-$ is part of this equilibrium reaction such as equation 4 or had been brought in as impurity of the previous syntheses.

[Au^(+I)(CF₃)[·]Py]:

¹⁹F NMR (282.4 MHz, CD₃CN, ppm) δ : [Au^(+I)(C**F**₃)'Py]: -23.7 s, (¹J(C,F) = 338 Hz); ¹³C NMR (75.5 MHz, CDCl₃, ppm) δ : [Au^(+I)(CF₃)'Py] 139.9.

$[Au^{(+III)}(CF_3)_3)^{\cdot}Py]$:

¹⁹F NMR (282.4 MHz, CD₃CN, ppm) δ : [Au^(+III)(C**F**₃)₃)[·]Py] -29.9 sept, (¹J(C,F) = 347 Hz, ⁴J(F,F) = 6 Hz); -38.1 qu, (¹J(C,F) = 361 Hz, ⁴J(F,F) = 6 Hz). ¹³C NMR (75.5 MHz, CDCl₃, ppm) δ : [Au^(+III)(CF₃)₃)[·]Py] 110.4, 136.3.

 $[Au^{(+III)}(CF_3)_4]$:^[2]

¹⁹F NMR (282.4 MHz, CD₃CN, ppm) δ : [Au^(+III)(C**F**₃)₄] – 34.7 s, (¹J(C,F) = 354 Hz), ¹³C NMR (75.5 MHz, CDCl₃, ppm) δ : 135.9.

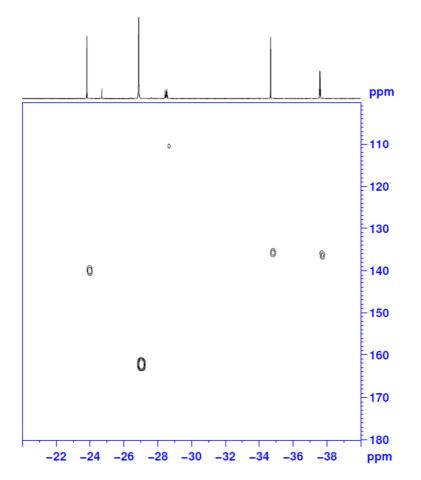


Figure 2: F,C-HSQC experiment of [Ag(Py)₂][Au(CF₃)₂] in CD₃CN upon 20 h UV irradiation.

Literature

- D. Zopes, S. Kremer, H. Scherer, L. Belkhoura, I. Pantenburg, W. Tyrra, S. Mathur, *Eur. J. Inorg. Chem.* 2011, 273–280.
- [2] E. Bernhardt, M. Finze, H. Willner, J. Fluorine Chem. 2004, 125, 967-973.