Electronic supplementary information for

Synthesis and structure of 1,4,5,8-tetraethynylnaphthalene derivatives

Takashi Takeda and Yoshito Tobe*

Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan Tel.: +81-6-6850-6225; fax: +81-6-6850-6229

CONTENTS

Page

1.	Experimental detail	S2
2.	UV-vis and fluorescence spectra of 4a in CHCl ₃	<u></u> S6
3.	Overlays of the structures of 4a in crystal and optimized structure	S6
4.	Molecular arrangement of 4a in the crystal	<u></u> S7
5.	Cartesian coordinate of optimized structure of 4a	S8
6.	¹ H and ¹³ C NMR spectra of new compounds	
7.	References	S20

1. Experimental detail

General methods.

All reactions were performed under an inert atmosphere (N₂ or Ar) unless otherwise noted. Commercially available reagents and solvents were used as received except for the dry solvents. Dry Et₃N was prepared by distillation from NaOH. Dry THF was purchased and purified through a Glass Contour solvent system. 5,8-Dibromo-1,4-naphthoquinone and 5,8-diiodo-1,4-naphthoquinone were prepared following the published procedures^{S1} from 1,4-dibromonaphthalene and 1,4-diiodonaphthalene, respectively. Chemical shifts (δ) are expressed in ppm referred to residual nondeuterated solvent as the internal standard (CDCl₃; ¹H 7.26 ppm, ¹³C 77.0 ppm). GPC was performed using JAIGEL-1H and 2H GPC column (600 mm × 20 mm) with CHCl₃ as the eluent.

Preparation of 5,8-dibromo-1,4-bis[(trimethylsilyl)ethynyl]-1,4-dihydronaphthalene-1,4-diol (6).

To a solution of (trimethylsilyl)acetylene (1.80 mL, 12.7 mmol) in THF (50 mL) was added *n*-BuLi (1.67 M in hexane, 5.70 mL, 9.52 mmol) at -78 °C. The mixture was stirred at -78 °C for 45 min and then, 5,8-dibromo-1,4-naphthoquinone (1.00 g, 3.17 mmol) was added at this temperature. The mixture was warmed gradually to rt and stirred for 20 h. Saturated aqueous solution of NH₄Cl was added and the mixture was extracted with ether. The combined organic layer was washed with brine and then dried over MgSO₄. After evaporation of the solvent under reduced pressure, the crude product was purified by silica gel column chromatography (CHCl₃/hexane = $1/1 \rightarrow 1/0$) to give two diastereomers of 5,8-dibromo-1,4-bis[(trimethylsilyl)ethynyl]-1,4-dihydronaphthalene-1,4-diol (6) (major diastereomer: brown amorphous solid, 1.22 g, 75%; minor diastereomer: orange solid, 265 mg, 16%). The stereochemistry of each diastereomer was not determined. The major diastereomer was used for the next reaction.

Data for major diastereomer: Mp 93–94 °C; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.49 (s, 2H), 6.03 (s, 2H), 4.17 (br s, 2H), 0.15 (s, 18H); ¹³C NMR (100 MHz, CDCl₃, 30 °C) δ 136.3, 135.7, 127.2, 122.9, 103.7, 91.5, 64.4, -0.4; IR (KBr) 3426, 3063, 2959, 2898, 2171, 1429, 1326, 1251, 1156, 1036, 974, 843, 778, 760 cm⁻¹; HR-MS (EI) calcd for C₂₀H₂₃O₂⁷⁹Br₂Si₂ [(M–H)⁺] *m/z* 508.9603, found 508.9602.

Data for minor diastereomer: Mp 70–72 °C; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.52 (s, 2H), 6.10 (s, 2H), 3.97 (s, 2H), 0.14 (s, 18H); ¹³C NMR (100 MHz, CDCl₃, 30 °C) δ 137.2, 136.1, 128.0, 123.2, 104.5, 92.7, 65.1, -0.1; IR (KBr) 3529, 3495, 3439, 3056, 2959, 2898, 2171, 1432, 1387, 1364, 1310, 1249, 1224, 1175, 1159, 1045, 996, 863, 842, 795, 777, 760, 699, 649, 618, 521 cm⁻¹; HR-MS (EI)

calcd for $C_{20}H_{21}O^{81}Br_2Si_2$ [(M-H₂O-H)⁺] *m/z* 494.9457, found 494.9440.

Preparation of 5,8-dibromo-1,4-bis[(trimethylsilyl)ethynyl]naphthalene (7).

To a solution of **6** (major isomer, 811 mg, 1.58 mmol) in EtOH (4 mL) was added $SnCl_2 \cdot 2H_2O$ (714 mg, 3.17 mmol). The mixture was stirred at 60 °C for 1 h. The resulting precipitates were filtered and washed with EtOH to give 5,8-dibromo-1,4-bis[(trimethylsilyl)ethynyl]naphthalene (7) (697 mg, 92%) as an orange solid. Mp 144–145 °C; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.75 (s, 2H), 7.63 (s, 2H), 0.27 (s, 18H); ¹³C NMR (100 MHz, CDCl₃, 30 °C) δ 136.1, 134.2, 132.8, 122.5, 121.0, 108.1, 104.5, -0.6; IR (KBr) 2955, 2896, 2143, 1368, 1248, 864, 839, 807, 757, 632 cm⁻¹; HR-MS (EI) calcd for C₂₀H₂₂⁷⁹Br₂Si₂ (M⁺) *m/z* 475.9627, found 475.9626.

Preparation of 1,4,5,8-tetrakis[(trimethylsilyl)ethynyl]naphthalene (4b).

To an argon purged solution of 7 (513 mg, 1.07 mmol), Pd(PPh₃)₂Cl₂ (173 mg, 246 mmol), CuI (92 mg, 483 µmol) in Et₃N (30 mL) was added (trimethylsilyl)acetylene (900 µL, 6.37 mmol). The mixture was stirred at rt for 10 min then stirred at 80 °C for 60 min. The mixture was cooled to rt and then diluted with saturated aqueous solution of NH₄Cl and CHCl₃. The aqueous layer was separated and extracted with CHCl₃. Combined organic layer was washed with saturated aqueous solution of NH₄Cl and brine and then dried over MgSO₄. After evaporation of solvent under reduced pressure, the crude product was purified by silica gel column chromatography (hexane/AcOEt = 100/1) twice followed by GPC to give 1,4,5,8-tetrakis[(trimethylsilyl)ethynyl] naphthalene (**4b**) (311 mg, 57%) as a yellow solid. Mp 139–141 °C; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.66 (s, 4H), 0.30 (s, 36H); ¹³C NMR (100 MHz, CDCl₃, 30 °C) δ 135.8, 131.2, 121.9, 106.5, 105.1, 0.1; IR (KBr) 2958, 2898, 2139, 1392, 1247, 944, 890, 840, 758, 697, 677, 654, 631, 458, 422 cm⁻¹; HR-MS (EI) calcd for C₃₀H₄₀Si₄ (M⁺) *m/z* 512.2207, found 512.2206.

Preparation of 1,4-bis[(trimethylsilyl)ethynyl]-5,8-bis[(triisopropylsilyl)ethynyl]naphthalene (4c).

To an argon purged solution of 7 (610 mg, 1.28 mmol), Pd(PPh₃)₂Cl₂ (268 mg, 382 mmol), CuI (122 mg, 641 µmol) in Et₃N (30 mL) was added (triisopropylsilyl)acetylene (850 µL, 3.82 mmol). The mixture was stirred at 80 °C for 3 h. The mixture was cooled to rt and then diluted with saturated aqueous solution of NH₄Cl and CHCl₃. The aqueous layer was separated and extracted with CHCl₃. Combined organic layer was washed with saturated aqueous solution of NH₄Cl and brine and then dried over MgSO₄. After evaporation of solvent under reduced pressure, the crude product was silica purified by gel column chromatography (hexanes) twice give to 1,4-bis[(trimethylsilyl)ethynyl]-5,8-bis[(triisopropylsilyl)ethynyl]naphthalene (4c) (623 mg, 73%) as an orange oil. ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.69 (s, 2H) 7.66 (s, 2H), 1.20–1.15 (m, 42H),

0.27 (s, 18H); ¹³C NMR (100 MHz, CDCl₃, 30 °C) δ 136.0, 135.9, 131.1, 122.0, 107.1, 106.9, 105.8, 104.3, 18.9, 11.6, 0.0; IR (KBr) 2958, 2944, 2894, 2865, 2137, 1545, 1463, 1432, 1389, 1249, 1072, 1016, 996, 941, 884, 841, 782, 760, 678, 592 cm⁻¹; HR-MS (FAB) calcd for C₄₂H₆₄Si₄ (M⁺) *m/z* 680.4085, found 680.4084.

Preparation of 5,8-diiodo-1,4-bis(phenylethynyl)-1,4-dihydronaphthalene-1,4-diol (9).

To a solution of phenylacetylene (700 μ L, 7.32 mmol) in THF (40 mL) was added *n*-BuLi (1.63 M in hexane, 3.70 mL, 6.03 mmol) at -78 °C. The mixture was stirred at -78 °C for 1 h. To the resulting solution was added 5,8-diiodo-1,4-napthoquinone (1.00 g, 2.44 mmol) at this temperature. The mixture was allowed to warm rt and stirred for 16 h. Saturated aqueous solution of NH₄Cl was added and the mixture was extracted with ehter. Combined organic layer was washed with brine, then dried over MgSO₄. After evaporation of solvent under reduced pressure, the crude product was purified by silica gel column chromatography (CHCl₃/hexane = $2/1 \rightarrow 1/0$) to give two diastereomers of 5,8-diiodo-1,4-bis(phenylethynyl)-1,4-dihydronaphthalene-1,4-diol (**9**) (major diastereomer: pale yellow solid 1.21 g, 81%. minor diastereomer: pale yellow solid 26.6 mg, 1.8%). Stereochemistry of the diastereomers was not determined. Major diastereomer was used for the next reaction.

Data for major diastereomer: Mp 173–174 °C; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.70 (s, 2H), 7.48–7.44 (m, 4H), 7.34–7.28 (m, 6H) 6.27 (s, 2H), 3.77 (s, 2H); ¹³C NMR (100 MHz, CDCl₃, 30 °C) δ 143.7, 138.5, 131.7, 128.8, 128.3, 127.4, 122.1, 97.6, 89.1, 88.0, 66.2; IR (KBr) 3483, 3392, 3050, 2223, 1596, 1570, 1488, 1442, 1422, 1398, 1365, 1302, 1248, 1214, 1173, 1145, 1118, 1071, 1060, 1033, 1020, 996, 978, 961, 916, 808, 789, 756, 722, 689, 671, 584, 546, 525, 475, 465 cm⁻¹; HR-MS (EI) calcd for C₂₆H₁₆O₂I₂ (M⁺) *m/z* 613.9240, found 613.9232.

Data for minor diastereomer: Mp 89–90 °C; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.71 (s, 2H), 7.47–7.43 (m, 4H), 7.32–7.27 (m, 6H) 6.24 (s, 2H), 3.76 (s, 2H); ¹³C NMR (100 MHz, CDCl₃, 30 °C) δ 144.1, 138.4, 132.1, 129.1, 128.5, 127.4, 122.5, 97.9, 88.6, 87.6, 66.1; IR (KBr) 3354, 3078, 3052, 3032, 2955, 2925, 2852, 2219, 1597, 1572, 1488, 1442, 1423, 1316, 1257, 1176, 1145, 1069, 1017, 996, 957, 916, 811, 755, 688, 620, 585, 544, 526, 479 cm⁻¹; MS (FAB) *m/z* 597([M-OH]⁺).

Preparation of 5,8-diiodo-1,4-bis(phenylethynyl)naphthalene (10).

To a solution of **9** (major isomer, 1.16 g, 1.89 mmol) in EtOH (6 mL) was added $SnCl_2 \cdot 2H_2O$ (868 mg, 3.78 mmol). The mixture was stirred at 60 °C for 1 h. The resulting precipitates were filtered and washed with EtOH to give 5,8-diiodo-1,4-bis(phenylethynyl)naphthalene (**10**) (1.08 g, 99%) as a yellow solid. Mp 156–157 °C; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.90 (s, 2H), 7.87 (s, 2H), 7.66–7.62 (m, 4H) 7.41–7.38 (m, 6H); ¹³C NMR (100 MHz, CDCl₃, 30 °C) δ 143.3, 134.8, 133.6,

130.8, 128.8, 128.5, 124.5, 123.6, 104.5, 94.2, 89.1; IR (KBr) 3051, 2200, 1970, 1954, 1904, 1890, 1681, 1595, 1566, 1544, 1489, 1439, 1374, 1341, 1259, 1197, 1181, 1069, 1018, 993, 918, 852, 831, 798, 755, 692, 665, 643, 577, 529 cm⁻¹; HR-MS (EI) calcd for $C_{26}H_{14}I_2$ (M⁺) *m/z* 579.9185, found 579.9200.

Preparation of 1,4,5,8-tetrakis(phenylethynyl)naphthalene (4a).

To a mixture of **10** (972 mg, 1.68 mmol), Pd(PPh₃)₄ (196 mg, 170 µmol) and CuI (132 mg, 693 µmol) in THF/Et₃N (1:1, 40 mL) was added phenylacetylene (500 µL, 4.55 mmol). The mixture was stirred at rt for 15 h and then diluted with CHCl₃ and saturated aqueous solution of NH₄Cl. Aqueous layer was separated and extracted with CHCl₃. Combined organic layer was washed with brine and then dried over MgSO₄. After evaporation of the solvent under reduced pressure, the resulting crude product was purified by silica gel column chromatography (CHCl₃/hexane = 1/4) followed by GPC to give 1,4,5,8-tetrakis(phenylethynyl)naphthalene (**4a**) (623 mg, 70%) as a yellow solid. Mp 142–144 °C (decomp.); ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.84 (s, 4H), 7.38–7.34 (m, 8H), 7.24–7.19 (m, 4H), 7.16–7.11 (m, 8H); ¹³C NMR (100 MHz, CDCl₃, 30 °C) δ 134.3, 132.5, 131.6, 128.1, 128.0, 123.6, 122.0, 99.6, 89.9; IR (KBr) 3077, 3053, 3033, 3017, 1594, 1546, 1489, 1440, 1408, 1390, 1156, 1068, 1024, 985, 933, 918, 843, 754, 689, 640, 541, 528, 512, 468 cm⁻¹; HR-MS (FAB) calcd for C₄₂H₂₄ (M⁺) *m/z* 528.1878, found 528.1842.

X-ray crystallographic structure analysis

A single crystal of **4a** suitable for X-ray diffraction was obtained from benzene/MeCN. Data collection was conducted with a Rigaku Mercury CCD area detector with graphite monochromated MoK α radiation. The structure was solved by direct method^{S2} and expanded using Fourier techniques. The positional and thermal parameters of non-hydrogen atoms were refined anisotropically on F^2 by full-matrix least-squares method using SHELXL-97.^{S3} Hydrogen atoms were placed at calculated positions and refined "riding" on their corresponding carbon atoms. In the subsequent refinement, the function $\Sigma w (F_o^2 - F_c^2)^2$ was minimized, where $|F_o|$ and $|F_c|$ are the observed and calculated structure factor amplitudes, respectively.

Computational methods.

DFT calculations were performed with the Gaussian 09 program package.^{S4} The geometries were optimized using the B3LYP method with the 6-31G* basis set. The natures of the stationary points were assessed by means of vibration frequency analysis. The single point calculations of Mol-A and Mol-B were conducted using the Cartesian coordinates of each structure obtained by the X-ray crystal structure analyses, except for those of hydrogen atoms which were optimized.

2. UV-vis and fluorescence spectra of 4a in CHCl₃

Fig. S1 UV-vis (light green) and fluorescence (blue, arbitrary scale, excited at 414 nm) spectra of **4a** in CHCl₃.

- 3. Overlays of the structures of 4a in crystal and optimized structure

Fig. S2 Overlays of Mol-A in the crystal (black) and optimized structure (blue).

Fig. S3 Overlays of Mol-B in the crystal (black) and optimized structure (blue).

4. Molecular arrangement of 4a in the crystal

Fig. S4 Molecular arrangement of **4a** in crystal. Red dotted lines show short contacts (< vDW radius) between neighboring molecules. Displacement ellipsoids are drawn at the 50% probability level. Short contacts between molecules located behind and in front of the plane were omitted for clarity.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

5. Cartesian coordinates of optimized structure of 4a

SCF Done: E(RB3LYP) = -1614.72626404 Number of imaginary frequencies: 0

A.U. after 6 cycles

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	0.692651	-2.446865	-0.065297	
2	6	0	1.419518	-1.256744	-0.099893	
3	6	0	0.721879	-0.000052	-0.000003	
4	6	0	-0.721866	-0.000064	-0.000021	
5	6	0	-1.419485	-1.256766	0.099840	
6	6	0	-0.692611	-2.446878	0.065141	
7	1	0	1.229510	-3.386524	-0.141029	
8	6	0	1.419486	1.256660	0.099888	
9	6	0	-1.419500	1.256634	-0.099908	
10	1	0	-1.229462	-3.386546	0.140806	
11	6	0	-0.692652	2.446757	-0.065244	
12	6	0	0.692610	2.446769	0.065223	
13	1	0	-1.229518	3.386412	-0.140967	
14	1	0	1.229462	3.386433	0.140927	
15	6	0	-2.819145	1.390161	-0.318941	
16	6	0	2.819131	1.390235	0.318884	
17	6	0	2.819169	-1.390293	-0.318842	
18	6	0	3.960157	1.716021	0.594654	
19	6	0	3.960208	-1.716058	-0.594586	

20	6	0	-2.819127	-1.390329	0.318859
21	6	0	-3.960168	-1.716044	0.594656
22	6	0	-3.960167	1.715918	-0.594764
23	6	0	-5.303893	2.046983	-0.928391
24	6	0	-5.777873	3.364362	-0.757398
25	6	0	-6.180111	1.070365	-1.445719
26	6	0	-7.088736	3.690718	-1.092344
27	1	0	-5.106516	4.119895	-0.360652
28	6	0	-7.489407	1.407153	-1.777887
29	1	0	-5.820086	0.055693	-1.579017
30	6	0	-7.948931	2.715147	-1.603452
31	1	0	-7.440791	4.709637	-0.955045
32	1	0	-8.154317	0.644722	-2.174551
33	1	0	-8.971543	2.973222	-1.865006
34	6	0	-5.303902	-2.046991	0.928360
35	6	0	-6.179986	-1.070360	1.445889
36	6	0	-5.778026	-3.364304	0.757232
37	6	0	-7.489287	-1.407066	1.778112
38	1	0	-5.819854	-0.055738	1.579288
39	6	0	-7.088896	-3.690580	1.092239
40	1	0	-5.106773	-4.119852	0.360339
41	6	0	-7.948955	-2.714993	1.603537
42	1	0	-8.154095	-0.644625	2.174926
43	1	0	-7.441052	-4.709450	0.954838
44	1	0	-8.971576	-2.972993	1.865132
45	6	0	5.303872	2.047143	0.928264
46	6	0	6.180153	1.070594	1.445609
47	6	0	5.777779	3.364548	0.757225
48	6	0	7.489443	1.407463	1.777728
49	1	0	5.820186	0.055907	1.578960
50	6	0	7.088634	3.690985	1.092126
51	1	0	5.106369	4.120032	0.360477
52	6	0	7.948895	2.715473	1.603234
53	1	0	8.154401	0.645081	2.174403
54	1	0	7.440626	4.709921	0.954791
55	1	0	8.971504	2.973604	1.864751

56	6	0	5.303933	-2.047115	-0.928217
57	6	0	5.777829	-3.364549	-0.757348
58	6	0	6.180223	-1.070504	-1.445418
59	6	0	7.088688	-3.690947	-1.092265
60	1	0	5.106405	-4.120083	-0.360718
61	6	0	7.489519	-1.407334	-1.777553
62	1	0	5.820268	-0.055796	-1.578638
63	6	0	7.948964	-2.715369	-1.603224
64	1	0	7.440673	-4.709903	-0.955062
65	1	0	8.154489	-0.644902	-2.174112
66	1	0	8.971578	-2.973464	-1.864751
 				-	

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

6. ¹H and ¹³C NMR spectra of new compounds

Figure S5 1 H (top) and 13 C (bottom) NMR spectra of 4a.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Figure S6 ¹H (top) and ¹³C (bottom) NMR spectra of 4b.

Figure S7 1 H (top) and 13 C (bottom) NMR spectra of 4c.

Figure S8 ¹H (top) and ¹³C (bottom) NMR spectra of 6 (major diastereomer).

Figure S9 ¹H (top) and ¹³C (bottom) NMR spectra of 6 (minor diastereomer).

Figure S10 1 H (top) and 13 C (bottom) NMR spectra of 7.

Figure S11 ¹H (top) and ¹³C (bottom) NMR spectra of **9** (major diastereomer).

Figure S12 ¹H (top) and ¹³C (bottom) NMR spectra of 9 (minor diastereomer).

Figure S13 1 H (top) and 13 C (bottom) NMR spectra of **10**.

6. References

S1 M. V. Bhatt and M. Periasamy, Tetrahedron 1994, 50, 3575-3586.

S2 SIR 2008, M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, D. Siliqi, R. Spagna, 2007.

S3 SHELX97, G. M. Sheldrick, Acta. Cryst. 2008, 64A, 112-122.

S4 Gaussian 09, Revision C 01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2009**.