Electronic Supplementary Information (ESI) for

The Selenite-capped Polyoxo-4-aurate(III), [Au^{III}₄O₄(Se^{IV}O₃)₄]⁴⁻

Yixian Xiang,^{*a*} Natalya V. Izarova,^{*a,b,**} Florian Schinle,^{*c,d*} Oliver Hampe,^{*c,d,e*} Bineta Keita,^{*f*} Ulrich Kortz^{*a,**}

^a Jacobs University, School of Engineering and Science, P.O. Box 750 561, 28725 Bremen, Germany. Fax: +49 421 200 3229; Tel: +49 421 200 3235; E-mail: <u>u.kortz@jacobs-university.de</u>; <u>n.izarova@jacobs-university.de</u>

^b Permanent address: Nikolaev Institute of Inorganic Chemistry, Prospekt Lavrentyeva 3, 630090 Novosibirsk, Russia

^c Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT)

^d Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT)

^e Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT)

^{*f*} Laboratoire de Chimie Physique, UMR 8000, CNRS, Equipe d'Electrochimie et de Photoélectrochimie, Université Paris-Sud, Bâtiment 350, 91405 Orsay Cedex, France.

Table of Contents

1. Materials and physical measurements	S 2
2. Synthesis of K -Au ₄ Se ₄	S 3
3. X-ray crystallography	S 3
4. Bond valence calculations	S 6
5. $\{(H_2O)_6K_2[Au_4^{III}O_4(Se_4^{IV}O_3)_4]_2\}^{6-}$ dimens	S 7
6. NMR spectroscopy	S 8
7. Thermogravimetric analysis	S 9
8. IR spectrum	S 10
9. Mass spectrometry studies	S 11
10. UV-Vis absorption spectroscopy	S 12
11. Electrochemistry	S 14
References	S 16

1. Materials and physical measurements

All reagents were purchased from commercial sources and used without further purification. Hydrogen tetrachloroaurate(III) hydrate was purum grade with ~52% Au basis (Sigma-Aldrich).

The ⁷⁷Se NMR spectra were recorded on a 400 MHz JEOL ECX instrument at room temperature using 5 mm tubes on non-deaerated solutions of **K-Au₄Se₄** in H₂O / D₂O (~12 mg/mL; pH 6.1). The resonance frequency was 105.155 MHz, and the chemical shifts are reported with respect to neat (CH₃)₂Se. All chemical shifts downfield of the reference are reported as positive values.

Thermogravimetric analysis (TGA) was carried out on a TA Instruments SDT Q600 thermobalance with a 100 mL min⁻¹ flow of nitrogen; the temperature was ramped from 20 to 1200 $^{\circ}$ C at a rate of 5 $^{\circ}$ C min⁻¹.

Elemental analysis was performed by Service Central d'Analyse, Solaize, France. The IR spectrum was recorded on a KBr disk using a Nicolet-Avatar 370 spectrometer between 400 and 4000 cm⁻¹.

Mass spectra were taken on two instruments: (I) ESI-Qq time-of-flight mass spectrometer (MicrOTOF-Q II, Bruker Daltonik, Bremen) with a nanospray source and (II) 7T-FT-ICR mass spectrometer (APEX II, Bruker Daltonik, Bremen) using a home-built nanospray source. Positive ion mode spectra were obtained by spraying solution of **K-Au₄Se₄** in deionized water with a concentration of ~10⁻⁵ M using home-pulled tipps with opening diameters of several μ m.

The electrochemical set-up was an EG & G 273 A driven by a PC with the M270 software. Potentials are quoted against a saturated calomel electrode (SCE). The counter electrode was a platinum gauze of large surface area. All experiments were performed at room temperature. The source, mounting and polishing of the glassy carbon (GC, Tokai, Japan) electrodes have been described.¹ The glassy carbon samples had a diameter of 3 mm. The solutions were deaerated thoroughly for at least 30 min. with pure argon and kept under a positive pressure of this gas during the experiments. The solutions were 8 x 10⁻⁴ M in Au₄Se₄. The composition of the aqueous electrolyte was 0.4 M NaNO₃ + NaOH (pH 6.20). The electrochemical experiments were performed in the dark. UV-Vis spectra were recorded with a Lambda 750 Perkin Elmer spectrophotometer. The solutions were placed in quartz cuvettes with an optical path of 1cm or 0.1 cm.

2. Synthesis of K-Au₄Se₄.

H[AuCl₄] (0.210 g, 0.618 mmol) was dissolved in 5 mL of 2 M KOAc solution (pH 7.0). Then the pH of the resulting solution was adjusted to 12 by addition of 6 M KOH solution, accompanied by a color change from bright yellow to orange and then to light yellow. After stirring for 15 min, AgNO₃ (0.425 g, 2.50 mmol) was added under vigorous stirring to precipitate the Cl⁻ ions while maintaining the pH at 12 with KOH_{aq}. The obtained white precipitate of AgCl containing small amounts of brownish Ag₂O·nH₂O was removed by filtration. To this filtrate H₂SeO₃ (0.08 g, 0.618 mmol) was added, and the pH of the reaction mixture was carefully adjusted to 6.3 with 6 M HNO₃. The resulting deep yellow solution was stirred at room temperature for 50 min and then filtered to remove a small amount of solid Au(OH)₃. Slow evaporation of the filtrate at room temperature in an open vial resulted in yellow, block-shaped crystals within two weeks. The obtained crystals were collected by filtration and air dried. Yield: 0.038 g (14% based on Au).

IR (2% KBr pellet): v = 3444 (s), 1636 (s), 1384 (s), 869 (s), 721 (s), 674 (s), 638 (w), 590 (w), 508 (m).

Elemental analysis (%) calcd for **K-Au₄Se₄:** K 11.34, Au 45.7%, Se 18.33, N 0.32, H 0.81; found: K 11.38, Au 44.7, Se:17.83, N 0.33, H 0.74.

3. X-ray crystallography

Data for the structure **K-Au₄Se₄** were collected at 100 K on a Bruker Kappa X8 APEX CCD single-crystal diffractometer equipped with a sealed Mo anode tube and graphite monochromator ($\lambda = 0.71073$ Å). The crystals were mounted in a Hampton cryoloop with light oil. The SHELX software package (Bruker) was used to solve and refine the structures.²Absorption corrections were applied empirically using the SADABS program.³The structures were solved by direct methods and refined by full-matrix least-squares minimization of ($\Sigma w(Fo - Fc)^2$) with anisotropic thermal parameters for all POM skeleton atoms (Au, Se, O)

and non-disordered K countercations. No H atoms were included in the model. The relative site occupancy factors for the disordered potassiums as well as oxygens of crystal waters were refined with isotropic approximation and then fixed at the obtained values. Additional crystallographic data are summarized in Table S1. Further details of the crystal structure investigation are available free of charge from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: (+49) 7247-808-666; e-mail: crysdata@fiz-karlsruhe.de), on quoting the depository number CSD- 424685.

Not unexpectedly, the number of crystal waters found by XRD was slightly lower than that detemined by elemental and thermogravimetric analyses on bulk material of **K-Au₄Se₄** (4.5 *vs* 6, respectively), which can be explained by disorder of the crystal waters in the lattice. We decided to use the formula obtained by elemental analysis throughout the paper and in the CIF file for overall consistency.

Empirical formula	$C_{1.2}H_{13.8}Au_4K_5N_{0.4}O_{24.4}Se_4$		
Formula weight, g/mol	1723.53		
Crystal system	Triclinic		
Space group	P-1		
A, Å	9.5617(11)		
<i>B</i> , Å	11.3604(12)		
<i>c</i> , Å	14.4557(17)		
<i>α</i> , °	89.867(7)		
β , °	73.275(8)		
γ, °	71.181(7)		
Volume, Å ³	1416.3(3)		
Ζ	2		
$D_{calc}, g/cm^3$	4.041		
Absorption coefficient	26.620		
F(000)	1532		
Crystal size, mm	0.06 x 0.11 x 0.13		
Theta range for data collection, $^{\circ}$	3.14 - 25.68		
Completeness to Θ_{max} , %	99.5		
Index ranges	$-11 \le h \le 11,$		
	$-13 \le k \le 13$,		
	-17 ≤ 1 ≤ 17		
Reflections collected	46328		
Independent reflections	5356		
R(int)	0.1061		
Observed (I > $2\sigma(I)$)	3909		
Absorption correction	Semi-empirical from equivalents		
T _{min} / T _{max}	0.1446 / 0.3027		
Data / restraints / parameters	5356 / 6 / 308		
Goodness-of-fit on F2	1.029		
R_{1} , ^[a] w R_{2} ^[b] (I > 2 σ (I))	$R_1 = 0.0473,$		
	$wR_2 = 0.1148$		
R_{1} , ^[a] w R_{2} ^[b] (all data)	$R_1 = 0.0731,$		
	$wR_2 = 0.1287$		
Largest diff. peak and hole, e. $Å^{-3}$	4.777 and -2.183		

Table S1. Crystal data and structural refinement for K-Au₄Se₄.

^[a] $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|$. ^[b] $wR_2 = [\sum w (F_0^2 - F_c^2)^2 / \sum w (F_0^2)^2]^{1/2}$

4. Bond valence sum calculations

Bond valence sum (BVS) calculations were performed on a program copyrighted by Chris Hormillosa & Sean Healy and distributed by I. D. Brown.⁴

The BVS values for different atoms in Au_4Se_4 are presented in Table S2. These values confirm oxidation states of +3 for gold and +4 for selenium and do not suggest protonation for any oxygen of the polyanion.

Au	BVS value	Se	BVS value
Au1	3.019	Se1	3.897
Au2	3.010	Se2	3.877
Au3	3.020	Se3	3.812
Au4	3.121	Se4	3.889
Terminal oxygens	BVS value	μ ₂ -Ο (Au-O-Au)	BVS value
O1S	1.545	O12	1.633
O2S	1.524	O23	1.633
O3S	1.537	O34	1.625
O4S	1.537	O14	1.616
μ ₂ -O (Au-O-Se)	BVS value	μ ₂ -O (Au–O–Se)	BVS value
O1S1	1.881	O3S3	1.797
O2S1	1.898	O4S3	1.899
O2S2	1.832	O4S4	1.930
O3S2	1.969	O1S4	1.871

Table S2. Bond valence sum values for different atoms in K-Au₄Se₄.

5. ${(H_2O)_6K_2[Au^{III}_4O_4(Se^{IV}O_3)_4]_2}^{6-}$ dimers

Fig. S1. Combined ball-and-stick / polyhedral (upper) and ball-and-stick (lower) representations of the dimeric assembly $\{(H_2O)_6K_2[Au^{III}_4O_4(Se^{IV}O_3)_4]_2\}^{6-}$ in the solid state. Color code: Au yellow, Se blue, O purple, K green, and $\{AuO_4\}$ purple squares. The Au···Au interactions are highlighted by black dotted lines.

6. NMR spectroscopy

Fig. S2. Room temperature ⁷⁷Se NMR spectra of **K-Au₄Se₄** redissolved in H_2O / D_2O at different time intervals. The downfield signal corresponds to **Au₄Se₄** and the upfield one to free selenite. The percentage of intact **Au₄Se₄** present with respect to total amount of Se in solution is also shown.

7. Thermogravimetric analysis for K-Au₄Se₄.

The thermogram of **K-Au₄Se₄** from room temperature to 1200 °C under N₂ atmosphere is shown in Fig. S3. The TGA curve of **K-Au₄Se₄** exhibits several weight loss steps. The first step begins at 25 °C and is completed at about 175 °C, which corresponds to the loss of 6 water molecules per formula unit K₄[Au₄Se₄O₁₆]·0.4KNO₃·0.6CH₃COOK·6H₂O (**K-Au₄Se₄**). The observed weight loss of 6.54% is in a good agreement with the calculated value of 6.27%. The weight loss in the temperature range of 200 - 310 °C could be assigned to the release of half an equivalent of SeO₂ per formula unit (3.642 % observed and 3.219% weight loss calculated). The other two consecutive weight loss steps covering the temperature range of 310 - 1190 °C are attributed to the decomposition of the remaining polyanion as well as acetate and nitrate ions. The total observed weight loss at 1190 °C is 49.2 %.

Fig. S3. Thermogram of $K-Au_4Se_4$ from room temperature to 1200 °C under N₂ atmosphere. The blue curve shows the derivative profile.

8. IR spectrum

Figure S4 shows the IR spectrum of **K-Au₄Se₄** in the range of 400 - 2100 cm⁻¹. The bands at 674, 638, and 507 cm⁻¹ could be assigned to the vibrations of Au-O-(Au) bonds, while the bands at 590 cm⁻¹ could be attributed to Au-O-(Se) vibrations. The bands at 868, 722 cm⁻¹ may arise from vibrations of the terminal and bridging Se-O bonds, respectively. The broad and strong band at 1638 cm⁻¹ is attributed to asymmetric vibrations of crystal waters as well as COO⁻ groups of acetate. The sharp and strong band at 1384 cm⁻¹ is due to vibrations of NO₃⁻ ions and COO⁻ groups of acetate.⁵

Fig. S4. IR spectrum of K-Au₄Se₄.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

9. Mass spectrometry studies

Positive ion mode K-Au₄Se₄

Fig. S5. Partial cation mass spectrum of **K-Au₄Se₄** comparing experimental (top panel) and calculated isotopomere pattern (bottom panel).

Fig. S6. Partial cation mass spectrum of K-Au₄Se₄.

Species	m/z, calc
$[Au_4Se_4O_{16}K_5 \cdot KNO_3]^+$	1657.22
$\left[Au_4Se_4O_{16}K_5 \cdot HNO_3 \cdot KNO_3\right]^+$	1720.22
$\left[Au_4Se_4O_{16}K_5 \cdot 2KNO_3\right]^+$	1758.17
$[Au_4Se_4O_{16}K_5 \cdot HNO_3 \cdot 2KNO_3]^+$	1821.17

 Table S3. Peak assignments for positive ion mode.

10. UV-vis absorption spectroscopy

Figure S7A features the UV-vis absorption spectrum of Au_4Se_4 redissolved in water (pH ~ 6). The spectrum exhibits a small peak at 429 nm (ε ca. 697 M⁻¹cm⁻¹) followed by a shoulder around 300 nm (ε ca. 8720 M⁻¹cm⁻¹) and an intense peak at 228 nm (ε ca. 23000 M⁻¹ cm⁻¹). Figure S7B shows, in superimposition, the spectrum in water of Au_4Se_4 and that of a classic Au^{III}-containing compound ([AuCl₄]⁻). Their patterns are unambiguously different, especially the well-defined characteristic absorption peak of [AuCl₄]⁻ (at 291 nm) corresponds to a shoulder (around 300 nm) for Au_4Se_4 . Similar observations are made for Au_4Se_4 in a pH 6.2 nitrate medium. In both media, Au_4Se_4 undergoes slow transformation as a function of time in agreement with NMR and MS results. However, in the nitrate medium, even with Au_4Se_4 concentration as low as 8.2 x 10⁻⁵ M, the decomposition is less than 2.6% after one hour. Thus, the time window during which Au_4Se_4 is stable in this medium is largely sufficient for its cyclic voltammetric characterisation.

Fig. S7. UV-vis absorption spectra recorded in water with a 0.1 cm optical path quartz cuvette: A) 4.3×10^{-4} M Au₄Se₄; B) superposition of the spectra of Au₄Se₄ and [AuCl₄]⁻.

11. Electrochemistry

We performed solution cyclic voltammetry (CV) of 8 x 10^{-4} M Au₄Se₄ in a pH 6.2 medium (0.4 M NaNO₃ + NaOH). The CV scan for Au₄Se₄ reduction at a bare glassy carbon electrode is characterized by a well-defined reduction wave (at +0.250 V vs. SCE) associated, on the reversal potential scan, with a crossover loop (Figure S8). These observations are attributed to the reduction of the Au^{III} centers within Au₄Se₄. The crossover loop signifies that the current keeps increasing during this backward scan. This CV features the characteristic fingerprint for film formation and growth on electrodes.⁶ Such observation is due to the larger overpotential necessary for gold nucleation on the bare glassy carbon compared to that of gold deposition on the gold film. An important positive peak potential shift of 0.350 V is observed for [AuCl₄]⁻ when compared to Au₄Se₄ in the same medium. In other words, the complexation of Au^{III} centers in Au₄Se₄ is stronger. The CVs reveal that no new species was detected at the time scale of CV characterization. This observation is in agreement with UV-vis spectroscopy results.

Fig. S8. Cyclic voltammograms (CV) of 8 x 10^{-4} M Au₄Se₄ in a pH 6.2 medium (0.4 M NaNO₃ + NaOH). The scan rate was 10 mV s⁻¹. A) First CV pattern on bare glassy carbon electrode (GC); B) CV run after deposition of a thin film of gold on the GC upon repeated cycling.

References

1. Keita, B.; Nadjo, L. J. Electroanal. Chem. 1988, 243, 87-103.

2. G. M. Sheldrick, Acta Crystallogr. 2007, A64, 112.

3. G. M. Sheldrick, SADABS, Program for empirical X-ray absorption correction,

Bruker-Nonius, 1990.

4. I. D. Brown, D. Altermatt, Acta Crystallogr. 1985, B41, 244-247.

5. (a) N. Gezer, M. Gülfen, A. O.Aydın, J. Appl. Polym. Sci., 2011, 1134; (b) M. Agostina Cinellu, G. Minghetti, M. V. Pinna, S. Stoccoro, A. Zucca, M. Manassero, *Chem. Commun.* 1998, 2397; (c) K. Nakamoto, *Infrared and Raman Spectra of Inorganic and Coordination Compounds- Part A: Theory and Applications in Inorganic Chemistry, 5th ed.*; Wiley and Sons, New York, 1997.

6. (a) N. V. Izarova, N. Vankova, T. Heine, R. N. Biboum, B. Keita, L. Nadjo, U. Kortz, *Angew. Chem. Int. Ed.*, 2010, 49, 1886-1889; (b) U. Lee, H. C. Joo, K. M. Park, S. S. Mal, U. Kortz, B. Keita, L. Nadjo, *Angew. Chem. Int. Ed.*, 2008, 47, 793-796.