Supplementary Information

Structural landscape of benzoic acid: using experimental crystal structures of fluorobenzoic acids as a probe

Ritesh Dubey, Mysore S. Pavan and Gautam R. Desiraju^{*} Solid State and Structural Chemistry Unit Indian Institute of Science, Bangalore 560 012, India

S-1: Data collection and refinement details, crystallization methods

TABLES

T-1: Normalized hydrogen bond distances

T-2: Crystallographic tables of the experimental structures

T-3: Computational details for the ESP charge calculation and polymorph prediction protocols

- For benzoic acid (COMPASS26)
- For 4-fluorobenzoic acid (DREIDING)

FIGURES

F-1: Experimental as well as computed structure overlay diagrams

F-2: Energy versus Density plot of top 100 predicted structures of 4-fluorobenzoic Acid **F-3:** ORTEP diagrams for the asymmetric unit of the crystal structures (ellipsoids are drawn at

50% probability)

S-1: Data collection and refinement details, crystallization methods

• Single crystal X-ray diffraction

Single crystal X-ray data for 24DFBA were collected on an Oxford Xcalibur (Mova) diffractometer¹ equipped with an EOS CCD detector using Mo-K α radiation (λ = 0.71073 Å). The crystal was maintained at the desired temperature during data collection using the Oxford Instruments Cryojet-HT controller². The remaining crystal data were collected on a Rigaku Mercury375R/M CCD (XtaLAB mini) diffractometer using graphite monochromated Mo-K α radiation, equipped with a Rigaku low temperature gas spray cooler, data were processed with the Rigaku CrystalClear software³. Structure solution and refinement were performed using SHELX-97⁴ embedded in the WinGX suite⁵ and Olex2.⁶ Refinement of coordinates and anisotropic thermal parameters of non-hydrogen atoms were carried out by the full-matrix least-squares method. The disorder was analyzed using the PART command in SHELXL-97 and the disordered fluorine were treated and refined with two independent positions, namely A and B. In all cases, except 345TFBA-I, hydrogen atoms were found in difference Fourier maps. In 345TFBA-I, the hydrogen atoms were refined by constraining to geometrical positions. The hydrogen bond tables were created using PLATON.⁷ Mercury version 3.0 was used for molecular representations, overlay and packing diagrams.⁸

- Oxford Diffraction. CrysAlis PRO CCD and CrysAlis PRO RED; Oxford Diffraction Ltd.: Yarnton, England, 2009.
- Oxford Instruments, Cryojet XL/HT controller; Oxford Diffraction Ltd.: Yarnton, England.
- 3. CrystalClear 2.0, Rigaku Corporation, Tokyo, Japan.
- 4. G. M. Sheldrick, ActaCrystallogr., Sect. A, 2008, 64, 112.
- 5. L. J. Farrugia, J. Appl. Crystallogr. 1999, 32, 837.
- 6. O. V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339.
- 7. A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7.
- C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, J. van de Streek, *J. Appl. Crystallogr.*, 2006, **39**, 453.

• Crystallization Methods

All compounds were purchased from Sigma-Aldrich and Alfa-Aesar, and were used without further purification.

All crystallization experiments were carried out at ambient conditions. In 24DFBA and 345TFBA (I), we applied melt crystallization through gradient heating and cooling via oil-bath and obtained good quality single crystals after two to three hours. In 34DFBA and 25DFBA, good quality single crystals were obtained by solvent evaporation using a mixture of hexanemethanol (1:1). Similarly good quality single crystals of 234TFBA were obtained from a mixture of benzene and methanol (1:1). Similar method gave good quality single crystals for (236TFBA and 345TFBA (II)), (245TFBA and 2345TeFBA) and (235TFBA and 24SS) in benzene, chloroform and methanol solvents respectively. In all cases of slow solvent evaporation, crystals were obtained within three to four days.

Compound	D-H····A [#]	r(D–H)/Å	r(D–A)/Å	r(H···A)/Å	∠ D–H····A/°	Symmetry
	O1–H1…O2	0.98	1.63	2.616(2)	177	2-x,-y,-z
24DFBA	С5-Н5…О2	1.08	2.45	3.400(3)	146	-1+x,1+y,z
	O2-H2…O1	0.9800	1.6500	2.6285(17)	172.00	1-x,1-y,1-z
25DFBA	C4-H4…O1	1.0800	2.4700	3.377(2)	141.00	-1+x,3/2-y,-1/2+z
34DFBA	01–H1…O2	0.9800	1.6500	2.619(2)	167.00	1-x,-y,-z
	01–H1…O2	0.9800	1.6600	2.636(2)	172.00	-x,1-y,1-z
2345TeFBA	O3–H3…O4	0.9800	1.6700	2.6531(18)	175.00	2-x,2-y,-z
	C13–H13…F6	1.0800	2.3300	3.255(2)	142.00	-1+x,1+y,z
245TFBA	O2-H2…O1	0.9800	1.6800	2.6577(16)	174.00	2-x,2-y,1-z
345TFBA(I)	O2-H2…O1	0.9800	1.6700	2.651(3)	176.00	1-x,2-y,-z
	O2–H2…O4	0.9800	1.6600	2.623(3)	166.00	1-x,-y,-z
234TFBA	C10-H10…F1	1.0800	2.4500	3.359(4)	141.00	-1+x,-1+y,z
	C10-H10-O2	1.0800	2.3200	3.319(4)	152.00	-1+x,-1+y,z
	O1–H1…O2	0.9800	1.6500	2.628(2)	172.00	-1-x,1-y,-z
2301FBA	C4–H4…O2	1.0800	2.3800	3.381(3)	153.00	-x,-1/2+y,1/2-z
	O1–H1…O2	0.9800	1.6800	2.656(3)	170.00	1-x,-y,2-z
2351FBA	C4–H4…F1A	1.0800	2.4300	3.287(3)	135.00	-1+x,1/2-y,-1/2+z
	O1–H1…O2	0.9800	1.6500	2.633(2)	175.00	-1-x,1-y,2-z
345TFBA(II)	O3–H3…O4	0.9800	1.6400	2.618(2)	177.00	2-x,-y,1-z
	C9–H9…F1	1.0800	2.3500	3.380(2)	158.00	1-x,1-y,1-z
24 S S	01–H1…O2	0.9800	1.6500	2.623(2)	167.00	3-x,1-y,-z
	C3–H3…F2	1.0800	2.4200	3.219(3)	129.00	1-x,1/2+y,1/2-z

T-1: Normalized hydrogen bond distances for the compounds in this study

С5-Н5…О1	1.0800	2.4000	3.379(3)	150.00	-1+x,y,z
С6-Н6…О2	1.0800	2.5000	3.474(3)	150.00	2-x,-y,-z

T-2: Crystallographic tables of the experimental structures

Compound	24DFBA	25DFBA	34DFBA	234TFBA	235TFBA	236TFBA
CCDC No.	881258	881259	881260	881261	881262	881263
Molecular formula	$C_7H_3F_2O_2$	$C_7H_3F_2O_2$	$C_7H_3F_2O_2$	$C_7H_3F_3O_2$	$C_7H_2F_3O_2$	$C_7H_2F_3O_2$
Formula weight	157.09	157.09	157.09	176.09	175.09	175.09
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	<i>P2</i> ₁ /c	<i>P2</i> ₁ /c	$P2_l/n$	<i>P2</i> ₁ /c	<i>P2</i> ₁ /c	<i>P2</i> ₁ /c
a (Å)	3.6912 (2)	3.6960(5)	5.5154(12)	5.112(5)	3.6704(9)	6.9301(11)
b (Å)	6.4038 (3)	14.768(2)	5.0528(11)	5.193(5)	15.516(4)	13.517(2)
c (Å)	26.3062 (15)	11.9174(16)	23.144(5)	24.39(2)	11.882(3)	7.0809(12)
α(°)	90	90	90	90	90	90
β (°)	92.908 (5)	93.025(7)	94.792(7)	95.477(11)	93.734(7)	94.132(7)
γ(°)	90	90	90	90	90	90
$V(\AA^3)$	621.02 (6)	649.58 (15)	642.7(2)	644.5(10)	675.2(3)	661.57(18)
Z,Z`	4,1	4,1	4,1	4,1	4,1	4,1
ρ calc (g/cm ³)	1.68	1.596	1.623	1.815	1.722	1.758
F(000)	316	312	316	352	348	348
μ (mm ⁻¹)	0.16	0.15	0.16	0.19	0.18	0.18
T (K)	120(2)	150(2)	150(2)	150(2)	150(2)	150(2)
λ (Å)	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
Refins. collected	3872	6701	6090	6117	6781	6431
Unique reflns.	1265	1487	1474	1496	1546	1512
Completeness (%)	99.8	99.9	99.9	99.3	99.8	99.9
R _{int}	0.025	0.027	0.041	0.056	0.059	0.045
$R_1(F^2)$	0.046	0.042	0.049	0.041	0.052	0.048
$wR_2(F^2)$	0.114	0.122	0.127	0.133	0.13	0.13
Goodness-of-fit	1.18	1.06	1.04	1.14	1.04	1.06
Resolution (20)	52	54	54	54	54	54

Compound	245TFBA	345TFBA(I)	345TFBA(II)	2345TeFBA	24SS
CCDC No.	881264	881265	881266	881267	881268
Molecular formula	$C_7H_3F_3O_2$	$C_7H_3F_3O_2$	$C_7H_2F_3O_2$	$C_7H_2F_4O_2$	$C_7H_4F_1O_2$
Formula weight	176.09	176.09	176.09	193.58	139.1
Crystal system	Monoclinic	Monoclinic	Triclinic	Triclinic	Monoclinic
Space group	$P2_l/c$	$P2_l/n$	PĪ	$P\overline{1}$	$P2_l/c$
a (Å)	7.1042(7)	5.1190(14)	6.5824(9)	4.7350(6)	5.0609(10)
b (Å)	7.1852(7)	6.4295(17)	8.3582(11)	5.9700(7)	5.3645(11)
c (Å)	12.8037(13)	20.343(6)	12.7456(17)	24.651(3)	22.703(5)
α (°)	90	90	105.719(7)	84.773(6)	90
β (°)	102.453(7)	95.574(7)	91.945(7)	87.020(6)	95.007(7)
γ (°)	90	90	98.065(7)	82.885(6)	90
V (Å ³)	638.19(11)	666.4(3)	666.42(16)	688.00(15)	614.0(2)
Z,Z`	4,1	4,1	2,2	2,2	4,1
pcalc (g/cm ³)	1.833	1.755	1.755	1.869	1.505
F(000)	352	352	352	382	284
μ. (mm ⁻¹)	0.19	0.18	0.18	0.21	0.13
T (K)	150(2)	150(2)	150(2)	150(2)	150(2)
λ (Å)	0.71073	0.71073	0.71073	0.71073	0.71073
Reflns. collected	6560	5694	7029	7297	5762
Unique reflns.	1466	1532	3058	3149	1408
Completeness (%)	99.9	99.5	99.8	99.8	99.9
R _{int}	0.022	0.082	0.024	0.024	0.041
$\mathbf{R_1}(\mathbf{F}^2)$	0.034	0.06	0.041	0.044	0.055
$wR_2(F^2)$	0.091	0.161	0.11	0.118	0.144
Goodness-of-fit	1.04	1.06	1.07	1.04	1.08
Resolution (20)	54	54	54	54	54

T-3: Computational details for ESP charge calculation and Polymorph prediction protocols

✤ Computational details for ESP charge calculation

DMol3 Run Status:

Task:	Property
Basis:	dnp
Atom Rcut:	3.700 Angstrom
Functional:	pbe
Harris:	off
Integration Grid:	fine
Occupation:	fermi
Pseudopotential:	none

• Summary of ESP fitting calculations: For BA (COMPASS26)

Number of points		:	54644
Total integration v	veig	ght:	22579.48
Spacing between		:	0.25 Ang
Sigma	:		0.1471E-02
RMS of V(exact)		:	0.1266E-01
RRMS fit	:		11.62 %

ESP-fitted charges :

Elem	chg	vdW(in)	vdW(ex)
Η	0.140	1.30	2.80
С	-0.099	2.00	3.50
Η	0.133	1.30	2.80
С	-0.209	2.00	3.50
Η	0.166	1.30	2.80
С	0.147	2.00	3.50
С	-0.209	2.00	3.50
Η	0.158	1.30	2.80
С	-0.088	2.00	3.50
Η	0.132	1.30	2.80
С	-0.150	2.00	3.50
С	0.474	2.00	3.50
0	-0.473	1.72	3.22
0	-0.545	1.72	3.22
Н	0.424	1.30	2.80
	Elem H C H C H C H C H C H C H C H C H C H	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{ccccccc} Elem & chg & vdW(in) \\ H & 0.140 & 1.30 \\ C & -0.099 & 2.00 \\ H & 0.133 & 1.30 \\ C & -0.209 & 2.00 \\ H & 0.166 & 1.30 \\ C & 0.147 & 2.00 \\ C & -0.209 & 2.00 \\ H & 0.158 & 1.30 \\ C & -0.209 & 2.00 \\ H & 0.158 & 1.30 \\ C & -0.088 & 2.00 \\ H & 0.132 & 1.30 \\ C & -0.150 & 2.00 \\ C & 0.474 & 2.00 \\ O & -0.473 & 1.72 \\ O & -0.545 & 1.72 \\ H & 0.424 & 1.30 \\ \end{array}$

• Summary of ESP fitting calculations: For 4FBA (DREIDING)

Number of points	:	64752
Total integration w	eight :	23528.34
Spacing between	:	0.25 Ang
Sigma	:	0.1382E-02
RMS of V(exact)	:	0.1151E-01
RRMS fit	:	12.01 %

ESP-fitted charges :

Elem F	chg	vdW(in)	udW(ay)
F		vu (iii)	vu w (ex)
1	-0.190	1.72	3.22
С	-0.248	2.00	3.50
Η	0.180	1.30	2.80
С	-0.158	2.00	3.50
Η	0.176	1.30	2.80
С	0.050	2.00	3.50
С	-0.156	2.00	3.50
Н	0.168	1.30	2.80
С	-0.238	2.00	3.50
Н	0.179	1.30	2.80
С	0.332	2.00	3.50
С	0.515	2.00	3.50
0	-0.482	1.72	3.22
0	-0.551	1.72	3.22
Η	0.424	1.30	2.80
	F C H C H C C H C C H C C O O H	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Computational details of Polymorph Prediction protocols

For BA (COMPASS26)

Mode	:	New calculation	
Protocol	:	<pre>Packing >> Clustering >> Geometry Optimization</pre>	>>
Clustering			
Version	:	5.0	
Build date	:	Oct 22 2009	
Host	:	GRDLAB-PC11	
Operating system	:	MSWin32	
Task started	:	Fri Apr 06 10:49:26 2012	
Packing para	۱Me	eters	

Search algorithm : MC Simulated Annealing

Maximum number of steps : 7000 Explore torsions : No Preoptimize structures : No Steps to accept before cooling : 12 Minimum move factor: 0.1000E-08Heating factor: 0.02500Maximum temperature: 100000.0 KMinimum temperature: 300.0 K ---- Cluster analysis parameters ----Cluster grouping : Forcefield type : 7.000 Cutoff Number of bins : 140 : 0.1300 Tolerance Maximum number of clusters : 2000 ---- Geometry optimization parameters ----Algorithm : Smart Convergence tolerance: : 0.0001 kcal/mol Energy Force : 0.005 kcal/mol/A : 0.005 GPa Stress Displacement : 5e-005 A Maximum number of iterations : 5000 External pressure : 0 GPa External pressure Motion groups rigid : NO Optimize cell : YES ---- Energy parameters ----: COMPASS26 Forcefield Electrostatic terms: : Ewald Summation method Accuracy : 0.0001 kcal/mol Buffer width : 0.5 A van der Waals terms: : Ewald Summation method . : 6 A : 0.5 A : 0.0001 kcal/mol Accuracy Repulsive cutoff Buffer width Calculation summary: Number of frames searched : 2000 Number of clusters found : 44 Number of frames put into a cluster : 2000 (100 %). Task terminated: Fri Apr 06 11:42:39 2012Total CPU time used: 53:08 minutes

Termination status : Normal

For 4FBA (DREIDING)

Mode	: New calculat	ion					
Protocol	: Packing >> Clustering >> Geometry Optimization >>						
Clustering							
Version	: 5.0						
Build date	: Oct 22 2009						
Host	: GRDLAB-PC11						
Operating system	: MSWin32						
Task started	: Tue Apr 17 2	1:57:06 2012					
Packing para	ameters						
Search algorithm	_	: MC Simulated Annealing					
Maximum number of	E steps	: 7000					
Explore torsions		: No					
Preoptimize struc	ctures	: NO					
Steps to accept a	before cooling	: 12					
Minimum move raci	lor	: U.IUUUE-U8					
Heating factor		: 0.02500					
Maximum temperati	lre	: 100000.0 K					
	ITE	. 500.0 K					
Cluster ana	lysis parameter	s					
Cluster grouping		: Forcefield type					
Cutoff		: 7.000					
Number of bins		: 140					
Tolerance		: 0.1300					
Maximum number of	f clusters	: 2000					
Geometry opt	cimization para	meters					
Algorithm		· Smart					
Convergence tole	rance.	· Smalt					
Energy		• 0.0001 kcal/mol					
Force		: 0.005 kcal/mol/A					
Stress		: 0.005 GPa					
Displacement		: 5e-005 A					
Maximum number of	f iterations	: 5000					
External pressure	2	: 0 GPa					

Motion groups rigid Optimize cell	: NO : YES
Energy parameters	
Forcefield	: Dreiding
Summation method Accuracy Buffer width	: Ewald : 0.0001 kcal/mol : 0.5 A
van der Waals terms: Summation method Accuracy Repulsive cutoff Buffer width	: Ewald : 0.0001 kcal/mol : 6 A : 0.5 A
Hydrogen bond terms: Summation method Truncation method Cutoff distance Spline width Buffer width	: Atom based : Cubic spline : 4.5 A : 0.5 A : 0.5 A
Calculation summary:	
Number of frames searched Number of clusters found Number of frames put into a	: 2000 : 52 cluster : 2000 (100 %).
Task terminated Total CPU time used	: Tue Apr 17 22:43:07 : 45:53 minutes
Termination status : Normal	

2012

F-1: Experimental as well as computed structure overlay diagrams

Overlay diagram of BA (exp) and 345TFBA (exp) blue: BA, red: 345TFBA

Overlay diagrams of (a) BA (exp) and 5th rank structure (b) BA (exp) and 23rd rank, blue: BA(exp), red: 5th and 23rd respectively

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Overlay diagram of 2FBA (6-4-25 structure) and 99th ranked BA. blue: BA red: 2FBA

Unit cell overlay diagram of 4FBA (4-6-26 structure) and 55th ranked BA. blue: BA red: 4FBA

Unit cell overlay diagram of 235TFBA (4-14-12 structure) and 56th ranked BA. blue: BA red: 235TFBA

Unit cell overlay diagram of BA (exp) and 2345TeFBA (exp). blue: BA red: 2345TeFBA

Overlay diagram of BA (exp) and 38th ranked 4FBA. blue: BA red: 4FBA

Unit cell overlay diagram of 2FBA (exp) and 29th ranked 4FBA. blue: 2FBA red: 29th ranked 4FBA

Overlay diagram of 4FBA (exp) and 9th ranked 4FBA. blue: 4FBA (exp) red: 9th ranked 4FBA

F-2: Energy density plot of top 100 predicted structures of 4-fluorobenzoic Acid

(To simplify the analysis, the CSP was restricted only to the space groups $P2_1/c$ and $P\overline{1}$)

DREIDING	
(5-5-22)	$3^{\rm rd}, 38^{\rm th}$
(6-4-25)	$29^{\text{th}}, 31^{\text{st}}$
(4-6-26)	$6^{\mathrm{th}}, 9^{\mathrm{th}}$

Ranking of different structure types in CSP of 4FBA

** (red colored ranks are experimental structures)

F-3: ORTEP diagrams for the asymmetric unit of the crystal structures (ellipsoids are drawn at 50% probability). Disordered structures are indicated with an asterix. Only the asymmetric unit is shown.

