-Electronic Supplementary Information-

First Magnets Based on Thiocyanato-Bridges

Maliheh Mousavi,^{a,b} Virginie Béreau,^{a,b,c}, Carine Duhayon,^{a,b} Philippe Guionneau,^d and Jean-Pascal Sutter^{a,b*}

^{*a*} CNRS ; LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, F-31077 Toulouse, France. *e*mail : <u>sutter@lcc-toulouse.fr</u>

^b Université de Toulouse ; UPS, INPT, LCC ; F-31077 Toulouse, France

^c IUT Paul Sabatier, Av. G. Pompidou, BP 20258, F-81104 Castres, France.

^d CNRS, Université de Bordeaux, ICMCB, 87 avenue du Dr A. Schweitzer, Pessac, F-33608, France

Table of Content

Table S1 Crystallographic and refinement data for 1.

Figure S1 Ortep view of the asymmetric unit in 1 showing all the disordered positions with ellipsoids cut at the 30% level. The atom labels are given for the two $\{Mo(NCS)_6\}$ units. The figure shows the two disordered positions for the L^{N4} ligands.

Figure S2 Ortep view of the asymmetric unit of 1 with ellipsoids cut at the 30% level. The atom labels and one of the two disordered positions are given for the three {NiL^{N4}} units. (H atoms have been omitted for clarity)

Figure S3 Ortep view of the asymmetric unit of **1** with ellipsoids cut at the 30% level. The atom labels and the second disordered positions are given for the three ${NiL^{N4}}$ units.

Table S2 Selected bond distances (Å) for 1

Table S3 Selected bond angles (°) for 1

Figure S4. Detail of the layer packing for compound **1**. Only the metal ions connected by NCS ligands are depicted. The shortest separations between metal ions from different layers are 8.30 Å for Ni2-Ni3(2-x, 1-y, 2-z) and 8.61 Å for Mo2-Mo2(2-x, 1-y, 2-z)

Figure S5. Powder X-ray diffraction pattern for 1 and 2.

Figure S6. IR spectra for 1 and 2.

Figure S7. *M* versus *H* behavior for 1 at 2 K.

Figure S8. *M* versus *H* hysteresis loops for 2.

Data collection and structure refinement

X-ray intensity data were collected with Mo- $K\alpha$ radiation (wavelength = 0.71073 Å) with a Bruker-AXS kappa APEX II Quazar diffractometer by using φ and ω scans and a 30-W air-cooled microfocus source with focusing multilayer optics at a temperature of 100 K. Multiscan absorption corrections were applied. The structure was solved using SUPERFLIP,¹ and refined by means of least-squares procedures on F using the programs of the PC version of CRYSTALS.² Atomic scattering factors were taken from the International tables for X-ray crystallography.³ Hydrogen atoms were refined with riding constraints. The data were refined as a two-component twin, (1 0 0, 0 1 0, 0 0 1) and (0 -0.5 -0.5, -1 -0.5 0.5, -1 0.5 -0.5), with twin element scale factors of 0.5170(12) and 0.4830(12). The three L^{N4} ligands were totally or partially disordered over two positions (occupancy ratio 0.5:0.5).

We used different types of restraints for the two disordered macrocyclic ligands bonded to Ni1 and Ni2 :

- geometrical restraints, using the command SAME: This commands permits to have equivalent geometries for the two disordered parts of the two ligands
- Restraints on anisotropic displacement parameters, using the commands SIMU and DELU. They take into account that atoms, which are bound to one another, move similarly, both in direction and amount.
- U(IJ) used to ensure that the vibration parameters of adjacent atoms are similar.

Empirical formula	C ₅₇ H ₆₆ Mo ₂ N ₂₄ Ni ₃ S ₁₂
Formula weight	1840.12
Temperature	100K
Wavelength	0.71073 Å
Crystal system	triclinic
Space group	P -1
Unit cell dimensions	$a = 12.5105(10) \text{ Å}$ $\alpha = 90.419(4)^{\circ}$
	b= 16.4003(13) Å $\beta = 94.755(4)^{\circ}$
	$c= 19.0260(15) \text{ Å}$ $\gamma = 108.682(4)^{\circ}$
Volume	3682.9(5) Å ³
Z	2
Density (calculated)	1.659
Absorption coefficient	1.480 mm^{-1}
F(000)	1872.00
Crystal size	$0.10 \ge 0.10 \ge 0.25 \text{ mm}^3$
Theta range for data collection	1.075 to 28.402°
Index ranges	-16<=h<=+16;-21<=h<=+18;-25<=h<=+25
Reflections collected	56578
Independent reflections	17765 (Rint = 0.061)
Absorption correction	Multi-scan
Refinement method	Least squares procedures on F
Data / restraints / parameters	10632 / 1039 / 1244
Goodness-of-fit on F	1.1302
Final R indices [I> 2σ]	R1 = 0.0666; wR2 = 0.0669
R indices (all data)	R1=0.1254; wR2=0.1120
Largest diff. peak and hole	-0.86 and +1.70 e. Å ⁻³

Table S1 Crystallographic and refinement data for 1

 $[\]begin{split} R &= \Sigma[//Fo/-/Fc/]/\Sigma[/Fo/] \\ wR2 &= (\Sigma[w(i)*D'(i)*D'(i]/\Sigma[w(i)*Fo(i)*Fo(i)])^{1/2} \\ D' &= Fo-Fc \end{split}$

¹ L. Palatinus, G. Chapuis, J. Appl. Cryst., 2007, 40, 786

² P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, J. Appl. Crystallogr., 2003, 36, 1487

³ International Tables for X-ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol. IV.

Figure S1 Ortep view of the asymmetric unit in 1 showing all the disordered positions with ellipsoids cut at the 30% level. The atom labels are given for the two $\{Mo(NCS)_6\}$ units. The figure shows the two disordered positions for the L^{N4} ligands (H atoms have been omitted for clarity)

Figure S2 Ortep view of the asymmetric unit of 1 with ellipsoids cut at the 30% level. The atom labels and one of the two disordered positions are given for the three ${NiL^{N4}}$ units (H atoms have been omitted for clarity).

Figure S3 Ortep view of the asymmetric unit of **1** with ellipsoids cut at the 30% level. The atom labels and the second disordered positions are given for the three $\{NiL^{N4}\}$ units (H atoms have been omitted for clarity).

Mo1	N1	2.124(7)Å	Mo1	N2	2.093(8)Å
Mol	N3	2.081(8)Å	Mo1	N4	2.101(7)Å
Mo1	N5	2.068(7)Å	Mo1	N6	2.094(7)Å
Mo2	N7	2.125(8)Å	Mo2	N8	2.113(8)Å
Mo2	N9	2.078(7)Å	Mo2	N10	2.066(8)Å
Mo2	N11	2.098(7)Å	Mo2	N12	2.093(8)Å
Ni1	S1	2.593(2)Å	Ni1	S4 1_455	2.531(3)Å
Ni1	N15	2.005(17)Å	Ni1	N150	2.024(17)Å
Ni1	N14	2.017(8)Å	Ni1	N140	2.055(8)Å
Ni1	N130	1.923(9)Å	Ni1	N13	1.910(8)Å
Ni1	N160	2.000(8)Å	Ni1	N16	2.054(8)Å
Ni2	S2	2.574(3)Å	Ni2	S7	2.591(3)Å
Ni2	N18	2.117(7)Å	Ni2	N180	1.988(7)Å
Ni2	N170	1.880(8)Å	Ni2	N17	1.957(7)Å
Ni2	N200	2.081(8)Å	Ni2	N20	1.980(8)Å
Ni2	N19	1.870(10)Å	Ni2	N190	2.129(13)Å

Table S2	Selected	Bond	distances	(Å) for 1

_

_	_				
Ni3	S8	2.887(3)Å	Ni3	N21	1.829(7)Å
Ni3	N22	1.947(7)Å	Ni3	N23	1.938(8)Å
Ni3	N24	1.934(7)Å	Ni3	S8	2.887(3)Å
C1	N1	1.155(11)Å	C1	S1	1.642(9)Å
C2	N2	1.162(12)Å	C2	S2	1.640(10)Å
C3	N3	1.174(11)Å	C3	S3	1.600(8)Å
C4	N4	1.166(11)Å	C4	S4	1.646(9)Å
C5	N5	1.177(10)Å	C5	S5	1.621(8)Å
C6	N6	1.195(10)Å	C6	S6	1.607(7)Å
C7	N7	1.148(12)Å	C7	S7	1.646(9)Å
C8	N8	1.194(12)Å	C8	S8	1.627(9)Å
C9	N9	1.166(11)Å	C9	S9	1.618(9)Å
C10	N10	1.168(12)Å	C10	S10	1.629(10)Å
C11	N11	1.150(11)Å	C11	S11	1.632(10)Å
C12	N12	1.163(12)Å	C12	S12	1.605(10)Å

Table S3 Selected Bond Angles (°) for 1

N1	Mo1	N2	91.5(2)°	N1	Mo1	N3	89.6(3)°	N150	Ni1	N160	100.0(4)°	N14	Ni1	N160	169.0(4)°
N2	Mo1	N3	178.8(3)°	N1	Mo1	N4	179.4(3)°	S1	Ni1	N16	86.5(7)°	S4 1_455	Ni1	N16	93.8(7)°
N2	Mo1	N4	88.7(3)°	N3	Mo1	N4	90.1(3)°	N15	Ni1	N16	97 7(4)°	N150	Ni1	N16	108 3(3)°
N1	Mo1	N5	87.9(3)°	N2	Mo1	N5	89.5(3)°		2111				211	21120	70.0(2)0
N3	Mo1	N5	90.4(3)°	N4	Mo1	N5	91.6(3)°	N14	NII	N16	160.8(4)°	N140	NII	N130	/9.0(3)°
N1	Mo1	N6	91.4(2)°	 N2	Mo1	N6	90.7(3)°	N140	Nil	N13	71.4(4)°	N130	Nil	N13	7.7(4)°
	N 1		00.4(2)0				00.1(2)0	N140	Ni1	N160	160.1(4)°	N130	Ni1	N160	81.1(3)°
IN 3	MOT	INO	89.4(3)*	IN4	MOT	INO	89.1(3)	N13	Ni1	N160	88.7(3)°	N140	Ni1	N16	151.7(3)°
N5	Mo1	N6	179.3(3)°	N7	Mo2	N8	177.9(3)°	N130	Ni1	N16	72.7(4)°	N13	Ni1	N16	80.3(3)°
N7	Mo2	N9	88.5(3)°	N8	Mo2	N9	91.5(3)°	N160	Ni1	N16	8 5(4)°	<u> </u> <u>82</u>	Ni2		169 68(9)°
N7	Mo2	N10	87.9(3)°	N8	Mo2	N10	90.0(3)°	60	21.0				21.0		
N9	Mo2	N10	88.6(3)°	N7	Mo2	N11	88.9(3)°	82	N12	N18	83.8(6)	87	N12	N18	85.9(6)°
N8	Mo2	N11	91 1(3)°		Mo2	N11	177 3(3)°	S2	Ni2	N180	85.8(6)°	S7	Ni2	N180	84.0(6)°
	102)1.1(5)		102			N18	Ni2	N180	10.7(4)°	S2	Ni2	N170	89.2(9)°
N10	Mo2	N11	92.0(3)°	N7	Mo2	N12	92.3(3)°	S 7	Ni2	N170	87.5(8)°	N18	Ni2	N170	70.8(4)°
N8	Mo2	N12	89.8(3)°	N9	Mo2	N12	90.8(3)°	N180	Ni2	N170	81.4(3)°	<u> </u> <u>82</u>	Ni2	N17	89.0(0)°
N10	Mo2	N12	179.4(3)°	N11	Mo2	N12	88.5(3)°	07	NEO	NI17	88.8(0)8	N110	N:2	N117	77.0(2)9
S 1	Nil	S4	176 46(1)9	S1	NG	N15	00.0(6)°	57	INIZ	INT /	88.8(9)		IN12	IN I /	//.0(3)*
51		1_455	170.40(1)	31		INIS	90.0(0)	N180	Ni2	N17	87.6(3)°	N170	Ni2	N17	6.2(4)°
S4	Ni1	N15	93.4(5)°	S1	Ni1	N150	91.6(5)°	S2	Ni2	N200	95.8(8)°	S7	Ni2	N200	93.3(8)°
1_455								N18	Ni2	N200	151.0(3)°	N180	Ni2	N200	161.4(4)°
S4 1_455	Ni1	N150	91.6(5)°	N15	Ni1	N150	10.7(4)°	N170	Ni2	N200	80.1(3)°	S2	Ni2	N20	95.6(9)°
S1	Ni1	N14	93.4(7)°	S4	Ni1	N14	85.1(8)°	S 7	Ni2	N20	94.0(9)°	N18	Ni2	N20	157.6(4)°
N117	N1.1		101 ((4)0		NT 1	N14		N180	Ni2	N20	168.0(4)°	N170	Ni2	N20	86.7(4)°
IN15	INII	IN 14	101.0(4)	IN150		IN 14	90.9(4)	S2	Ni2	N19	91.5(6)°	S7	Ni2	N19	90.8(6)°
S1	Ni1	N140	91.3(7)°	S4 1_455	Ni1	N140	86.7(7)°	N18	Ni2	N19	98.9(4)°	N180	Ni2	N19	88.3(4)°
N15	Ni1	N140	110.6(4)°	N150	Nil	N140	100 4(4)°	2170		NIO	160 4(4)0		N.O.	N100	
								N170	N12	N19	169.4(4)*	52	IN12	N190	88.0(5)*
N14	N11	N140	9.3(4)°	S1	N11	N130	84.4(8)	S7	Ni2	N190	95.4(5)°	N2	C2	S2	176.6(8)°
S4 1_455	Ni1	N130	92.4(8)°	N15	Ni1	N130	169.0(5)°	N22	Ni3	N24	164.6(3)°	N4	C4	S4	176.1(8)°
N150	Ni1	N130	175.8(9)°	N14	Ni1	N130	88.2(4)°	N21	Ni3	S 8	88.6(2)°	N6	C6	S 6	178.4(8)°
				 				N23	Ni3	S8	92.4(3)°	N8	C8	S 8	177.1(8)°
S1	Ni1	N13	85.9(8)°	1_455	Ni1	N13	90.7(8)°	N1	C1	S1	178.9(8)°	N10	C10	S10	176.8(9)°
N15	Ni1	N13	175.5(9)°	N150	Ni1	N13	170.9(5)°	N11	C11	S11	178.8(9)°				
N14	Ni1	N13	80.6(3)°	S1	Ni1	N160	88.1(8)°	I	1		I		1		1

Figure S4. Detail of the layer packing for compound **1**. Only the metal ions connected by NCS ligands are depicted. The shortest separations between metal ions from different layers are 8.30 Å for Ni2-Ni3(2-*x*, 1-*y*, 2-*z*) and 8.61 Å for Mo2-Mo2(2-*x*, 1-*y*, 2-*z*)

Figure S5. Powder X-ray diffraction pattern for 1 and 2. Experimental diffractograms of 1 (red) and 2 (blue), and simulated powder pattern from structure data of 1 (black).

Figure S6. IR spectra for 1 and 2.

wavenumber / cm⁻¹

FT-IR (ATR) main bands, v (cm⁻¹):

1: 3179 (w), 3030 (w), 2914 (w), 2106 (w), 2042 (s), 1574 (m), 1419 (m), 1359 (m), 1312 (w), 1274 (m), 1263 (m), 1210 (m), 1149 (w), 1095 (w), 1056 (m), 1044 (m), 945 (m), 908 (m), 823 (m), 804 (m), 749 (w), 739 (m), 641 (w).

2: 3162 (w), 3036 (w), 2912 (w), 2107 (w), 2050 (s), 1576 (m), 1460 (w), 1426 (m), 1357 (m), 1307 (w), 1274 (m), 1260 (w), 1142 (w), 1092 (w), 1060 (m), 936 (m), 909 (m), 815 (m), 751 (m).

Figure S8. *M* versus *H* hysteresis loops for 2.

