Supplementary Information

Synthesis of electron-poor hexa-perihexabenzocoronene

David J. Jones, Balaji Purushothaman, Shaomin Ji, Andrew B. Holmes and Wallace W. H. Wong

School of Chemistry, Bio21 Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia.

Contents

Experimental Procedures	p. 2-12
NMR spectra	p. 13-23
MALDI-MS	p. 24
Thermal properties (TGA, DSC)	p. 25
UV-Vis/PL spectroscopy	p. 26-27
Cyclic voltammogram	p. 28
DFT calculations and energy level diagram	p. 29-30
References	p. 31

Experimental Procedures

All reactions were performed using anhydrous solvent under an inert atmosphere unless stated otherwise. Silica gel (Merck 9385 Kieselgel 60) was used for flash chromatography. Thin layer chromatography was performed on Merck Kieselgel 60 silica gel on glass (0.25 mm thick). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy were carried out using either the Varian Inova-400 (400 MHz) or the Varian Inova-500 (500 MHz). Electrospray (ESI) high resolution mass spectra (HRMS) were recorded with a Thermo-Finnigan 7T LTQ-FTMS spectrometer and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra were recorded on a Bruker Reflex 2 (DCTB as matrix). IR spectra were obtained on a Perkin Elmer Spectrum One FT-IR spectrometer while UV-vis spectra were recorded using a Cary 50 UV-vis spectrometer. Photoluminescence was measured with a Varian Cary Eclipse fluorimeter. Melting points were determined on a Büchi 510 melting point apparatus. Elemental analyses were obtained commercially through Chemical \& Analytical Services Pty. Ltd. (Australia) an Exeter Analytical CE-440 elemental analyzer. Thermal gravimetric analysis (TGA) experiments were carried out with a Mettler Toledo TGA/SDTA851e and differential scanning calorimetry (DSC) experiments were performed on a Perkin-Elmer Sapphire DSC. Electrochemical measurements were recorded on a Solartron 1287A Potentiostat/Galvanostat. Diphenylacetylene 6a and benzil 11a are commercially available and compounds $\mathbf{6 b},{ }^{1} \mathbf{6 c},{ }^{1} \mathbf{7 a},{ }^{2} \mathbf{8 a},{ }^{2}$ and $\mathbf{1 2}^{3}$ have been reported in the literature. Compound 10a has also been reported previously by our group obtained via a different synthetic route. ${ }^{4}$

Scheme S1. Synthesis of electron-poor hexa-peri-hexabenzocoronenes.

b)

11a, $R_{1}=R_{2}=H$
11c, $R_{1}=\mathrm{CF}_{3}, \mathrm{R}_{2}=\mathrm{H}$
11d, $R_{1}=H, R_{2}=F$
Ethylene glycol
$\mathrm{Et}_{4} \mathrm{NOH}$ (aq.)

7a, $R_{1}=R_{2}=H, 90 \%$.
7b, $R_{1}=F, R_{2}=H, 69 \%$.
7c, $\mathrm{R}_{1}=\mathrm{CF}_{3}, \mathrm{R}_{2}=\mathrm{H}, 74 \%$.
$7 \mathrm{~d}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{F}, 69 \%$.

Scheme S2. a) Synthesis of dione 11b-d and b) synthesis of cyclopentadienone 7a-d.

2,11-Dibromohexabenzo[bc,ef,hi,kl,no,qr]coronene 3

Intramolecular oxidative cyclodehydrogenation of 4-bromo-4'-(4-bromophenyl)-3',5',6'-triphenyl-1, 1':2', 1"-terphenyl 8a under various conditions

Method	Oxidant (6 eq.)	Acid (6 eq.)	Solvent $(30 \mathrm{~mL})$	Yield $\%$
A	FeCl_{3}	-	$\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL}) / \mathrm{MeNO}_{2}(5 \mathrm{~mL})$	3
B	FeCl_{3}	$\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL}) / \mathrm{MeNO}_{2}(5 \mathrm{~mL})$	49
C	DDQ	$\mathrm{CF}_{3} \mathrm{COOH}_{3} \mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$	0	
D	DDQ	$\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$	0
E	DDQ	$\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$	94

General procedure for Method A and B

To oven dried 100 mL round bottom flask cooled under nitrogen was added 4-bromo-4'-(4-bromophenyl)-3',5',6'-triphenyl-1, $1^{\prime}: 2^{\prime}, 1$ "-terphenyl $\mathbf{8 a}(250 \mathrm{mg}, 0.36 \mathrm{mmol})$ and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(25 \mathrm{~mL}) . \mathrm{FeCl}_{3}(352 \mathrm{mg}, 2.16 \mathrm{mmol})$ dissolved in dry nitromethane (5 mL) was added dropwise to the stirring mixture under nitrogen flow and allowed to stir for 2 hr . For method B , $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(0.2 \mathrm{~mL}, 2.16 \mathrm{mmol})$ was added after the addition of FeCl_{3}. For method A the reaction mixture was poured into methanol and the precipitate were filtered and washed with methanol. For method B the reaction was quenched with saturated potassium carbonate solution and the solvent was removed under reduced pressure. The solids were filtered and washed with $\mathrm{HCl}(10 \%$ aq. $)$ followed by methanol to give the crude solid. Soluble starting material and by-products were removed by washing with chloroform.

General procedure for Method $C, D \& E$
To oven dried 100 ml round bottom flask cooled under nitrogen was added 4-bromo-4'-(4-bromophenyl)-3',5',6'-triphenyl-1,1':2',1"-terphenyl 8a ($250 \mathrm{mg}, 0.36 \mathrm{mmol}$), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ, $492 \mathrm{mg}, 2.16 \mathrm{mmol}$) and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. Acid (2.16 mmol) was added to the reaction mixture and allowed to stir for 2 hr under nitrogen atmosphere. The reaction mixture was quenched with saturated potassium carbonate solution and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed under reduced pressure. The solids were filtered and washed with
water followed by methanol to give the crude solid. Soluble starting material and byproducts were removed by washing with chloroform.

Procedure for HBC 3 in multi-gram scale

To a slurry of 4-bromo-4'-(4-bromophenyl)-3',5',6'-triphenyl-1,1':2',1"-terphenyl 8a (15.0 g, $21.66 \mathrm{mmol})$ and $\operatorname{DDQ}(28.6 \mathrm{~g}, 130 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(750 \mathrm{~mL})$ under nitrogen at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(11.4 \mathrm{~mL}, 19.5 \mathrm{~g}, 130 \mathrm{mmol})$. The dark slurry was stirred for 3 hours then the reaction mixture poured into saturated $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed under vacuum. The yellow insoluble product was collected by gravity filtration. The product was washed with $\mathrm{H}_{2} \mathrm{O}$, MeOH until the wash was colourless then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried under air, then vacuum to give a crude product. Yield $13.14 \mathrm{~g}(91.3 \%)$. The solubility of the product was too low for NMR spectroscopy.

DSC: $\mathrm{T}_{\mathrm{m}}=393{ }^{\circ} \mathrm{C}$. FT-IR (neat, cm^{-1}): $1575,1354,1022,844,813$. MALDI-MS (m / z): M^{+} 680.0. Elemental analysis: calcd. for $\mathrm{C}_{42} \mathrm{H}_{16} \mathrm{Br}_{2}, \mathrm{C} 74.14, \mathrm{H} 2.37, \mathrm{Br} 23.49$; found, C 63.79, H 2.09. There is a large discrepency between the calculated and measured elemental composition which may be a result of incomplete material combustion in the experiment.

2,5-Bis(9,9-dioctyl-9H-fluoren-2-yl)hexabenzo[bc,ef,hi,kl,no,qr]coronene 10a

Dibromo-HBC 3 ($4.59 \mathrm{~g}, 7.29 \mathrm{mmol}$) and 9,9-dioctylfluorene-2-boronic acid pinacol ester ($7.53 \mathrm{~g}, 14.57 \mathrm{mmol}$) was dispersed in toluene (100 mL) and thoroughly degassed by bubbling with nitrogen gas. Degassed solution of $\mathrm{Et}_{4} \mathrm{NOH}(20 \mathrm{~mL}, 1 \mathrm{M})$ and tetrakis(triphenylphosphine)palladium $(0)(840 \mathrm{mg}, 0.729 \mathrm{mmol})$ was added and the reaction was heated at $90{ }^{\circ} \mathrm{C}$ for 14 h under N_{2}. The reaction was cooled, filtered through celite and the product extracted with toluene (100 mL). The toluene solution was dried with MgSO_{4} and filtered through a plug of silica. The volume of the resulting yellow solution was reduced under vacuum and the product was precipitated with MeOH . A yellow solid ($8.47 \mathrm{~g}, 89 \%$ yield) was obtained after filtration and drying under vacuum.

TGA, $\mathrm{T}_{\text {decomp }}(5 \%$ mass loss $)=409^{\circ} \mathrm{C}$. DSC, $\mathrm{T}_{\mathrm{g}}=125^{\circ} \mathrm{C}$. UV-vis: $\lambda_{\text {max }}$ chloroform solution $\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)=365 \mathrm{~nm}\left(1.8 \times 10^{5}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, 6.25 \mathrm{mM}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}, \delta\right): 0.82(\mathrm{t}$, $J=7 \mathrm{~Hz}, 12 \mathrm{H},-\mathrm{CH}_{3}$), 1.01 (br, 4H, $-\mathrm{CH}_{2}$), 1.15 (br, 4H, $-\mathrm{CH}_{2}-$), 1.24 (br, $40 \mathrm{H},-\mathrm{CH}_{2}-$), 2.40 ($\mathrm{m}, 8 \mathrm{H},-\mathrm{CH}_{2}-$), 7.31 (t, $\left.J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{HBC}-\mathrm{H}\right), 7.42(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{HBC}-\mathrm{H}), 7.55(\mathrm{~m}, 6 \mathrm{H}$, fluorene-H), 7.76 (d, $J=7 \mathrm{~Hz}, 2 \mathrm{H}$, fluorene-H), $7.94(\mathrm{~m}, 8 \mathrm{H}$, fluorene-H and HBC-H), 8.06 (d, $J=8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{HBC}-\mathrm{H}), 8.12$ (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{HBC}-\mathrm{H}), 8.15$ (s, 2H, HBC-H), 8.31 (s, 2H,

HBC-H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 75 \mathrm{mM}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}, \delta$): $151.4,151.1,141.2,140.6,140.3$, $136.3,128.3$ (2), 128.2, 128.1, 126.5, 124.4, 123.1, 122.8, 122.0, 121.4, 120.2, 120.0 (3), 119.8 (2), 118.4, 118.1, 118.0, 117.6, 55.4, 40.9, 31.9, 30.4, 29.6, 29.5, 24.4, 22.7, 14.2. FTIR (neat, cm^{-1}): $3059,2953,2924,2851,1610,1584,1455,1373,1366,1083,1022,866,826$, 781, 740, 684. MS-MALDI $(\mathrm{m} / \mathrm{z}): \mathrm{M}^{+}$1298.68. Elemental analysis: calcd. for $\mathrm{C}_{100} \mathrm{H}_{98}, \mathrm{C}$ 92.4, H 7.6; found C 92.4, H 7.6. The characterization data is identical to a previous report for compound 10a obtained via a different synthetic route. ${ }^{4}$

1,2-Bis(4-fluorophenyl)ethane-1,2-dione 11b

1,2-Bis(4-fluorophenyl)acetylene $\mathbf{6 b}(2.14 \mathrm{~g}, 10 \mathrm{mmol})$ and iodine ($1.3 \mathrm{~g}, 5 \mathrm{mmol}$) were dissolved in DMSO (10 mL). The reaction was heated to $155{ }^{\circ} \mathrm{C}$ for 14 h under N_{2} and cooled to room temperature. The reaction was poured into an aqueous solution of sodium thiosulfate $(50 \mathrm{~mL}, 1 \mathrm{M})$ and the resulting precipitated was collected and washed with water $(100 \mathrm{~mL})$. The solid was dissolved in dichloromethane $(50 \mathrm{~mL})$ and washed with water (50 $\mathrm{mL})$. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, dichloromethane/petroleum spirits $40-60^{\circ} \mathrm{C} 1: 1, \mathrm{R}_{\mathrm{f}}=0.3$) and a yellow crystalline solid (2 g , 81\% yield) was obtained.
m.p. $122{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}, \delta$): 7.18-7.21 (td, $4 \mathrm{H}, \mathrm{Ar}$), 8.01-8.04 (td, $4 \mathrm{H}, \mathrm{Ar}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}, \delta$): 116.3, 116.6, 129.4, 132.8, 132.9, 165.0, 168.8, 192.2. FT-IR (neat, $\left.\mathrm{cm}^{-1}\right): 1665(\mathrm{C}=\mathrm{O}), 1598,1506,1228,1156,886,843$. HRMSESI (m / z), calcd. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2}: \mathrm{M}+\mathrm{Ag}^{+} 352.95378$, found 352.95380. The characterization data is identical to a previous report for compound 11b obtained via a different synthetic route. ${ }^{5}$

Cyclopentadienone 7b

1,2-Bis(4-fluorophenyl)ethane-1,2-dione 11b ($0.5 \mathrm{~g}, 2 \mathrm{mmol}$), diphenylacetone $\mathbf{1 2}$ ($0.75 \mathrm{~g}, 2$ $\mathrm{mmol})$ and ethylene glycol (2 mL) were placed in a Schlenk tube $(25 \mathrm{~mL})$. The mixture was heated to $140{ }^{\circ} \mathrm{C}$ and $\mathrm{Et}_{4} \mathrm{NOH}(0.1 \mathrm{~mL}, 1 \mathrm{M}$ aq.) was added. The reaction was stirred at $140{ }^{\circ} \mathrm{C}$ for 1 h and allowed to cool to room temperature. Methanol $(10 \mathrm{~mL})$ was added and the resulting precipitate was collected and washed with methanol (50 mL). A purple solid ($0.8 \mathrm{~g}, 69 \%$ yield) was obtained after drying under vacuum.

DSC: $\mathrm{T}_{\mathrm{m}}=286{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}, \delta$): 6.89 (td, $4 \mathrm{H}, \mathrm{Ar}$), 6.94 (td, 4 H , Ar), 7.07 (d, $J 7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}$), 7.39 (d, $J 7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}$) ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}, \delta$):
$115.59,115.76,122.24,124.61,128.30,128.32,129.13,131.17,131.48,131.55,131.61$, 153.47, 161.87, 163.86, 199.01. FT-IR (neat, cm^{-1}): 1712 ($\mathrm{C}=\mathrm{O}$), 1601, 1505, 1487, 1235, 1159, 1072, 1010, 850, 761. HRMS-ESI (m / z), calcd. for $\mathrm{C}_{29} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~F}_{2} \mathrm{O}: \mathrm{M}+\mathrm{Ag}^{+}$684.85609, found 684.85657 .

Hexaphenylbenzene 8b

Cyclopentadienone 7b ($0.578 \mathrm{~g}, 1 \mathrm{mmol}$) and 1,2-bis(4-fluorophenyl)acetylene $\mathbf{6 b}(0.214 \mathrm{~g}, 1$ $\mathrm{mmol})$ and diphenyl ether $(0.5 \mathrm{~mL})$ were placed in a Schlenk tube $(10 \mathrm{~mL})$. The reaction was heated to $250^{\circ} \mathrm{C}$ for 2 h or until the purple colour of the cyclopentadienone disappeared. The reaction was cooled to room temperature and the solid was dispersed in methanol (10 mL). A colourless crystalline solid ($0.5 \mathrm{~g}, 65 \%$ yield) was obtained after filtration and drying under vacuum.

DSC: $\mathrm{T}_{\mathrm{m}}=282{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}, \delta$): $6.61(\mathrm{~d}, J 8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 6.65$ (td, $8 \mathrm{H}, \mathrm{Ar}$), 6.72 (td, $8 \mathrm{H}, \mathrm{Ar}$), 7.04 (d, J $8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$, $\delta): 110.00,114.11,114.27,119.96,130.24,132.46,132.53,132.63,135.67,138.92,139.79$, 159.84, 161.80. FT-IR (neat, cm^{-1}): 1510, 1222, 1161, 1013, 815, 758. HRMS-ESI $(\mathrm{m} / \mathrm{z})$, calcd. for $\mathrm{C}_{42} \mathrm{H}_{24} \mathrm{Br}_{2} \mathrm{~F}_{4}$: $\mathrm{M}+\mathrm{Ag}^{+} 870.92059$, found 870.92133 .

HBC 9b

Hexaphenylbenzene $\mathbf{8 b}(1 \mathrm{~g}, 1.3 \mathrm{mmol})$ was dissolved in dichloromethane (100 mL) and cooled to $0{ }^{\circ} \mathrm{C}$. DDQ ($2 \mathrm{~g}, 8.8 \mathrm{mmol}$) was added followed by trifluoromethanesulfonic acid $(2.7 \mathrm{~g}, 18 \mathrm{mmol})$. The reaction was stirred at $25^{\circ} \mathrm{C}$ for 14 h under N_{2} and was then quenched by the addition of methanol (200 mL). The resulting precipitate was collected by filtration and washed with methanol (100 mL). A yellow solid ($0.8 \mathrm{~g}, 82 \%$ yield) was obtained after drying under vacuum. The solubility of the product was too low in common organic solvents. As a result, NMR spectrum was not recorded.

DSC: no thermal transitions detected up to $500{ }^{\circ} \mathrm{C}$. FT-IR (neat, cm^{-1}): 1608, 1583, 1416, $1369,1158,1009,920,852$. MALDI-TOF MS $(\mathrm{m} / \mathrm{z})$: $\mathrm{M}^{+} 752.0$. Elemental analysis: calcd. for $\mathrm{C}_{42} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~F}_{4}, \mathrm{C} 67.05$, H 1.61; found C 67.09, H 1.76.

Fluorenyl HBC 10b

HBC 9b ($150 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 9,9-dioctylfluorene-2-boronic acid pinacol ester (250 mg , $0.5 \mathrm{mmol})$ was dissolved in toluene $(20 \mathrm{~mL})$ and thoroughly degassed by bubbling with
nitrogen gas. Degassed solution of $\mathrm{Et}_{4} \mathrm{NOH}(5 \mathrm{~mL}, 1 \mathrm{M}$ aq.) and tetrakis(triphenylphosphine)palladium(0) ($12 \mathrm{mg}, 5 \mathrm{~mol} \%$) was added and the reaction was heated at $90{ }^{\circ} \mathrm{C}$ for 14 h under N_{2}. The reaction was cooled and the product extracted with toluene (20 mL). The toluene solution was dried with MgSO_{4} and filtered through a plug of silica. The volume of the resulting yellow solution was reduced under vacuum and the product was precipitated with MeOH . A yellow solid ($250 \mathrm{mg}, 91 \%$ yield) was obtained after filtration and drying under vacuum.

TGA, $\mathrm{T}_{\text {decomp }}\left(5 \%\right.$ mass loss) $=404{ }^{\circ} \mathrm{C}$. DSC, No thermal transitions in the measured temperature range $\left(25^{\circ} \mathrm{C}-350{ }^{\circ} \mathrm{C}\right)$. UV-vis: $\lambda_{\max }$ chloroform solution $\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)=364 \mathrm{~nm}$ $\left(9.4 \times 10^{4}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 60 \mathrm{mM}, 20^{\circ} \mathrm{C}, \delta$): 0.71 (br, 20H, $-\mathrm{CH}_{2}-$ and CH_{3}), 0.9-1.2 (br m, 40H, -CH2-), 1.95 (m, 8H, -CH ${ }_{2}$), 5.83-7.08 (br, ArH), 7.33 (br, ArH), 7.55 (br, ArH). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 60 \mathrm{mM}, 20^{\circ} \mathrm{C}, \delta$): 14.03, 22.52, 23.87, 23.90, 23.92, 29.01, 29.09, 29.70, 29.71, 29.79, 31.64, 39.92, 55.16, 105.92 (br), 114.25 (br), 118.23 (br), 119.80 (br), 120.68 (br), 122.96 (br), 126.07 (br), 128.93 (br), 138.60 (br), 140.53 (br), 151.08 (br), 151.65 (br), 158.05 (br), 160.24 (br). Both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR showed broadened resonances in chloroform solution independent of concentration. This is indicative of strong aggregation behavior in solution. FT-IR (neat, cm^{-1}): 2928, 2854, 1610, 1370, 1159, 1009, 849. MALDI-TOF MS $(m / z): \mathrm{M}^{+}$1371.7. Elemental analysis: calcd. for $\mathrm{C}_{100} \mathrm{H}_{94} \mathrm{~F}_{4}, \mathrm{C} 87.55$, H 6.91; found C 87.69, H 6.94 .

1,2-Bis(4-(trifluoromethyl)phenyl)ethane-1,2-dione 11c

1,2-Bis(4-(trifluoromethyl)phenyl)acetylene $\mathbf{6 c}(0.5 \mathrm{~g}, 1.6 \mathrm{mmol})$ and iodine ($250 \mathrm{mg}, 1$ mmol) were dissolved in DMSO (5 mL). The reaction was heated to $155{ }^{\circ} \mathrm{C}$ for 14 h under N_{2} and cooled to room temperature. The reaction was poured into an aqueous solution of sodium thiosulfate $(50 \mathrm{~mL}, 1 \mathrm{M})$ and the resulting precipitated was collected and washed with water $(100 \mathrm{~mL})$. The solid was dissolved in dichloromethane $(50 \mathrm{~mL})$ and washed with water (50 mL). The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, dichloromethane/petroleum spirits $40-60{ }^{\circ} \mathrm{C} 1: 1, \mathrm{R}_{\mathrm{f}}=0.3$) and a yellow crystalline solid (0.5 g, 90% yield) was obtained.
m.p. $143{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}, \delta\right): 7.81(\mathrm{~d}, J 8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 8.12(\mathrm{~d}, J 8 \mathrm{~Hz}$, $4 \mathrm{H}, \mathrm{Ar}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}, \delta$): 119.99, 122.16, 124.33, 126.11, 126.14, 126.17, 126.20, 126.27, 126.51, 130.07, 130.24, 130.33, 135.21, 135.22, 135.79, 136.05, 136.32, 136.58, 191.87. FT-IR (neat, cm^{-1}): $1673(\mathrm{C}=\mathrm{O}), 1329,1176,1126,1067$. The
characterization data is identical to a previous report for compound 11c obtained via a different synthetic route. ${ }^{6}$

Cyclopentadienone 7c

1,2-Bis(4-(trifluoromethyl)phenyl)ethane-1,2-dione 11c ($0.5 \mathrm{~g}, 1.44 \mathrm{mmol}$), diphenylacetone $12(0.53 \mathrm{~g}, 1.44 \mathrm{mmol})$ and ethylene glycol (1 mL) were placed in a Schlenk tube (25 mL). The mixture was heated to $140{ }^{\circ} \mathrm{C}$ and $\mathrm{Et}_{4} \mathrm{NOH}(0.1 \mathrm{~mL}, 1 \mathrm{M} \mathrm{aq}$.) was added. The reaction was stirred at $140^{\circ} \mathrm{C}$ for 1 h and allowed to cool to room temperature. Methanol $(10 \mathrm{~mL})$ was added and the resulting precipitate was collected and washed with methanol (50 mL). A purple solid ($0.7 \mathrm{~g}, 74 \%$ yield) was obtained after drying under vacuum.
DSC: $\mathrm{T}_{\mathrm{m}}=242{ }^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{c}}=189{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2{ }^{\circ} \mathrm{C}, \delta$): $7.03(\mathrm{~d}, J 8.5 \mathrm{~Hz}$, $4 \mathrm{H}, \mathrm{Ar}), 7.05$ (d, $J 8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}$), 7.41 (d, $J 8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 7.50$ (d, $J 8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}, \delta$): $122.80,125.45,125.48,125.51,125.54,125.74,128.50$, $129.42,130.92,131.54,131.66,135.95,152.58,198.48$. FT-IR (neat, $\left.\mathrm{cm}^{-1}\right): 1716(\mathrm{C}=\mathrm{O})$, $1488,1320,1166,1125,1067,856,758$. HRMS-ESI (m / z), calcd. for $\mathrm{C}_{31} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~F}_{6} \mathrm{O}: \mathrm{M}^{2}+\mathrm{Ag}^{+}$ 784.84971, found 784.85051 .

Hexaphenylbenzene 8c

Cyclopentadienone 7c ($0.3 \mathrm{~g}, 0.44 \mathrm{mmol}$) and 1,2-bis(4-(trifluoromethyl)phenyl)acetylene $\mathbf{6 c}$ $(0.139 \mathrm{~g}, 0.44 \mathrm{mmol})$ and diphenyl ether $(0.5 \mathrm{~mL})$ were placed in a Schlenk tube $(10 \mathrm{~mL})$. The reaction was heated to $250^{\circ} \mathrm{C}$ for 2 h or until the purple colour of the cyclopentadienone disappeared. The reaction was cooled to room temperature and the solid was dispersed in methanol (10 mL). A colourless crystalline solid ($0.35 \mathrm{~g}, 82 \%$ yield) was obtained after filtration and drying under vacuum.

DSC: $\mathrm{T}_{\mathrm{m}}=300{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}, \delta$): $6.64(\mathrm{~d}, J 8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 6.90$ (d, $J 8 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ar}), 7.05(\mathrm{~d}, J 8.5 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ar}), 7.20(\mathrm{~d}, J 8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}){ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}, \delta\right): 120.75,122.70,124.19,124.22,124.25,124.27,124.86,128.36$, $128.62,130.56,131.18,132.37,139.53,139.75,142.90$. FT-IR (neat, cm^{-1}): 1322, 1119, 1066. HRMS-ESI (m / z), calcd. for $\mathrm{C}_{46} \mathrm{H}_{24} \mathrm{Br}_{2} \mathrm{~F}_{12}: \mathrm{M}+\mathrm{Ag}^{+}$1070.90781, found 1070.90892.

HBC 9c

Hexaphenylbenzene $8 \mathbf{c}(0.5 \mathrm{~g}, 0.52 \mathrm{mmol})$ was dissolved in dichloromethane (100 mL) and cooled to $0{ }^{\circ} \mathrm{C}$. DDQ ($0.82 \mathrm{~g}, 3.6 \mathrm{mmol}$) was added followed by trifluoromethanesulfonic
acid $(1.08 \mathrm{~g}, 7.2 \mathrm{mmol})$. The reaction was stirred at $25^{\circ} \mathrm{C}$ for 14 h under N_{2} and was then quenched by the addition of methanol $(200 \mathrm{~mL})$. The resulting precipitate was collected by filtration and washed with methanol (100 mL). A yellow solid ($0.4 \mathrm{~g}, 81 \%$ yield) was obtained after drying under vacuum. The solubility of the product was too low in common organic solvents. As a result, NMR spectrum was not recorded.
DSC: no thermal transitions detected up to $500{ }^{\circ} \mathrm{C}$. FT-IR (neat, cm^{-1}): 1323, 1279, 1127, 880. MALDI-TOF MS $(m / z): \mathrm{M}^{+} 952.2$. Elemental analysis: calcd. for $\mathrm{C}_{46} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~F}_{12}$, C 58.01, H 1.27; found C 57.98, H 1.40 .

Fluorenyl HBC 10c

HBC 9c ($150 \mathrm{mg}, 0.16 \mathrm{mmol}$) and 9,9-dioctylfluorene-2-boronic acid pinacol ester (200 mg , $0.4 \mathrm{mmol})$ was dissolved in toluene (20 mL) and thoroughly degassed by bubbling with nitrogen gas. Degassed solution of $\mathrm{Et}_{4} \mathrm{NOH}(5 \mathrm{~mL}, 1 \mathrm{M}$ aq.) and tetrakis(triphenylphosphine)palladium(0) ($10 \mathrm{mg}, 5 \mathrm{~mol} \%$) was added and the reaction was heated at $90^{\circ} \mathrm{C}$ for 14 h under N_{2}. The reaction was cooled and the product extracted with toluene (20 mL). The toluene solution was dried with MgSO_{4} and filtered through a plug of silica. The volume of the resulting yellow solution was reduced under vacuum and the product was precipitated with MeOH . An orange solid ($200 \mathrm{mg}, 80 \%$ yield) was obtained after filtration and drying under vacuum.

TGA, $\mathrm{T}_{\text {decomp }}\left(5 \%\right.$ mass loss) $=286{ }^{\circ} \mathrm{C}$. DSC, No thermal transitions in the measured temperature range $\left(25^{\circ} \mathrm{C}-250{ }^{\circ} \mathrm{C}\right)$. UV-vis: $\lambda_{\max }$ chloroform solution $\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)=371 \mathrm{~nm}$ $\left(3.9 \times 10^{4}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 50 \mathrm{mM}, 20^{\circ} \mathrm{C}, \delta$): 0.6-1.2 (br, $60 \mathrm{H},-\mathrm{CH}_{2}-$ and CH_{3}), 2.03 (br, $8 \mathrm{H},-\mathrm{CH}_{2}-$), 6.0-6.7 (br, ArH), 6.9-7.5 (br, ArH). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.50 \mathrm{mM}, 20^{\circ} \mathrm{C}, \delta\right): 13.90,22.44,23.80,28.87,28.88,28.90,29.19,31.54,31.55,40.34,55.14$, $109.99,110.10$ (br), 119.66, 119.81, 122.90 (br), 125.99 (br), 126.74 (br), 140.25, 140.47, 150.97, 151.42, 168.93. Both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR showed broadened resonances in chloroform solution independent of concentration. This is indicative of strong aggregation behavior in solution. FT-IR (neat, cm^{-1}): 2926, 2854, 1610, 1353, 1280, 1120, 875, 741. MALDI-TOF MS (m / z): M^{+}1571.6. Elemental analysis: calcd. for $\mathrm{C}_{104} \mathrm{H}_{94} \mathrm{~F}_{12}$, C 79.47, H 6.03; found C 79.49, H 6.23.

1,2-Bis(3,5-difluorophenyl)acetylene 6d

3,5-Difluoroiodobenzene ($2.4 \mathrm{~g}, 10 \mathrm{mmol}$), copper iodide (100 mg), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(200 \mathrm{mg})$ and 1,8 -diazabicycloundec-7-ene ($10 \mathrm{~g}, 66 \mathrm{mmol}$) were added to toluene $(50 \mathrm{~mL})$. The mixture was degassed by bubbling nitrogen gas and trimethylsilylacetylene ($0.5 \mathrm{~g}, 5.1 \mathrm{mmol}$) was added. This was followed by the addition of water $(0.1 \mathrm{~mL})$. The reaction mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 14 h and the crude product was extract with toluene. A colourless crytalline solid ($1.1 \mathrm{~g}, 80 \%$ yield) was obtained after purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, dichloromethane/petroleum spirits $40-60^{\circ} \mathrm{C} 1: 3, \mathrm{R}_{\mathrm{f}}=0.7$).
m.p. $71{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20{ }^{\circ} \mathrm{C}, \delta$): 6.85 (tt, 2H, Ar), $7.05(\mathrm{dt}, 4 \mathrm{H}, \mathrm{Ar}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}, \delta$): 88.69, 88.73, 88.77, 104.84, 105.09, 105.34, 114.56, $114.64,114.75,114.83,124.95,161.42,161.55,163.90,164.03$. FT-IR (neat, cm^{-1}): 1615, 1585, 1428, 1368, 1180, 1122, 990, 856.

1,2-Bis(3,5-difluorophenyl)ethane-1,2-dione 11d

1,2-Bis(3,5-difluorophenyl)acetylene $\mathbf{6 d}(0.5 \mathrm{~g}, 2 \mathrm{mmol})$ and iodine ($250 \mathrm{mg}, 1 \mathrm{mmol}$) were dissolved in DMSO (5 mL). The reaction was heated to $155^{\circ} \mathrm{C}$ for 14 h under N_{2} and cooled to room temperature. The reaction was poured into an aqueous solution of sodium thiosulfate $(50 \mathrm{~mL}, 1 \mathrm{M})$ and the resulting precipitated was collected and washed with water (100 mL). The solid was dissolved in dichloromethane $(50 \mathrm{~mL})$ and washed with water $(50 \mathrm{~mL})$. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, dichloromethane/petroleum spirits $40-60{ }^{\circ} \mathrm{C} 1: 1, \mathrm{R}_{\mathrm{f}}=0.3$) and a yellow crystalline solid ($0.5 \mathrm{~g}, 89 \%$ yield) was obtained. m.p. $137{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}, \delta$): 7.12 (tt, 2H, Ar), $7.49(\mathrm{dt}, 4 \mathrm{H}, \mathrm{Ar}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}, \delta$): 110.44, 110.64, 110.84, 112.79, 112.85, 112.95, 113.01, $134.95,135.01,135.08,162.10,162.19,164.12,164.21,189.64$. FT-IR (neat, cm^{-1}): 1678 (C=O), 1591, 1437, 1327, 1135, 979, 869.

Cyclopentadienone 7d

1,2-Bis(3,5-difluorophenyl)ethane-1,2-dione 11d ($0.2 \mathrm{~g}, 0.71 \mathrm{mmol}$), diphenylacetone $\mathbf{1 2}$ $(0.26 \mathrm{~g}, 0.71 \mathrm{mmol})$ and ethylene glycol (1 mL) were placed in a Schlenk tube (25 mL). The mixture was heated to $140{ }^{\circ} \mathrm{C}$ and $\mathrm{Et}_{4} \mathrm{NOH}(0.1 \mathrm{~mL}, 1 \mathrm{M} \mathrm{aq}$.$) was added. The reaction was$ stirred at $140^{\circ} \mathrm{C}$ for 1 h and allowed to cool to room temperature. Methanol $(10 \mathrm{~mL})$ was added and the resulting precipitate was collected and washed with methanol (50 mL). A purple solid ($0.3 \mathrm{~g}, 69 \%$ yield) was obtained after drying under vacuum.

DSC: $\mathrm{T}_{\mathrm{m}}=240^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{c}}=180^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}, \delta$): $6.48(\mathrm{dt}, 4 \mathrm{H}, \mathrm{Ar})$, $6.79(\mathrm{tt}, 2 \mathrm{H}, \mathrm{Ar}), 7.07(\mathrm{~d}, J 8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 7.43(\mathrm{~d}, J 8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}, 2{ }^{\circ} \mathrm{C}, \delta\right): 104.64,104.84,105.04,111.78,111.83,111.93,111.99,123.06,125.60$, 128.12, 131.42, $131.51,131.72,135.39,151.50,161.88,161.98,163.87,163.98,198.18$. FTIR (neat, cm^{-1}): $1715(\mathrm{C}=\mathrm{O}), 1619,1586,1489,1431,1346,1122,990,751$. HRMS-ESI (m / z), calcd. for $\mathrm{C}_{29} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~F}_{4} \mathrm{O}: \mathrm{M}+\mathrm{Ag}^{+} 720.83725$, found 720.83801 .

Hexaphenylbenzene 8d

Cyclopentadienone $7 \mathbf{d}(0.1 \mathrm{~g}, 0.16 \mathrm{mmol})$ and 1,2-bis(3,5-difluorophenyl)acetylene 6d (41 $\mathrm{mg}, 0.16 \mathrm{mmol})$ and diphenyl ether $(0.5 \mathrm{~mL})$ were placed in a Schlenk tube $(10 \mathrm{~mL})$. The reaction was heated to $250{ }^{\circ} \mathrm{C}$ for 2 h or until the purple colour of the cyclopentadienone disappeared. The reaction was cooled to room temperature and the solid was dispersed in methanol (10 mL). A colourless crystalline solid $(0.1 \mathrm{~g}, 75 \%$ yield) was obtained after filtration and drying under vacuum.
DSC: $\mathrm{T}_{\mathrm{m}}=268{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}, \delta$): 6.37 (dt, $8 \mathrm{H}, \mathrm{Ar}$), $6.46(\mathrm{tt}, 4 \mathrm{H}, \mathrm{Ar}$), 6.71 (d, $J 7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}$), 7.15 (d, $J 7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}, \delta$): $102.18,102.43,102.68,113.59,113.66,113.78,113.85,121.12,130.78,131.85,137.06$, 138.87, 138.88, 139.44, 141.90, 160.70, 160.83, 163.19, 163.32. FT-IR (neat, cm^{-1}): 1619, 1595, 1414, 1288, 1124, 1013, 992, 847. HRMS-ESI (m / z), calcd. for $\mathrm{C}_{42} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{~F}_{8}: \mathrm{M}^{2} \mathrm{Ag}^{+}$ 942.88290 , found 942.88364 .

NMR Data - Compound 7b

Figure S1. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum of compound $\mathbf{7 b}$ in CDCl_{3}.

Figure S2. ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectrum of compound $\mathbf{7 b}$ in CDCl_{3}.

NMR Data - Compound 8b

Figure $\mathrm{S} 3 .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum of compound $\mathbf{8 b}$ in CDCl_{3}.

ppm (f1)
Figure $\mathrm{S} 4 .{ }^{13} \mathrm{C}$ NMR (125 MHz) spectrum of compound $\mathbf{8 b}$ in CDCl_{3}.

NMR Data - Compound 11c

Figure $\mathrm{S} 5 .{ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of compound $\mathbf{1 1 c}$ in CDCl_{3}.

Figure S6. ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectrum of compound $\mathbf{1 1 c}$ in CDCl_{3}.

NMR Data - Compound 7c

Figure S7. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of compound $\mathbf{7 c}$ in CDCl_{3}.

Figure $\mathrm{S} 8 .{ }^{13} \mathrm{C}$ NMR (125 MHz) spectrum of compound $7 \mathbf{c}$ in CDCl_{3}.

NMR Data - Compound 8c

Figure S9. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of $\mathbf{8 c}$ in CDCl_{3}.

Figure $\mathrm{S} 10 .{ }^{13} \mathrm{C}$ NMR (125 MHz) spectrum of $\mathbf{8 c}$ in CDCl_{3}.

NMR Data - Compound 6d

Figure S11. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of compound $\mathbf{6 d}$ in CDCl_{3}.

ppm (f1)
Figure S12. ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectrum of compound $\mathbf{6 d}$ in CDCl_{3}.

NMR Data - Compound 11d

Figure S13. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of compound $\mathbf{1 1 d}$ in CDCl_{3}.

~누N

ppm (f1)

Figure S14. ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectrum of compound $\mathbf{1 1 d}$ in CDCl_{3}.

NMR Data - Compound 7d

ppm (f1)
Figure $\mathrm{S} 15 .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum of compound $\mathbf{7 d}$ in CDCl_{3}.

ppm (t1)
Figure S16. ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectrum of compound 7d in CDCl_{3}.

NMR Data - Compound 8d

ppm (f1)
Figure $\mathrm{S} 17 .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum of compound $\mathbf{8 d}$ in CDCl_{3}.

ppm (f1)
Figure S18. ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectrum of compound $\mathbf{8 d}$ in CDCl_{3}.

NMR Data - Compound 10b

Figure S19. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum of compound $\mathbf{1 0 b}$ in $\mathrm{CDCl}_{3}(60 \mathrm{mM})$.
는 ¢

Figure S20. ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectrum of compound $\mathbf{1 0 b}$ in $\mathrm{CDCl}_{3}(60 \mathrm{mM})$.

NMR Data - Compound 10c

Figure $\mathrm{S} 21 .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum of compound $\mathbf{1 0 c}$ in CDCl_{3}.

ppm (f1)
Figure $\mathrm{S} 22 .{ }^{13} \mathrm{C}$ NMR (125 MHz) spectrum of compound $\mathbf{1 0 c}$ in CDCl_{3}.

Matrix-assisted laser desorption ionization mass spectrum (MALDI-MS) of HBC derivatives

Figure S23. MALDI-MS of HBC derivative $3(680 \mathrm{~m} / \mathrm{z})$ synthesised using $\mathrm{FeCl}_{3} / \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$. Chlorinated products were observed (714 and $748 \mathrm{~m} / \mathrm{z}$).

Figure S24. MALDI-MS of HBC derivative $3(680 \mathrm{~m} / \mathrm{z})$ synthesised using $\mathrm{DDQ} / \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$. No chlorinated products were detected.

Thermal properties - TGA and DSC

Figure S25. Thermal gravimetric analysis plots of fluorenyl HBC compounds 10a-c showing percentage weight loss.

Figure S26. Differential scanning calorimetry data for HBC 10b showing the second and third heat-cool cycles ($10^{\circ} \mathrm{C} / \mathrm{min}$).

Figure S27. Differential scanning calorimetry data for HBC 10c showing the second and third heat-cool cycles ($10^{\circ} \mathrm{C} / \mathrm{min}$).

UV-vis and fluorescence spectral data

Figure S28. UV-vis spectrum of HBC compounds 10a-c in chloroform solution.

Figure S29. Normalized UV-vis spectrum of HBC compounds 10a-c in solution and in solid state.

Figure S30. Normalized photoluminescence spectrum of HBC compounds 10a-c in solution and in solid state.

Electrochemistry of fluorenyl HBC compounds 10a-c

Figure S31. CV curve of $\mathbf{1 0 a}$ in chlorobenzene/ $\mathrm{MeCN} 10: 1,1 \times 10^{-3} \mathrm{M}, \mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M})$, 295 K , scan rate $=50 \mathrm{mV} \cdot \mathrm{s}^{-1}$, versus $\mathrm{Fc} / \mathrm{Fc}^{+}$;

Figure S32. CV curve of $\mathbf{1 0 b}$ in chlorobenzene/ $\mathrm{MeCN} 10: 1,1 \times 10^{-3} \mathrm{M}, \mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M})$, 295 K , scan rate $=50 \mathrm{mV} \cdot \mathrm{s}^{-1}$, versus $\mathrm{Fc} / \mathrm{Fc}^{+}$.

Figure S33. CV curve of $\mathbf{1 0 c}$ in chlorobenzene/ $\mathrm{MeCN} 10: 1,1 \times 10^{-3} \mathrm{M}, \mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M})$, 295 K , scan rate $=50 \mathrm{mV} \cdot \mathrm{s}^{-1}$, versus $\mathrm{Fc} / \mathrm{Fc}^{+}$.

DFT calculations and energy level diagram

Figure S34. Models for HBC compounds 10a-c and frontier orbital distribution calculated with DFT at the B3LYP/6-31G level using Gaussian 09W. ${ }^{7}$

Figure S35. Energy level diagram of HBC compounds 10a-c derived from electrochemical and UV-vis absorption data. Calculated energies are in blue.

References

1. M. J. Mio, L. C. Kopel, J. B. Braun, T. L. Gadzikwa, K. L. Hull, R. G. Brisbois, C. J. Markworth and P. A. Grieco, Org. Lett., 2002, 4, 3199-3202.
2. S. Watanabe and J. Kido, Chem. Lett., 2007, 36, 590-591.
3. H. Sauriat-Dorizon, T. Maris, J. D. Wuest and G. D. Enright, J. Org. Chem., 2002, 68, 240-246.
4. W. W. H. Wong, T. B. Singh, D. Vak, W. Pisula, C. Yan, X. L. Feng, E. L. Williams, K. L. Chan, Q. Mao, D. J. Jones, C.-Q. Ma, K. Müllen, P. Bäuerle and A. B. Holmes, Adv. Funct. Mater., 2010, 20, 927-938.
5. J.-B. Baek and F. W. Harris, Macromolecules, 2004, 38, 297-306.
6. L. D. Hicks, J. L. Hyatt, T. Moak, C. C. Edwards, L. Tsurkan, M. Wierdl, A. M. Ferreira, R. M. Wadkins and P. M. Potter, Biorg. Med. Chem., 2007, 15, 3801-3817.
7. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Ad- amo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, revision A.1, Gaussian, Inc., Wallingford, CT, 2009.
