Supplementary Information

Synthesis of electron-poor hexa-*peri*-hexabenzocoronene

David J. Jones, Balaji Purushothaman, Shaomin Ji, Andrew B. Holmes and Wallace W. H. Wong

School of Chemistry, Bio21 Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia.

Contents

Experimental Procedures	p. 2-12
NMR spectra	p. 13-23
MALDI-MS	p. 24
Thermal properties (TGA, DSC)	p. 25
UV-Vis/PL spectroscopy	p. 26-27
Cyclic voltammogram	p. 28
DFT calculations and energy level diagram	p. 29-30
References	p. 31

Experimental Procedures

All reactions were performed using anhydrous solvent under an inert atmosphere unless stated otherwise. Silica gel (Merck 9385 Kieselgel 60) was used for flash chromatography. Thin layer chromatography was performed on Merck Kieselgel 60 silica gel on glass (0.25 mm thick). ¹H and ¹³C NMR spectroscopy were carried out using either the Varian Inova-400 (400 MHz) or the Varian Inova-500 (500 MHz). Electrospray (ESI) high resolution mass spectra (HRMS) were recorded with a Thermo-Finnigan 7T LTQ-FTMS spectrometer and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra were recorded on a Bruker Reflex 2 (DCTB as matrix). IR spectra were obtained on a Perkin Elmer Spectrum One FT-IR spectrometer while UV-vis spectra were recorded using a Cary 50 UV-vis spectrometer. Photoluminescence was measured with a Varian Cary Eclipse fluorimeter. Melting points were determined on a Büchi 510 melting point apparatus. Elemental analyses were obtained commercially through Chemical & Analytical Services Pty. Ltd. (Australia) an Exeter Analytical CE-440 elemental analyzer. Thermal gravimetric analysis (TGA) experiments were carried out with a Mettler Toledo TGA/SDTA851e and differential scanning calorimetry (DSC) experiments were performed on a Perkin-Elmer Sapphire DSC. Electrochemical measurements were recorded on a Solartron 1287A Potentiostat/Galvanostat. Diphenylacetylene 6a and benzil 11a are commercially available and compounds $6b^{1}_{,1} 6c^{1}_{,2} 7a^{2}_{,2} 8a^{2}_{,2}$ and 12^{3} have been reported in the literature. Compound **10a** has also been reported previously by our group obtained via a different synthetic route.⁴

Scheme S1. Synthesis of electron-poor hexa-peri-hexabenzocoronenes.

Scheme S2. a) Synthesis of dione 11b-d and b) synthesis of cyclopentadienone 7a-d.

2,11-Dibromohexabenzo[bc,ef,hi,kl,no,qr]coronene 3

Intramolecular oxidative cyclodehydrogenation of 4-bromo-4'-(4-bromophenyl)-3',5',6'triphenyl-1,1':2',1''-terphenyl **8a** under various conditions

Method	Oxidant	Acid	Solvent	Yield
	(6 eq.)	(6 eq.)	(30 mL)	%
А	FeCl ₃	-	$CH_2Cl_2(25 \text{ mL})/MeNO_2(5 \text{ mL})$	3
В	FeCl ₃	CF ₃ SO ₃ H	CH ₂ Cl ₂ (25 mL)/MeNO ₂ (5 mL)	49
С	DDQ	CF ₃ COOH	CH ₂ Cl ₂ (30 mL)	0
D	DDQ	CH ₃ SO ₃ H	CH ₂ Cl ₂ (30 mL)	0
Е	DDQ	CF ₃ SO ₃ H	CH ₂ Cl ₂ (30 mL)	94

General procedure for Method A and B

To oven dried 100 mL round bottom flask cooled under nitrogen was added 4-bromo-4'-(4bromophenyl)-3',5',6'-triphenyl-1,1':2',1"-terphenyl **8a** (250 mg, 0.36 mmol) and dry CH₂Cl₂ (25 mL). FeCl₃ (352 mg, 2.16 mmol) dissolved in dry nitromethane (5 mL) was added dropwise to the stirring mixture under nitrogen flow and allowed to stir for 2 hr. For method B, CF₃SO₃H (0.2 mL, 2.16 mmol) was added after the addition of FeCl₃. For method A the reaction mixture was poured into methanol and the precipitate were filtered and washed with methanol. For method B the reaction was quenched with saturated potassium carbonate solution and the solvent was removed under reduced pressure. The solids were filtered and washed with HCl (10% aq.) followed by methanol to give the crude solid. Soluble starting material and by-products were removed by washing with chloroform.

General procedure for Method C, D & E

To oven dried 100 ml round bottom flask cooled under nitrogen was added 4-bromo-4'-(4bromophenyl)-3',5',6'-triphenyl-1,1':2',1"-terphenyl **8a** (250 mg, 0.36 mmol), 2,3-dichloro-5,6-dicyano-*p*-benzoquinone (DDQ, 492 mg, 2.16 mmol) and dry CH_2Cl_2 (30 mL). Acid (2.16 mmol) was added to the reaction mixture and allowed to stir for 2 hr under nitrogen atmosphere. The reaction mixture was quenched with saturated potassium carbonate solution and CH_2Cl_2 was removed under reduced pressure. The solids were filtered and washed with water followed by methanol to give the crude solid. Soluble starting material and byproducts were removed by washing with chloroform.

Procedure for HBC 3 in multi-gram scale

To a slurry of 4-bromo-4'-(4-bromophenyl)-3',5',6'-triphenyl-1,1':2',1"-terphenyl **8a** (15.0 g, 21.66 mmol) and DDQ (28.6 g, 130 mmol) in CH₂Cl₂ (750 mL) under nitrogen at 0 °C was added CF₃SO₃H (11.4 mL, 19.5 g, 130 mmol). The dark slurry was stirred for 3 hours then the reaction mixture poured into saturated K₂CO₃ solution. The CH₂Cl₂ was removed under vacuum. The yellow insoluble product was collected by gravity filtration. The product was washed with H₂O, MeOH until the wash was colourless then CH₂Cl₂ and dried under air, then vacuum to give a crude product. Yield 13.14 g (91.3%). The solubility of the product was too low for NMR spectroscopy.

DSC: $T_m = 393$ °C. FT-IR (neat, cm⁻¹): 1575, 1354, 1022, 844, 813. MALDI-MS (*m/z*): M⁺ 680.0. Elemental analysis: calcd. for C₄₂H₁₆Br₂, C 74.14, H 2.37, Br 23.49; found, C 63.79, H 2.09. There is a large discrepency between the calculated and measured elemental composition which may be a result of incomplete material combustion in the experiment.

2,5-Bis(9,9-dioctyl-9H-fluoren-2-yl)hexabenzo[bc,ef,hi,kl,no,qr]coronene 10a

Dibromo-HBC **3** (4.59 g, 7.29 mmol) and 9,9-dioctylfluorene-2-boronic acid pinacol ester (7.53 g, 14.57 mmol) was dispersed in toluene (100 mL) and thoroughly degassed by bubbling with nitrogen gas. Degassed solution of Et₄NOH (20 mL, 1 M) and tetrakis(triphenylphosphine)palladium(0) (840 mg, 0.729 mmol) was added and the reaction was heated at 90 °C for 14 h under N₂. The reaction was cooled, filtered through celite and the product extracted with toluene (100 mL). The toluene solution was dried with MgSO₄ and filtered through a plug of silica. The volume of the resulting yellow solution was reduced under vacuum and the product was precipitated with MeOH. A yellow solid (8.47 g, 89% yield) was obtained after filtration and drying under vacuum.

 HBC-H). ¹³C NMR (125 MHz, 75 mM, CDCl₃, 20 °C, δ): 151.4, 151.1, 141.2, 140.6, 140.3, 136.3, 128.3 (2), 128.2, 128.1, 126.5, 124.4, 123.1, 122.8, 122.0, 121.4, 120.2, 120.0 (3), 119.8 (2), 118.4, 118.1, 118.0, 117.6, 55.4, 40.9, 31.9, 30.4, 29.6, 29.5, 24.4, 22.7, 14.2. FT-IR (neat, cm⁻¹): 3059, 2953, 2924, 2851, 1610, 1584, 1455, 1373, 1366, 1083, 1022, 866, 826, 781, 740, 684. MS-MALDI (*m/z*): M⁺ 1298.68. Elemental analysis: calcd. for C₁₀₀H₉₈, C 92.4, H 7.6; found C 92.4, H 7.6. The characterization data is identical to a previous report for compound **10a** obtained via a different synthetic route.⁴

1,2-Bis(4-fluorophenyl)ethane-1,2-dione 11b

1,2-Bis(4-fluorophenyl)acetylene **6b** (2.14 g, 10 mmol) and iodine (1.3 g, 5 mmol) were dissolved in DMSO (10 mL). The reaction was heated to 155 °C for 14 h under N₂ and cooled to room temperature. The reaction was poured into an aqueous solution of sodium thiosulfate (50 mL, 1 M) and the resulting precipitated was collected and washed with water (100 mL). The solid was dissolved in dichloromethane (50 mL) and washed with water (50 mL). The crude product was purified by column chromatography (SiO₂, dichloromethane/petroleum spirits 40-60 °C 1:1, $R_f = 0.3$) and a yellow crystalline solid (2 g, 81% yield) was obtained.

m.p. 122 °C. ¹H NMR (500 MHz, CDCl₃, 20 °C, δ): 7.18-7.21 (td, 4H, Ar), 8.01-8.04 (td, 4H, Ar). ¹³C NMR (125 MHz, CDCl₃, 20 °C, δ): 116.3, 116.6, 129.4, 132.8, 132.9, 165.0, 168.8, 192.2. FT-IR (neat, cm⁻¹): 1665 (C=O), 1598, 1506, 1228, 1156, 886, 843. HRMS-ESI (*m/z*), calcd. for C₁₄H₈F₂O₂: M+Ag⁺ 352.95378, found 352.95380. The characterization data is identical to a previous report for compound **11b** obtained via a different synthetic route.⁵

Cyclopentadienone 7b

1,2-Bis(4-fluorophenyl)ethane-1,2-dione **11b** (0.5 g, 2 mmol), diphenylacetone **12** (0.75 g, 2 mmol) and ethylene glycol (2 mL) were placed in a Schlenk tube (25 mL). The mixture was heated to 140 °C and Et₄NOH (0.1 mL, 1 M aq.) was added. The reaction was stirred at 140 °C for 1 h and allowed to cool to room temperature. Methanol (10 mL) was added and the resulting precipitate was collected and washed with methanol (50 mL). A purple solid (0.8 g, 69% yield) was obtained after drying under vacuum.

DSC: $T_m = 286 \text{ °C}$. ¹H NMR (500 MHz, CDCl₃, 20 °C, δ): 6.89 (td, 4H, Ar), 6.94 (td, 4H, Ar), 7.07 (d, *J* 7 Hz, 4H, Ar), 7.39 (d, *J* 7 Hz, 4H, Ar). ¹³C NMR (125 MHz, CDCl₃, 20 °C, δ):

115.59, 115.76, 122.24, 124.61, 128.30, 128.32, 129.13, 131.17, 131.48, 131.55, 131.61, 153.47, 161.87, 163.86, 199.01. FT-IR (neat, cm⁻¹): 1712 (C=O), 1601, 1505, 1487, 1235, 1159, 1072, 1010, 850, 761. HRMS-ESI (*m/z*), calcd. for $C_{29}H_{16}Br_2F_2O$: M+Ag⁺ 684.85609, found 684.85657.

Hexaphenylbenzene 8b

Cyclopentadienone **7b** (0.578 g, 1 mmol) and 1,2-bis(4-fluorophenyl)acetylene **6b** (0.214 g, 1 mmol) and diphenyl ether (0.5 mL) were placed in a Schlenk tube (10 mL). The reaction was heated to 250 °C for 2 h or until the purple colour of the cyclopentadienone disappeared. The reaction was cooled to room temperature and the solid was dispersed in methanol (10 mL). A colourless crystalline solid (0.5 g, 65% yield) was obtained after filtration and drying under vacuum.

DSC: $T_m = 282 \text{ °C. }^{1}$ H NMR (500 MHz, CDCl₃, 20 °C, δ): 6.61 (d, *J* 8.5 Hz, 4H, Ar), 6.65 (td, 8H, Ar), 6.72 (td, 8H, Ar), 7.04 (d, *J* 8.5 Hz, 4H, Ar). 13 C NMR (125 MHz, CDCl₃, 20 °C, δ): 110.00, 114.11, 114.27, 119.96, 130.24, 132.46, 132.53, 132.63, 135.67, 138.92, 139.79, 159.84, 161.80. FT-IR (neat, cm⁻¹): 1510, 1222, 1161, 1013, 815, 758. HRMS-ESI (*m/z*), calcd. for C₄₂H₂₄Br₂F₄: M+Ag⁺ 870.92059, found 870.92133.

HBC 9b

Hexaphenylbenzene **8b** (1 g, 1.3 mmol) was dissolved in dichloromethane (100 mL) and cooled to 0 °C. DDQ (2 g, 8.8 mmol) was added followed by trifluoromethanesulfonic acid (2.7 g, 18 mmol). The reaction was stirred at 25 °C for 14 h under N_2 and was then quenched by the addition of methanol (200 mL). The resulting precipitate was collected by filtration and washed with methanol (100 mL). A yellow solid (0.8 g, 82% yield) was obtained after drying under vacuum. The solubility of the product was too low in common organic solvents. As a result, NMR spectrum was not recorded.

DSC: no thermal transitions detected up to 500 °C. FT-IR (neat, cm⁻¹): 1608, 1583, 1416, 1369, 1158, 1009, 920, 852. MALDI-TOF MS (m/z): M⁺ 752.0. Elemental analysis: calcd. for C₄₂H₁₂Br₂F₄, C 67.05, H 1.61; found C 67.09, H 1.76.

Fluorenyl HBC 10b

HBC **9b** (150 mg, 0.2 mmol) and 9,9-dioctylfluorene-2-boronic acid pinacol ester (250 mg, 0.5 mmol) was dissolved in toluene (20 mL) and thoroughly degassed by bubbling with

nitrogen gas. Degassed solution of Et₄NOH (5 mL, 1 M aq.) and tetrakis-(triphenylphosphine)palladium(0) (12 mg, 5 mol%) was added and the reaction was heated at 90 °C for 14 h under N₂. The reaction was cooled and the product extracted with toluene (20 mL). The toluene solution was dried with MgSO₄ and filtered through a plug of silica. The volume of the resulting yellow solution was reduced under vacuum and the product was precipitated with MeOH. A yellow solid (250 mg, 91% yield) was obtained after filtration and drying under vacuum.

TGA, T_{decomp} (5% mass loss) = 404 °C. DSC, No thermal transitions in the measured temperature range (25 °C – 350 °C). UV-vis: λ_{max} chloroform solution (ϵ , M⁻¹cm⁻¹) = 364 nm (9.4 × 10⁴). ¹H NMR (500 MHz, CDCl₃, 60 mM, 20 °C, δ): 0.71 (br, 20H, -CH₂- and CH₃), 0.9-1.2 (br m, 40H, -CH₂-), 1.95 (m, 8H, -CH₂-), 5.83-7.08 (br, ArH), 7.33 (br, ArH), 7.55 (br, ArH). ¹³C NMR (125 MHz, CDCl₃, 60 mM, 20 °C, δ): 14.03, 22.52, 23.87, 23.90, 23.92, 29.01, 29.09, 29.70, 29.71, 29.79, 31.64, 39.92, 55.16, 105.92 (br), 114.25 (br), 118.23 (br), 119.80 (br), 120.68 (br), 122.96 (br), 126.07 (br), 128.93 (br), 138.60 (br), 140.53 (br), 151.08 (br), 151.65 (br), 158.05 (br), 160.24 (br). Both ¹H and ¹³C NMR showed broadened resonances in chloroform solution independent of concentration. This is indicative of strong aggregation behavior in solution. FT-IR (neat, cm⁻¹): 2928, 2854, 1610, 1370, 1159, 1009, 849. MALDI-TOF MS (*m*/*z*): M⁺ 1371.7. Elemental analysis: calcd. for C₁₀₀H₉₄F₄, C 87.55, H 6.91; found C 87.69, H 6.94.

1,2-Bis(4-(trifluoromethyl)phenyl)ethane-1,2-dione 11c

1,2-Bis(4-(trifluoromethyl)phenyl)acetylene **6c** (0.5 g, 1.6 mmol) and iodine (250 mg, 1 mmol) were dissolved in DMSO (5 mL). The reaction was heated to 155 °C for 14 h under N₂ and cooled to room temperature. The reaction was poured into an aqueous solution of sodium thiosulfate (50 mL, 1 M) and the resulting precipitated was collected and washed with water (100 mL). The solid was dissolved in dichloromethane (50 mL) and washed with water (50 mL). The crude product was purified by column chromatography (SiO₂, dichloromethane/petroleum spirits 40-60 °C 1:1, $R_f = 0.3$) and a yellow crystalline solid (0.5 g, 90% yield) was obtained.

m.p. 143 °C. ¹H NMR (500 MHz, CDCl₃, 20 °C, δ): 7.81 (d, *J* 8 Hz, 4H, Ar), 8.12 (d, *J* 8 Hz, 4H, Ar). ¹³C NMR (125 MHz, CDCl₃, 20 °C, δ): 119.99, 122.16, 124.33, 126.11, 126.14, 126.17, 126.20, 126.27, 126.51, 130.07, 130.24, 130.33, 135.21, 135.22, 135.79, 136.05, 136.32, 136.58, 191.87. FT-IR (neat, cm⁻¹): 1673 (C=O), 1329, 1176, 1126, 1067. The

characterization data is identical to a previous report for compound **11c** obtained via a different synthetic route.⁶

Cyclopentadienone 7c

1,2-Bis(4-(trifluoromethyl)phenyl)ethane-1,2-dione **11c** (0.5 g, 1.44 mmol), diphenylacetone **12** (0.53 g, 1.44 mmol) and ethylene glycol (1 mL) were placed in a Schlenk tube (25 mL). The mixture was heated to 140 °C and Et₄NOH (0.1 mL, 1 M aq.) was added. The reaction was stirred at 140 °C for 1 h and allowed to cool to room temperature. Methanol (10 mL) was added and the resulting precipitate was collected and washed with methanol (50 mL). A purple solid (0.7 g, 74% yield) was obtained after drying under vacuum.

DSC: $T_m = 242 \text{ °C}$, $T_c = 189 \text{ °C}$. ¹H NMR (500 MHz, CDCl₃, 20 °C, δ): 7.03 (d, *J* 8.5 Hz, 4H, Ar), 7.05 (d, *J* 8.5 Hz, 4H, Ar), 7.41 (d, *J* 8.5 Hz, 4H, Ar), 7.50 (d, *J* 8.5 Hz, 4H, Ar). ¹³C NMR (125 MHz, CDCl₃, 20 °C, δ): 122.80, 125.45, 125.48, 125.51, 125.54, 125.74, 128.50, 129.42, 130.92, 131.54, 131.66, 135.95, 152.58, 198.48. FT-IR (neat, cm⁻¹): 1716 (C=O), 1488, 1320, 1166, 1125, 1067, 856, 758. HRMS-ESI (*m*/*z*), calcd. for C₃₁H₁₆Br₂F₆O: M+Ag⁺ 784.84971, found 784.85051.

Hexaphenylbenzene 8c

Cyclopentadienone **7c** (0.3 g, 0.44 mmol) and 1,2-bis(4-(trifluoromethyl)phenyl)acetylene **6c** (0.139 g, 0.44 mmol) and diphenyl ether (0.5 mL) were placed in a Schlenk tube (10 mL). The reaction was heated to 250 °C for 2 h or until the purple colour of the cyclopentadienone disappeared. The reaction was cooled to room temperature and the solid was dispersed in methanol (10 mL). A colourless crystalline solid (0.35 g, 82% yield) was obtained after filtration and drying under vacuum.

DSC: $T_m = 300 \,^{\circ}$ C. ¹H NMR (500 MHz, CDCl₃, 20 °C, δ): 6.64 (d, *J* 8.5 Hz, 4H, Ar), 6.90 (d, *J* 8 Hz, 8H, Ar), 7.05 (d, *J* 8.5 Hz, 8H, Ar), 7.20 (d, *J* 8.5 Hz, 4H, Ar). ¹³C NMR (125 MHz, CDCl₃, 20 °C, δ): 120.75, 122.70, 124.19, 124.22, 124.25, 124.27, 124.86, 128.36, 128.62, 130.56, 131.18, 132.37, 139.53, 139.75, 142.90. FT-IR (neat, cm⁻¹): 1322, 1119, 1066. HRMS-ESI (*m/z*), calcd. for C₄₆H₂₄Br₂F₁₂: M+Ag⁺ 1070.90781, found 1070.90892.

HBC 9c

Hexaphenylbenzene **8c** (0.5 g, 0.52 mmol) was dissolved in dichloromethane (100 mL) and cooled to 0 °C. DDQ (0.82 g, 3.6 mmol) was added followed by trifluoromethanesulfonic

acid (1.08 g, 7.2 mmol). The reaction was stirred at 25 °C for 14 h under N_2 and was then quenched by the addition of methanol (200 mL). The resulting precipitate was collected by filtration and washed with methanol (100 mL). A yellow solid (0.4 g, 81% yield) was obtained after drying under vacuum. The solubility of the product was too low in common organic solvents. As a result, NMR spectrum was not recorded.

DSC: no thermal transitions detected up to 500 °C. FT-IR (neat, cm⁻¹): 1323, 1279, 1127, 880. MALDI-TOF MS (*m/z*): M⁺ 952.2. Elemental analysis: calcd. for C₄₆H₁₂Br₂F₁₂, C 58.01, H 1.27; found C 57.98, H 1.40.

Fluorenyl HBC 10c

HBC **9c** (150 mg, 0.16 mmol) and 9,9-dioctylfluorene-2-boronic acid pinacol ester (200 mg, 0.4 mmol) was dissolved in toluene (20 mL) and thoroughly degassed by bubbling with nitrogen gas. Degassed solution of Et₄NOH (5 mL, 1 M aq.) and tetrakis-(triphenylphosphine)palladium(0) (10 mg, 5 mol%) was added and the reaction was heated at 90 °C for 14 h under N₂. The reaction was cooled and the product extracted with toluene (20 mL). The toluene solution was dried with MgSO₄ and filtered through a plug of silica. The volume of the resulting yellow solution was reduced under vacuum and the product was precipitated with MeOH. An orange solid (200 mg, 80% yield) was obtained after filtration and drying under vacuum.

TGA, T_{decomp} (5% mass loss) = 286 °C. DSC, No thermal transitions in the measured temperature range (25 °C – 250 °C). UV-vis: λ_{max} chloroform solution (ϵ , M⁻¹cm⁻¹) = 371 nm (3.9 × 10⁴). ¹H NMR (500 MHz, CDCl₃, 50 mM, 20 °C, δ): 0.6-1.2 (br, 60H, -CH₂- and CH₃), 2.03 (br, 8H, -CH₂-), 6.0-6.7 (br, ArH), 6.9-7.5 (br, ArH). ¹³C NMR (125 MHz, CDCl₃, 50 mM, 20 °C, δ): 13.90, 22.44, 23.80, 28.87, 28.88, 28.90, 29.19, 31.54, 31.55, 40.34, 55.14, 109.99, 110.10 (br), 119.66, 119.81, 122.90 (br), 125.99 (br), 126.74 (br), 140.25, 140.47, 150.97, 151.42, 168.93. Both ¹H and ¹³C NMR showed broadened resonances in chloroform solution independent of concentration. This is indicative of strong aggregation behavior in solution. FT-IR (neat, cm⁻¹): 2926, 2854, 1610, 1353, 1280, 1120, 875, 741. MALDI-TOF MS (*m/z*): M⁺ 1571.6. Elemental analysis: calcd. for C₁₀₄H₉₄F₁₂, C 79.47, H 6.03; found C 79.49, H 6.23.

1,2-Bis(3,5-difluorophenyl)acetylene 6d

3,5-Difluoroiodobenzene (2.4 g, 10 mmol), copper iodide (100 mg), Pd(PPh₃)₂Cl₂ (200 mg) and 1,8-diazabicycloundec-7-ene (10 g, 66 mmol) were added to toluene (50 mL). The mixture was degassed by bubbling nitrogen gas and trimethylsilylacetylene (0.5 g, 5.1 mmol) was added. This was followed by the addition of water (0.1 mL). The reaction mixture was stirred at 60 °C for 14 h and the crude product was extract with toluene. A colourless crytalline solid (1.1 g, 80% yield) was obtained after purification by column chromatography (SiO₂, dichloromethane/petroleum spirits 40-60 °C 1:3, $R_f = 0.7$).

m.p. 71 °C. ¹H NMR (500 MHz, CDCl₃, 20 °C, δ): 6.85 (tt, 2H, Ar), 7.05 (dt, 4H, Ar). ¹³C NMR (125 MHz, CDCl₃, 20 °C, δ): 88.69, 88.73, 88.77, 104.84, 105.09, 105.34, 114.56, 114.64, 114.75, 114.83, 124.95, 161.42, 161.55, 163.90, 164.03. FT-IR (neat, cm⁻¹): 1615, 1585, 1428, 1368, 1180, 1122, 990, 856.

1,2-Bis(3,5-difluorophenyl)ethane-1,2-dione 11d

1,2-Bis(3,5-difluorophenyl)acetylene **6d** (0.5 g, 2 mmol) and iodine (250 mg, 1 mmol) were dissolved in DMSO (5 mL). The reaction was heated to 155 °C for 14 h under N₂ and cooled to room temperature. The reaction was poured into an aqueous solution of sodium thiosulfate (50 mL, 1 M) and the resulting precipitated was collected and washed with water (100 mL). The solid was dissolved in dichloromethane (50 mL) and washed with water (50 mL). The crude product was purified by column chromatography (SiO₂, dichloromethane/petroleum spirits 40-60 °C 1:1, $R_f = 0.3$) and a yellow crystalline solid (0.5 g, 89% yield) was obtained. m.p. 137 °C. ¹H NMR (500 MHz, CDCl₃, 20 °C, δ): 7.12 (tt, 2H, Ar), 7.49 (dt, 4H, Ar). ¹³C NMR (125 MHz, CDCl₃, 20 °C, δ): 110.44, 110.64, 110.84, 112.79, 112.85, 112.95, 113.01, 134.95, 135.01, 135.08, 162.10, 162.19, 164.12, 164.21, 189.64. FT-IR (neat, cm⁻¹): 1678 (C=O), 1591, 1437, 1327, 1135, 979, 869.

Cyclopentadienone 7d

1,2-Bis(3,5-difluorophenyl)ethane-1,2-dione **11d** (0.2 g, 0.71 mmol), diphenylacetone **12** (0.26 g, 0.71 mmol) and ethylene glycol (1 mL) were placed in a Schlenk tube (25 mL). The mixture was heated to 140 °C and Et₄NOH (0.1 mL, 1 M aq.) was added. The reaction was stirred at 140 °C for 1 h and allowed to cool to room temperature. Methanol (10 mL) was added and the resulting precipitate was collected and washed with methanol (50 mL). A purple solid (0.3 g, 69% yield) was obtained after drying under vacuum.

DSC: $T_m = 240 \,^{\circ}C$, $T_c = 180 \,^{\circ}C$. ¹H NMR (500 MHz, CDCl₃, 20 $^{\circ}C$, δ): 6.48 (dt, 4H, Ar), 6.79 (tt, 2H, Ar), 7.07 (d, *J* 8.5 Hz, 4H, Ar), 7.43 (d, *J* 8.5 Hz, 4H, Ar). ¹³C NMR (125 MHz, CDCl₃, 20 $^{\circ}C$, δ): 104.64, 104.84, 105.04, 111.78, 111.83, 111.93, 111.99, 123.06, 125.60, 128.12, 131.42, 131.51, 131.72, 135.39, 151.50, 161.88, 161.98, 163.87, 163.98, 198.18. FT-IR (neat, cm⁻¹): 1715 (C=O), 1619, 1586, 1489, 1431, 1346, 1122, 990, 751. HRMS-ESI (*m/z*), calcd. for C₂₉H₁₄Br₂F₄O: M+Ag⁺ 720.83725, found 720.83801.

Hexaphenylbenzene 8d

Cyclopentadienone **7d** (0.1 g, 0.16 mmol) and 1,2-bis(3,5-difluorophenyl)acetylene **6d** (41 mg, 0.16 mmol) and diphenyl ether (0.5 mL) were placed in a Schlenk tube (10 mL). The reaction was heated to 250 °C for 2 h or until the purple colour of the cyclopentadienone disappeared. The reaction was cooled to room temperature and the solid was dispersed in methanol (10 mL). A colourless crystalline solid (0.1 g, 75% yield) was obtained after filtration and drying under vacuum.

DSC: $T_m = 268 \text{ °C}$. ¹H NMR (500 MHz, CDCl₃, 20 °C, δ): 6.37 (dt, 8H, Ar), 6.46 (tt, 4H, Ar), 6.71 (d, *J* 7 Hz, 4H, Ar), 7.15 (d, *J* 7 Hz, 4H, Ar). ¹³C NMR (125 MHz, CDCl₃, 20 °C, δ): 102.18, 102.43, 102.68, 113.59, 113.66, 113.78, 113.85, 121.12, 130.78, 131.85, 137.06, 138.87, 138.88, 139.44, 141.90, 160.70, 160.83, 163.19, 163.32. FT-IR (neat, cm⁻¹): 1619, 1595, 1414, 1288, 1124, 1013, 992, 847. HRMS-ESI (*m/z*), calcd. for C₄₂H₂₀Br₂F₈: M+Ag⁺ 942.88290, found 942.88364.

Figure S1. ¹H NMR (500 MHz) spectrum of compound **7b** in CDCl₃.

Figure S2. ¹³C NMR (125 MHz) spectrum of compound **7b** in CDCl₃.

NMR Data - Compound 8b

Figure S4. ¹³C NMR (125 MHz) spectrum of compound **8b** in CDCl₃.

Figure S6. ¹³C NMR (125 MHz) spectrum of compound **11c** in CDCl₃.

Figure S7. ¹H NMR (500 MHz) spectrum of compound **7c** in CDCl₃.

Figure S8. ¹³C NMR (125 MHz) spectrum of compound 7c in CDCl₃.

Figure S10. ¹³C NMR (125 MHz) spectrum of 8c in CDCl₃.

Figure S12. ¹³C NMR (125 MHz) spectrum of compound **6d** in CDCl₃.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Figure S16. ¹³C NMR (125 MHz) spectrum of compound 7d in CDCl₃.

NMR Data – Compound 8d

Figure S17. ¹H NMR (500 MHz) spectrum of compound 8d in CDCl₃.

Figure S18. ¹³C NMR (125 MHz) spectrum of compound **8d** in CDCl₃.

Figure S20. ¹³C NMR (125 MHz) spectrum of compound **10b** in CDCl₃ (60 mM).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Figure S22. ¹³C NMR (125 MHz) spectrum of compound **10c** in CDCl₃.

Matrix-assisted laser desorption ionization mass spectrum (MALDI-MS) of HBC derivatives

Figure S23. MALDI-MS of HBC derivative **3** (680 m/z) synthesised using $FeCl_3/CF_3SO_3H$. Chlorinated products were observed (714 and 748 m/z).

Figure S24. MALDI-MS of HBC derivative **3** (680 m/z) synthesised using DDQ/CF₃SO₃H. No chlorinated products were detected.

Figure S25. Thermal gravimetric analysis plots of fluorenyl HBC compounds **10a-c** showing percentage weight loss.

Figure S26. Differential scanning calorimetry data for HBC **10b** showing the second and third heat-cool cycles (10 °C/min).

Figure S27. Differential scanning calorimetry data for HBC **10c** showing the second and third heat-cool cycles (10 °C/min).

Figure S28. UV-vis spectrum of HBC compounds 10a-c in chloroform solution.

Figure S29. Normalized UV-vis spectrum of HBC compounds **10a-c** in solution and in solid state.

Figure S30. Normalized photoluminescence spectrum of HBC compounds **10a-c** in solution and in solid state.

Electrochemistry of fluorenyl HBC compounds 10a-c

Figure S31. CV curve of **10a** in chlorobenzene/MeCN 10:1, 1×10^{-3} M, Bu₄NPF₆ (0.1 M), 295 K, scan rate = 50 mV·s⁻¹, versus Fc/Fc⁺;

Figure S32. CV curve of **10b** in chlorobenzene/MeCN 10:1, 1×10^{-3} M, Bu₄NPF₆ (0.1 M), 295 K, scan rate = 50 mV·s⁻¹, versus Fc/Fc⁺.

Figure S33. CV curve of **10c** in chlorobenzene/MeCN 10:1, 1×10^{-3} M, Bu₄NPF₆ (0.1 M), 295 K, scan rate = 50 mV · s⁻¹, versus Fc/Fc⁺.

DFT calculations and energy level diagram

Figure S34. Models for HBC compounds **10a-c** and frontier orbital distribution calculated with DFT at the B3LYP/6-31G level using Gaussian 09W.⁷

Figure S35. Energy level diagram of HBC compounds **10a-c** derived from electrochemical and UV-vis absorption data. Calculated energies are in blue.

References

- 1. M. J. Mio, L. C. Kopel, J. B. Braun, T. L. Gadzikwa, K. L. Hull, R. G. Brisbois, C. J. Markworth and P. A. Grieco, *Org. Lett.*, 2002, **4**, 3199-3202.
- 2. S. Watanabe and J. Kido, *Chem. Lett.*, 2007, **36**, 590-591.
- 3. H. Sauriat-Dorizon, T. Maris, J. D. Wuest and G. D. Enright, *J. Org. Chem.*, 2002, **68**, 240-246.
- W. W. H. Wong, T. B. Singh, D. Vak, W. Pisula, C. Yan, X. L. Feng, E. L. Williams, K. L. Chan, Q. Mao, D. J. Jones, C.-Q. Ma, K. Müllen, P. Bäuerle and A. B. Holmes, *Adv. Funct. Mater.*, 2010, 20, 927-938.
- 5. J.-B. Baek and F. W. Harris, *Macromolecules*, 2004, **38**, 297-306.
- 6. L. D. Hicks, J. L. Hyatt, T. Moak, C. C. Edwards, L. Tsurkan, M. Wierdl, A. M. Ferreira, R. M. Wadkins and P. M. Potter, *Biorg. Med. Chem.*, 2007, **15**, 3801-3817.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Ad- amo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, revision A.1, Gaussian, Inc., Wallingford, CT, 2009.