Supporting Information

Palladium-catalysed heteroannulation of [60]fullerene with *N*-benzyl sulfonamides and subsequent functionalisation

Yi-Tan Su,^a You-Liang Wang^a and Guan-Wu Wang^{*a,b}

 ^a Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
^b State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.

E-mail: gwang@ustc.edu.cn

Table of contents

General procedures	S2
Spectral data of 2a-2h , 3a-3h and 4a-4c	S3
NMR spectra of 2a-2h, 3a-3h and 4a-4c	S14

General procedure for the synthesis of C_{60} -fused tetrahydroisoquinolines 2a-2h: To a solution of C_{60} (36.0 mg, 0.05 mmol) in *o*-dichlorobenzene (4 mL) was sequentially added *N*-benzyl sulfonamide **1a** (**1b-1h**, 0.25 mmol), $K_2S_2O_8$ (67.5 mg, 0.25 mmol), mesitylenesulfonic acid dihydrate (24.6 mg, 0.10 mmol) and Pd(OAc)₂ (1.1 mg, 0.005 mmol; 2.2 mg, 0.01 mmol for **1d**). The reaction mixture was stirred at 100 °C (80 °C for **1d**) for a desired time (monitored by TLC to prevent overreaction). The reaction solution was filtered through a silica gel plug to remove any insoluble material. After evaporation *in vacuo*, the residue was separated on a silica gel column with carbon disulfide as the eluent to give unreacted C_{60} , subsequent elution with carbon disulfide/dichloromethane to give product **2a** (**2b-2h**).

General procedure for the synthesis of C_{60} -fused indanes 3a-3h: To a solution of C_{60} -fused tetrahydroisoquinoline 2a (2b-2h, 0.0125 mmol) in *o*-dichlorobenzene (4 mL) was added mesitylenesulfonic acid dihydrate (8.9 mg, 0.0375 mmol). After being stirred at 100 °C for a designated time (monitored by TLC to prevent overreaction), the reaction mixture was filtered through a silica gel plug in order to remove any insoluble material and evaporated *in vacuo*. The residue was separated on a silica gel column with carbon disulfide/dichloromethane as the eluent to give unreacted C_{60} -fused tetrahydroisoquinoline 2a (2b-2h) and C_{60} -fused indane 3a (3b-3h).

Synthesis of C₆₀-fused indanes 4a and 4b: To a solution of C₆₀-fused fulleroindane 3a (14.7 mg, 0.015 mmol) in a mixture solvent of *o*-dichlorobenzene (4.5 mL)/benzene or mesitylene (1.5 mL) was added FeCl₃ (7.3 mg, 0.045 mmol). The reaction mixture was stirred in a 15 mL sealed tube at 130 °C for 1 h. The reaction solution was filtered through a silica gel plug to remove any insoluble material. After evaporation *in vacuo*, the product was separated on a silica gel column with carbon disulfide as the eluent to afford C₆₀-fused indane 4a (9.0 mg, 68%) or C₆₀-fused indane 4b (11.4 mg, 82%).

Synthesis of C₆₀-fused indane 4c: To a solution of C₆₀-fused fulleroindane 3a (14.7 mg, 0.015 mmol) in *o*-dichlorobenzene (6 mL) was added FeCl₃ (7.3 mg, 0.045 mmol) and Et₃SiH (24.0 μ L, 0.15 mmol). The reaction mixture was stirred in a 15 mL sealed tube at 130 °C for 12 h. After the reaction solution was evaporated *in vacuo*, the product was separated on a silica gel column with carbon disulfide as the eluent to afford C₆₀-fused indane 4c (8.5 mg, 70%).

> Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Spectral data of **2a**: ¹H NMR (300 MHz, CS₂/CDCl₃) δ 8.14 (d, 7.5 Hz, 1H), 7.74 (d, J = 7.5 Hz, 1H), 7.69 (d, J = 8.3 Hz, 2H), 7.54 (td, J = 7.5, 1.0 Hz, 1H), 7.47 (td, J = 7.5, 1.5 Hz, 1H), 7.08 (d, J = 8.3 Hz, 2H), 6.02 (d, J = 16.4 Hz, 1H), 5.77 (d, J = 16.4 Hz, 1H), 2.33 (s, 3H); ¹³C NMR [75 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent] (all 1C unless indicated) δ 158.76, 151.86, 150.70, 148.20, 147.98, 147.49, 147.09, 146.36 (2C), 146.28, 145.97 (3C), 145.94 (2C), 145.69, 145.60, 145.37 (3C), 145.31, 145.20, 145.16, 145.06, 144.99, 144.62, 144.46, 144.42, 144.32 (2C), 143.89, 143.28, 142.85, 142.79 (aryl C), 142.68, 142.55, 142.53, 142.47, 142.37, 142.12 (4C), 142.01, 141.92, 141.61, 141.39 (2C), 141.09, 140.27, 140.05 (2C), 139.79, 138.92, 138.38 (aryl C), 138.37, 138.07, 138.04, 136.68 (aryl C), 136.65, 136.19, 135.84 (aryl C), 131.66, 128.82 (2C, aryl C), 128.74 (aryl C), 128.24 (2C, aryl C), 127.81 (aryl C), 127.62 (aryl C), 127.51 (aryl C), 79.99 (sp³-C of C₆₀), 63.74 (sp³-C of C₆₀), 48.84 (CH₂), 21.42 (CH₃); FT-IR ν /cm⁻¹ (KBr) 2919, 1505, 1434, 1333, 1154, 1083, 1037, 888, 808, 745, 667, 524; UV-vis (CHCl₃) λ_{max}/nm (log ε) 257 (4.96), 319 (4.55), 434 (3.38), 693 (2.39); (-)ESI MS m/z calcd for C₇₄H₁₃NO₂S [M⁻] 979.0667, found 979.0673.

Spectral data of **2b**: ¹H NMR (300 MHz, CS₂/CDCl₃) δ 8.07 (d, *J* = 1.8 Hz, 1H), 7.74 (d, *J* = 8.4 Hz, 2H), 7.69 (d, *J* = 8.1 Hz, 1H), 7.51 (dd, *J* = 8.1, 1.8 Hz, 1H), 7.12 (d, *J* = 8.4 Hz, 2H), 5.99 (d, *J* = 16.4 Hz, 1H), 5.76 (d, *J* = 16.4 Hz, 1H), 2.36 (s, 3H); ¹³C NMR [75 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent] (all 1C unless indicated) δ 157.95, 151.06, 150.29, 148.17, 148.10, 147.61, 146.76, 146.46 (2C), 146.41, 146.12, 146.08 (4C), 145.77, 145.62, 145.47, 145.44 (2C), 145.32, 145.28, 145.21, 145.15 (2C), 144.87, 144.54, 144.44, 144.42, 144.38, 143.82, 143.25 (aryl *C*), 143.13, 142.96, 142.77, 142.68, 142.63, 142.57, 142.49, 142.21 (3C), 142.09, 142.00 (2C), 141.72, 141.52, 141.48, 141.23, 140.31, 140.21, 140.16, 139.93, 139.22, 138.77 (aryl *C*), 138.27, 138.05 (aryl *C*), 137.92, 136.51, 136.48, 134.95 (aryl *C*), 127.69 (aryl *C*), 127.66 (aryl *C*), 79.99 (sp³-C of C₆₀), 63.43 (sp³-C of C₆₀), 48.49 (CH₂), 21.47 (CH₃); FT-IR *v*/cm⁻¹ (KBr) 2921,

1510, 1345, 1160, 1084, 1039, 813, 668, 563, 526; UV-vis (CHCl₃) λ_{max} /nm (log ε) 257 (4.99), 317 (4.58), 435 (3.33), 693 (2.44); (-)ESI MS m/z calcd for C₇₄H₁₂³⁵ClNO₂S [M⁻] 1013.0277, found 1013.0282.

Spectral data of **2c**: ¹H NMR (300 MHz, CS₂/CDCl₃) δ 7.92 (s, 1H), 7.73 (d, *J* = 7.8 Hz, 2H), 7.65 (d, *J* = 7.6 Hz, 1H), 7.36 (d, *J* = 7.6 Hz, 1H), 7.09 (d, *J* = 7.8 Hz, 2H), 6.01 (d, *J* = 16.4 Hz, 1H), 5.76 (d, *J* = 16.4 Hz, 1H), 2.45 (s, 3H), 2.34 (s, 3H); ¹³C NMR [75 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent] (all 1C unless indicated) δ 158.91, 151.96, 150.87, 148.47, 148.03, 147.54, 147.23, 146.40 (2C), 146.33, 146.02 (3C), 145.99 (2C), 145.72, 145.66, 145.41 (4C), 145.24, 145.20, 145.11, 145.02, 144.65, 144.52, 144.48, 144.37 (2C), 143.95, 143.41, 142.91, 142.73, 142.72 (aryl *C*), 142.60, 142.58, 142.51, 142.42, 142.25, 142.17 (3C), 142.11, 141.97, 141.65, 141.44 (2C), 141.11, 140.32, 140.13, 140.07, 139.81, 138.96, 138.53 (aryl *C*), 138.46 (aryl *C*), 138.11, 138.08, 136.70, 136.43 (aryl *C*), 128.21 (aryl *C*), 127.85 (aryl *C*), 80.04 (sp³-*C* of C₆₀), 63.80 (sp³-*C* of C₆₀), 48.73 (*C*H₂), 21.59 (*C*H₃), 21.45 (*C*H₃); FT-IR *v*/cm⁻¹ (KBr) 2922, 1510, 1343, 1159, 1086, 1035, 810, 665, 562, 523; UV-vis (CHCl₃) λ_{max} /nm (log ε) 257 (4.98), 318 (4.55), 435 (3.33), 693 (2.50); (-)ESI MS m/z calcd for C₇₅H₁₅NO₂S [M⁻] 993.0823, found 993.0819.

Spectral data of **2d**: ¹H NMR (300 MHz, CS₂/CDCl₃) δ 7.67 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 8.2 Hz, 1H), 7.57 (d, J = 2.4 Hz, 1H), 7.06 (d, J = 8.3 Hz, 2H), 7.01 (dd, J = 8.2, 2.4 Hz), 5.91 (d, J = 16.4 Hz, 1H), 5.68 (d, J = 16.4 Hz, 1H), 3.83 (s, 3H), 2.33 (s, 3H); ¹³C NMR [75 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent] (all 1C unless indicated) δ 160.00 (aryl *C*), 158.75, 151.80, 150.76, 148.36, 148.11, 147.62, 147.07, 146.46 (2C), 146.38, 146.08 (5C), 145.79, 145.69, 145.47, 145.45, 145.42, 145.36, 143.15 (aryl *C*), 142.94, 142.78, 142.63, 142.61, 142.55, 142.47, 142.20 (4C), 142.12,

142.01, 141.70, 141.49, 141.47, 141.13, 140.35, 140.17, 140.11, 139.84, 139.11, 138.18 (aryl *C*), 138.18, 138.11, 138.01 (aryl *C*), 136.75, 136.24, 131.87, 128.97 (2C, aryl *C*), 128.82 (aryl *C*), 128.34 (2C, aryl *C*), 128.04 (aryl *C*), 114.80 (aryl *C*), 112.11 (aryl *C*), 79.96 (sp³-*C* of C₆₀), 63.96 (sp³-*C* of C₆₀), 55.27 (OCH₃), 48.55 (CH₂), 21.42 (CH₃); FT-IR ν /cm⁻¹ (KBr) 2921, 1500, 1436, 1332, 1244, 1154, 1086, 1037, 808, 665, 558, 524; UV-vis (CHCl₃) λ_{max} /nm (log ε) 257 (5.00), 317 (4.54), 435 (3.38), 692 (2.46); (-)ESI MS m/z calcd for C₇₅H₁₅NO₃S [M⁻] 1009.0773, found 1009.0777.

Spectral data of **2e**: ¹H NMR (300 MHz, CS₂/CDCl₃) δ 7.83 (s, 1H), 7.71 (d, *J* = 8.3 Hz, 2H), 7.49 (s, 1H), 7.08 (d, *J* = 8.3 Hz, 2H), 5.95 (d, *J* = 16.2 Hz, 1H), 5.69 (d, *J* = 16.2 Hz, 1H), 2.46 (s, 3H), 2.34 (s, 3H), 2.33 (s, 3H); ¹³C NMR [75 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent] (all 1C unless indicated) δ 159.12, 152.04, 150.85, 148.32, 147.97, 147.47, 147.16, 146.32 (2C), 146.23, 145.93 (5C), 145.65, 145.59, 145.32 (4C), 145.12 (2C), 145.03, 144.93, 144.49, 144.45 (2C), 144.28, 144.27, 143.84, 143.38, 142.87 (aryl *C*), 142.82, 142.63, 142.48 (2C), 142.42, 142.32, 142.20, 142.11, 142.07 (3C), 141.88, 141.55, 141.36 (2C), 141.02, 140.23, 140.04 (2C), 139.66, 138.90, 138.25 (aryl *C*), 138.08, 138.01, 137.12 (aryl *C*), 128.71 (2C, aryl *C*), 128.60 (aryl *C*), 128.24 (2C, aryl *C*), 80.03 (sp³-*C* of C₆₀), 63.50 (sp³-*C* of C₆₀), 48.55 (*C*H₂), 21.34 (*C*H₃), 19.78 (*C*H₃), 19.28 (*C*H₃); FT-IR ν /cm⁻¹ (KBr) 2922, 1508, 1443, 1342, 1158, 1080, 1032, 882, 808, 664, 563, 525; UV-vis (CHCl₃) λ_{max}/nm (log ε) 258 (5.04), 318 (4.63), 437 (3.43), 695 (2.46); (-)ESI MS m/z calcd for C₇₆H₁₇NO₂S [M⁻] 1007.0980, found 1007.0983.

Spectral data of **2f**: ¹H NMR (300 MHz, CS₂/CDCl₃) δ 8.15 (d, 7.8 Hz, 1H), 7.84 (d, J = 7.5 Hz, 2H), 7.76 (d, J = 7.2 Hz, 1H), 7.56 (td, J = 7.5, 1.0 Hz, 1H), 7.48 (td, J = 7.5, 1.5 Hz, 1H), 7.41 (t, J = 7.5 Hz, 1H), 7.30 (t, J = 7.5 Hz, 2H), 6.06 (d, J = 16.5 Hz, 1H), 5.82 (d, J = 16.5 Hz, 1H); ¹³C NMR [75 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation

reagent] (all 1C unless indicated) δ 158.77, 151.93, 150.65, 148.11, 148.05, 147.62, 147.17, 146.49 (2C), 146.39, 146.11 (5C), 145.84, 145.69, 145.50 (2C), 145.42, 145.35, 145.32, 145.29, 145.19, 145.11, 144.74, 144.58, 144.54, 144.41 (2C), 143.89, 143.36, 142.98, 142.80, 142.68, 142.66, 142.60, 142.51, 142.24 (4C), 142.12, 142.04, 141.75, 141.52 (2C), 141.22 (aryl *C*), 141.22, 140.37, 140.18, 140.12, 139.91, 139.06, 138.23 (2C), 136.82 (aryl C), 136.82, 136.21, 135.85 (aryl *C*), 132.30 (aryl *C*), 131.77, 129.03 (aryl *C*), 128.34 (2C, aryl *C*), 128.27 (2C, aryl *C*), 127.90 (aryl *C*), 127.78 (aryl *C*), 127.66 (aryl *C*), 80.10 (sp³-*C* of C₆₀), 63.88 (sp³-*C* of C₆₀), 48.96 (*C*H₂); FT-IR *v*/cm⁻¹ (KBr) 2924, 1509, 1439, 1333, 1162, 1085, 1036, 808, 742, 523; UV-vis (CHCl₃) $\lambda_{\text{max}}/\text{nm}$ (log ε) 258 (5.03), 318 (4.62), 434 (3.43), 693 (2.44); (-)ESI MS m/z calcd for C₇₃H₁₁NO₂S [M⁻] 965.0510, found 965.0512.

Spectral data of **2g**: ¹H NMR (300 MHz, CS₂/CDCl₃) δ 8.13 (d, J = 7.5 Hz, 1H), 7.76-7.72 (m, 3H), 7.55 (td, J = 7.5, 1.2 Hz, 1H), 7.49 (td, J = 7.5, 1.5 Hz, 1H), 7.26 (d, J = 8.7 Hz, 2H), 6.06 (d, J = 16.5 Hz, 1H), 5.78 (d, J = 16.5 Hz, 1H); ¹³C NMR [75 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent] (all 1C unless indicated) δ 158.39, 151.74, 150.34, 148.03, 147.93, 147.55, 146.93, 146.41 (2C), 146.32, 146.05 (3C), 146.00 (2C), 145.80, 145.53, 145.45, 145.44, 145.27 (2C), 145.22 (2C), 145.11, 145.02, 144.67, 144.48, 144.43, 144.35 (2C), 143.70, 143.18, 142.91, 142.73, 142.62, 142.58, 142.54, 142.47, 142.19 (3C), 142.14, 141.99, 141.95, 141.71, 141.54, 141.44, 141.11, 140.26, 140.12, 140.04, 139.92, 139.42 (aryl *C*), 139.05, 138.96 (aryl *C*), 138.29, 137.78, 136.68, 136.65 (aryl *C*), 127.88 (aryl *C*), 127.74 (aryl *C*), 127.61 (aryl *C*), 80.01 (sp³-*C* of C₆₀), 63.81 (sp³-*C* of C₆₀), 49.00 (*C*H₂); FT-IR ν/cm^{-1} (KBr) 2921, 1508, 1336, 1157, 1086, 1036, 889, 810, 748, 619, 525; UV-vis (CHCl₃) $\lambda_{\text{max}}/\text{nm}$ (log ε) 258 (5.00), 319 (4.57), 434 (3.44), 693 (2.58); (-)ESI MS m/z calcd for C₇₃H₁₀³⁵CINO₂S [M⁻] 999.0121, found 999.0114.

Spectral data of **2h**: ¹H NMR (300 MHz, CS₂/CDCl₃) δ 8.41-8.38 (m, 1H), 7.77-7.74

(m, 1H), 7.64–7.56 (m, 2H), 6.02 (d, J = 16.5 Hz, 1H), 5.60 (d, J = 16.5 Hz, 1H), 2.95 (s, 3H); ¹³C NMR [75 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent] (all 1C unless indicated) δ 157.86, 151.92, 150.32, 148.91, 148.12, 147.75, 146.73, 146.49 (3C), 146.19 (3C), 146.12 (2C), 145.80, 145.59 (2C), 145.52, 145.38 (4C), 145.19 (2C), 144.91, 144.55 (2C), 144.46, 144.39, 144.04, 143.43, 143.01, 142.79 (2C), 142.63 (3C), 142.49, 142.37 (2C), 142.17, 142.07, 142.01, 141.87, 141.79, 141.60, 141.11, 140.96, 140.35, 140.25, 140.17, 139.25, 139.08, 136.62 (aryl *C*), 136.33, 135.83, 135.68 (aryl *C*), 135.23, 132.21, 129.27 (aryl *C*), 128.27 (aryl *C*), 127.99 (aryl *C*), 127.95 (aryl *C*), 79.97 (sp³-*C* of C₆₀), 63.54 (sp³-*C* of C₆₀), 49.06 (*C*H₂), 42.36 (*C*H₃); FT-IR ν /cm⁻¹ (KBr) 2923, 2854, 1505, 1449, 1332, 1152, 1072, 1036, 953, 801, 745, 520; UV-vis (CHCl₃) λ_{max} /nm (log ε) 257 (4.99), 317 (4.57), 433 (3.37), 692 (2.37); (-)ESI MS m/z calcd for C₆₈H₉NO₂S [M⁻] 903.0354, found 903.0351.

Spectral data of **3a**: ¹H NMR (400 MHz, CS₂/DMSO- d_6 /CDCl₃) δ 9.32 (d, J = 9.6 Hz, 1H), 8.03 (d, J = 7.6 Hz, 1H), 7.78 (d, J = 8.0 Hz, 2H), 7.59 (t, J = 7.6 Hz, 1H), 7.51 (t, J= 7.5, 0.9 Hz, 1H), 7.45 (d, J = 7.6, 1.5 Hz, 1H), 7.15 (d, J = 8.0 Hz, 2H), 6.75 (d, J = 9.6Hz, 1H), 2.36 (s, 3H); D₂O exchange experiment: ¹H NMR (400 MHz, $CS_2/DMSO-d_6/CDCl_3$) δ 8.31 (d, J = 9.6 Hz, 0.18H, NH), 8.07 (d, J = 7.6 Hz, 1H), 7.82 (d, J = 8.0 Hz, 2H), 7.65-7.54 (m, 3H), 7.15 (d, J = 8.0 Hz, 2H), 6.81 (m, 1H), 2.36 (s, 10.0 Hz)3H); ¹³C NMR [75 MHz, $CS_2/DMSO-d_6/CDCl_3$ with $Cr(acac)_3$ as relaxation reagent] (all 1C unless indicated) & 156.38, 154.57, 152.30, 152.94, 146.69, 146.59, 146.58, 145.87, 145.57, 145.54, 145.53, 145.48, 145.40, 145.30, 145.28 (3C), 145.11, 145.08, 144.88, 144.65, 144.61, 144.52 (3C), 144.48, 144.40, 144.36, 143.91, 143.88, 143.71, 143.64, 142.49 (aryl C), 142.36, 142.30, 141.97, 141.89, 141.83 (2C), 141.68, 141.61 (2C), 141.40, 141.38, 141.31, 141.26, 141.09, 141.02 (2C), 140.97, 140.91, 140.80, 139.86, 139.68 (aryl C), 139.57, 139.27 (aryl C), 138.55, 138.35, 135.99, 134.91, 134.57, 133.71, 129.81 (aryl C), 129.21 (2C, aryl C), 129.15 (aryl C), 126.63 (aryl C), 126.45 (2C, aryl C), 125.13 (aryl C), 74.93 (sp³-C of C₆₀), 73.52 (sp³-C of C₆₀), 68.36 (CH), 20.98 (CH₃); FT-IR v/cm⁻¹ (KBr) 3243, 2921, 2852, 1452, 1420, 1337, 1288, 1161, 1083, 810, 747, 666, 558, 527; UV-vis (CHCl₃) λ_{max}/nm (log ε) 258 (4.98), 312 (4.52), 430 (3.56), 700 (2.46); MALDI FT-ICR MS m/z calcd for C₆₇H₆N [M-MePhSO₂] 824.0500, found 824.0495.

> Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Spectral data of **3b**: ¹H NMR (400 MHz, CS₂/DMSO- d_6) δ 9.52 (d, J = 9.6 Hz, 1H), 8.00 (d, J = 2.0 Hz, 1H), 7.75 (d, J = 8.4 Hz, 2H), 7.49 (dd, J = 8.0, 2.0 Hz, 1H), 7.41 (d, J = 8.0 Hz), 7.15 (d, J = 8.4 Hz, 2H), 6.67 (d, J = 9.6 Hz, 1H), 2.36 (s, 3H); ¹³C NMR [75] MHz, $CS_2/DMSO-d_6/CDCl_3$ with $Cr(acac)_3$ as relaxation reagent] (all 1C unless indicated) & 155.55, 153.41, 152.23, 152.00, 146.41, 146.33, 146.08, 145.32, 145.30, 145.26, 145.24, 145.14, 145.03 (2C), 145.01 (2C), 144.99, 144.76, 144.71, 144.51, 144.38, 144.34, 144.31, 144.28, 144.23 (2C), 144.14, 144.12, 143.61 (2C), 143.39, 143.32, 142.72 (aryl C), 142.09, 142.03, 141.82 (aryl C), 141.74, 141.63, 141.57 (2C), 141.40, 141.33, 141.25, 141.08, 141.03 (2C), 140.99, 140.86, 140.72, 140.65, 140.62, 140.51, 139.66, 139.32, 139.11 (aryl C), 138.33, 138.22 (aryl C), 138.09, 135.72, 135.14 (aryl C), 134.99, 134.43, 133.28, 129.06 (aryl C), 128.77 (2C, aryl C), 127.86 (aryl C), 126.32 (2C, aryl C), 124.66 (aryl C), 74.70 (sp³-C of C₆₀), 72.63 (sp³-C of C₆₀), 67.46 (CH), 20.81 (CH₃); FT-IR v/cm⁻¹ (KBr) 3269, 2921, 1428, 1336, 1160, 1084, 811, 662, 564, 525; UV-vis (CHCl₃) λ_{max} /nm (log ε) 255 (4.97), 312 (4.50), 430 (3.52), 698 (2.48); MALDI FT-ICR MS m/z calcd for C₆₇H₅³⁵ClN [M-MePhSO₂] 858.0111, found 858.0116.

Spectral data of **3c**: ¹H NMR ((400 MHz, CS₂/DMSO-*d*₆/CDCl₃) δ 9.34 (d, *J* = 9.4 Hz, 1H), 7.83 (s, 1H), 7.76 (d, *J* = 8.0 Hz, 2H), 7.31 (dd, *J* = 7.8, 0.8 Hz, 1H), 7.28 (d, *J* = 7.8 Hz), 7.16 (d, *J* = 8.0 Hz, 2H), 6.67 (d, *J* = 9.4 Hz, 1H), 2.51 (s, 3H), 2.36 (s, 3H); FT-IR *v*/cm⁻¹ (KBr) 3260, 2922, 1434, 1325, 1261, 1157, 1093, 1026, 805, 662, 525; UV-vis (CHCl₃) λ_{max} /nm (log ε) 256 (4.97), 312 (4.50), 430 (3.48), 700 (2.52); MALDI FT-ICR MS m/z calcd for C₆₈H₈N [M-MePhSO₂] 838.0657, found 838.0663.

> Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Spectral data of **3d**: ¹H NMR (400 MHz, CS₂/DMSO- d_6) δ 9.25 (d, J = 9.6 Hz, 1H), 7.74 (d, J = 8.2 Hz, 2H), 7.43 (d, J = 2.4 Hz, 1H), 7.30 (d, J = 8.6 Hz, 1H), 7.13 (d, J = 1.48.2 Hz, 2H), 7.03 (dd, J = 8.6, 2.4 Hz, 1H), 6.60 (d, J = 9.6 Hz, 1H), 3.87 (s, 3H), 2.37 (s, 3H); ¹³C NMR [75 MHz, CS₂/DMSO-d₆ with Cr(acac)₃ as relaxation reagent] (all 1C unless indicated) & 160.19 (aryl C), 155.60, 153.52, 152.46, 152.16, 145.96, 145.89, 145.83, 145.05, 144.87, 144.84 (2C), 144.80, 144.69, 144.59, 144.57 (2C), 144.55, 144.38, 144.35, 144.19, 143.97, 143.88, 143.86, 143.81 (2C), 143.76, 143.71, 143.68, 143.23 (2C), 142.96, 142.91, 141.67, 141.61, 141.61 (aryl C), 141.30, 141.18, 141.14, 141.12, 141.00, 140.94 (3C), 140.74 (2C), 140.58, 140.54, 140.37, 140.25, 140.24, 140.21, 140.07, 139.19, 139.07 (aryl C), 138.83, 137.93, 137.64, 135.29, 134.48, 133.86, 132.88, 130.48 (aryl C), 128.23 (2C, aryl C), 127.00 (aryl C), 126.00 (2C, aryl C), 115.97 (aryl C), 107.93 (aryl C), 74.64 (sp³-C of C₆₀), 72.61 (sp³-C of C₆₀), 67.17 (CH), 54.34 (OCH₃), 20.52 (CH₃); FT-IR v/cm⁻¹ (KBr) 3254, 2924, 2853, 1457, 1263, 1158, 1090, 1025, 804, 662, 526; UV-vis (CHCl₃) λ_{max}/nm (log ε) 256 (4.98), 312 (4.52), 435 (3.48), 698 (2.40); MALDI FT-ICR MS m/z calcd for C₆₈H₈NO [M-MePhSO₂] 854.0606, found 854.0612.

Spectral data of **3e**: ¹H NMR (400 MHz, CS₂/DMSO-*d*₆/CDCl₃) δ 9.08 (d, *J* = 9.6 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 2H), 7.78 (s, 1H), 7.20 (d, *J* = 8.0 Hz, 2H), 7.06 (s, 1H), 6.70 (d, *J* = 9.6 Hz, 1H), 2.41 (s, 3H), 2.39 (s, 3H), 2.36 (s, 3H); ¹³C NMR [75 MHz, CS₂/DMSO-*d*₆/CDCl₃ with Cr(acac)₃ as relaxation reagent] (all 1C unless indicated) δ 156.41, 154.50, 152.30, 152.95, 146.47, 146.42, 146.38, 145.69, 145.34, 145.31 (3C), 145.20, 145.10, 145.08 (3C), 144.89, 144.86, 144.73, 144.43, 144.39, 144.30 (3C),

144.26, 144.19 (2C), 143.72, 143.70, 143.53, 143.46, 142.17, 142.12, 141.84 (aryl *C*), 141.79, 141.69, 141.63 (2C), 141.53, 141.48, 141.41, 141.32, 141.22, 141.10, 141.06, 140.90, 140.79, 140.78, 140.73, 140.61, 139.66, 139.47 (aryl *C*), 139.33, 138.44 (aryl C), 138.44, 138.16, 138.08 (aryl *C*), 137.34 (aryl *C*), 136.94 (aryl C), 135.81, 134.65, 134.22, 133.48, 128.83 (2C, aryl *C*), 127.07 (aryl *C*), 126.46 (2C, aryl *C*), 125.47 (aryl *C*), 75.03 (sp³-*C* of C₆₀), 73.06 (sp³-*C* of C₆₀), 68.06 (*C*H), 20.85 (*C*H₃), 19.45 (*C*H₃), 19.38 (*C*H₃); FT-IR ν /cm⁻¹ (KBr) 3250, 2923, 2854, 1447, 1328, 1156, 1089, 806, 663, 563, 524; UV-vis (CHCl₃) λ_{max} /nm (log ε) 256 (4.99), 311 (4.51), 430 (3.50), 700 (2.46); MALDI FT-ICR MS m/z calcd for C₆₉H₁₀N [M-MePhSO₂] 852.0813, found 852.0820.

Spectral data of **3f**: ¹H NMR (400 MHz, CS₂/DMSO-*d*₆) δ 9.51 (d, *J* = 9.2 Hz, 1H), 8.02 (d, *J* = 7.6 Hz, 1H), 7.92 (d, *J* = 7.2 Hz, 2H), 7.58 (t, *J* = 7.0 Hz, 1H), 7.50-7.34 (m, 5H), 6.74 (d, *J* = 9.2 Hz, 1H); ¹³C NMR [75 MHz, CS₂/DMSO-*d*₆/CDCl₃ with Cr(acac)₃ as relaxation reagent] (all 1C unless indicated) δ 156.04, 154.14, 152.87, 152.59, 146.35, 146.31, 146.28, 145.47, 145.25, 145.21, 145.18 (2C), 145.07, 144.99, 145.96 (2C), 145.94, 144.75, 144.71, 144.48, 144.34 (2C), 144.20 (3C), 144.15, 144.13, 144.08, 143.62, 143.60, 143.37, 143.29, 142.04, 141.99 (aryl *C*), 141.99, 141.64, 141.56, 141.51 (2C), 141.37, 141.32, 141.30, 141.10, 141.07, 140.98, 140.93, 140.78, 140.70, 140.66 (3C), 140.59, 139.56, 139.42 (aryl *C*), 128.72 (aryl *C*), 128.23 (2C, aryl *C*), 126.41 (aryl *C*), 126.15 (2C, aryl *C*), 124.70 (aryl *C*), 74.55 (sp³-C of C₆₀), 73.11 (sp³-C of C₆₀), 68.08 (CH); FT-IR *v*/cm⁻¹ (KBr) 3245, 2923, 2854, 1446, 1330, 1261, 1157, 1091, 1027, 804, 745, 676, 550, 521; UV-vis (CHCl₃) λ_{max}/nm (log ε) 257 (4.97), 312 (4.47), 430 (3.49), 700 (2.50).MALDI FT-ICR MS m/z calcd for C₆₇H₆N [M-PhSO₂] 824.0500, found 824.0506.

> Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Spectral data of **3g**: ¹H NMR (400 MHz, CS₂/DMSO-*d*₆) δ 9.55 (d, *J* = 10.0 Hz, 1H), 8.03 (d, *J* = 7.5 Hz, 1H), 7.85 (d, *J* = 8.6 Hz, 2H), 7.60 (t, *J* = 7.8 Hz, 1H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.50 (d, *J* = 7.6 Hz, 1H), 7.31 (d, *J* = 8.6 Hz, 2H), 6.74 (d, *J* = 10 Hz, 1H); ¹³C NMR [75 MHz, CS₂/DMSO-*d*₆/CDCl₃ with Cr(acac)₃ as relaxation reagent] (all 1C unless indicated) δ 156.09, 154.22, 153.02, 152.53, 146.52, 146.44, 146.19, 145.80, 145.60, 145.41, 145.38, 145.35, 145.24, 145.15 (2C), 145.13 (2C), 145.11, 144.90, 144.87, 144.67, 144.50, 144.47, 144.37 (3C), 144.31, 144.25, 143.77, 143.75, 143.55, 143.48, 142.23, 142.23 (aryl *C*), 142.17, 141.82, 141.74, 141.69 (2C), 141.56, 141.47 (2C), 141.25, 141.22, 141.15, 141.11, 140.94, 140.85 (3C), 140.81, 140.73, 139.73, 139.44 (aryl *C*), 139.42, 138.51, 138.20, 137.70 (aryl *C*), 135.94, 134.85, 134.38, 133.57, 129.65 (aryl *C*), 129.03 (aryl *C*), 128.60 (2C, aryl *C*), 127.99 (2C, aryl *C*), 126.55 (aryl *C*), 124.93 (aryl *C*), 74.68 (sp³-*C* of C₆₀), 73.32 (sp³-*C* of C₆₀), 68.27 (CH); FT-IR *v*/cm⁻¹ (KBr) 3251, 2924, 2854, 1458, 1417, 1262, 1164, 1091, 1026, 804, 751, 554, 524; UV-vis (CHCl₃) λ_{max}/nm (log ε) 256 (4.98), 312 (4.49), 430 (3.56), 698 (2.53). MALDI FT-ICR MS m/z calcd for C₆₇H₆N [M-CIPhSO₂] 824.0500, found 824.0496

Spectral data of **3h**: ¹H NMR (400 MHz, CS₂/DMSO-*d*₆) δ 8.84 (d, *J* = 9.8 Hz, 1H), 8.08-8.05 (m, 1H), 7.96-7.93 (m, 1H), 7.66-7.61 (m, 2H), 6.83 (d, *J* = 9.8 Hz, 1H), 3.07 (s, 3H); ¹³C NMR [75 MHz, CS₂/DMSO-*d*₆/CDCl₃ with Cr(acac)₃ as relaxation reagent] (all 1C unless indicated) δ 156.32, 154.21, 152.90, 152.68, 146.48, 146.43, 146.40, 145.51, 145.33, 145.28 (2C), 145.17, 145.07 (4C), 144.95, 144.80, 144.78, 144.53, 144.50, 144.46, 144.34, 144.30 (4C), 144.19, 143.70, 143.67, 143.51, 143.41, 142.20, 142.17, 141.76, 141.69, 141.65 (2C), 141.46, 141.43, 141.40, 141.26, 141.18, 141.12, 141.05, 140.98, 140.91 (2C), 140.85, 140.82, 140.79, 139.87 (aryl *C*), 139.72, 139.40, 139.00, 138.63, 136.00, 134.79, 134.39, 133.55, 129.35 (aryl *C*), 128.78 (aryl *C*), 126.78 (aryl *C*), 124.76 (aryl *C*), 74.68 (sp³-*C* of C₆₀), 73.26 (sp³-*C* of C₆₀), 67.97 (*C*H), 41.93

(CH₃); FT-IR v/cm⁻¹ (KBr) 3272, 2925, 2854, 1455, 1262, 1095, 1023, 802, 521; UV-vis (CHCl₃) λ_{max}/nm (log ε) 257 (4.99), 317 (4.57), 433 (3.37), 692 (2.37). MALDI FT-ICR MS m/z calcd for C₆₇H₆N [M-MeSO₂] 824.0500, found 824.0498.

Spectral data of **4a**: ¹H NMR (400 MHz, CS₂/CDCl₃) δ 8.17 (d, 7.6 Hz, 1H), 7.68 (bs, 1H), 7.62 (tt, 7.4, 1.2 Hz, 1H), 7.51 (td, 7.4, 1.2 Hz, 1H), 7.50 (d, 7.6 Hz, 2H), 7.38 (bs, 2H), 7.28 (tt, 7.4, 1.2 Hz, 1H), 6.50 (s, 1H); ¹³C NMR [75 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent] (all 1C unless indicated) δ 157.90, 154.85, 154.62, 153.97, 147.32, 147.20, 146.20, 146.12, 146.05, 145.96, 145.92 (3C), 145.89, 145.84, 145.80, 145.68, 145.58, 145.42, 145.25, 145.16, 145.12, 145.07, 145.04, 144.95 (2C), 144.93 (2C), 144.45, 144.31, 144.28, 144.25, 143.21, 143.10, 143.00 (2C), 142.47 (2C), 142.43, 142.41, 142.24, 142.10, 142.09, 142.06, 142.02, 141.97, 141.92 (2C), 141.73 (2C), 141.63 (2C), 141.56, 140.50, 140.27, 139.91, 139.15, 135.87, 135.24, 135.00, 134.22, 129.36 (aryl *C*), 128.95 (aryl *C*), 127.70 (aryl *C*), 127.52 (aryl *C*), 125.66 (aryl *C*), 76.14 (sp³-C of C₆₀), 75.68 (sp³-C of C₆₀), 64.56 (CH) (Note: 4C of the phenyl ring were absent due to slow rotation); FT-IR *v*/cm⁻¹ (KBr) 2921, 2853, 1451, 1425, 1182, 1029, 743, 698, 579, 524; UV-vis (CHCl₃) λ_{max}/nm (log ε) 257 (4.96), 308 (4.54), 430 (3.53), 702 (2.45); MALDI FT-ICR MS m/z calcd for C₇₃H₁₀ [M⁻] 886.8605, found 886.8610.

Spectral data of **4b**: ¹H NMR (400 MHz, $CS_2/CDCl_3$) δ 8.17 (d, 7.6 Hz, 1H), 7.58 (t, 7.4 Hz, 1H), 7.51 (dt, 7.6, 1.2 Hz, 1H), 7.41 (d, 8.0 Hz, 2H), 7.04 (s, 1H), 6.91 (s, 1H), 6.82 (s, 1H), 2.67 (s, 1H), 2.29 (s, 1H), 2.26 (s, 1H), ¹³C NMR [75 MHz, $CS_2/DMSO-d_6$ with Cr(acac)₃ as relaxation reagent] (all 1C unless indicated) δ 156.99, 153.38, 153.35, 153.26, 146.16, 146.06, 145.44, 145.19, 145.01, 144.96, 144.86, 144.83 (2C), 144.79, 144.77, 144.72, 144.54, 144.51, 144.46, 144.19, 144.08, 144.03, 144.00 (3C), 143.96, 143.90, 143.85, 143.39, 143.26, 143.21, 143.16, 141.94 (2C), 141.87, 141.46, 141.43 (2C), 141.38, 141.21, 141.02, 140.99 (2C), 140.89, 140.83, 140.81, 140.75, 140.72,

140.67, 140.56, 140.42, 139.58, 139.55, 139.34, 138.44, 138.35, 136.87 (aryl *C*), 136.46 (aryl *C*), 136.02 (aryl *C*), 135.35, 134.57, 133.85, 133.42, 132.52 (aryl *C*), 131.07 (aryl *C*), 128.80 (aryl *C*), 128.35 (aryl *C*), 127.43 (aryl *C*), 125.10 (aryl *C*), 125.04 (aryl *C*), 75.17 (sp³-*C* of C₆₀), 74.85 (sp³-*C* of C₆₀), 57.99 (*C*H), 22.87 (*C*H₃), 21.56 (*C*H₃), 20.11 (*C*H₃); FT-IR ν /cm⁻¹ (KBr) 2919, 2850, 1451, 1428, 1374, 1263, 1184, 1028, 852, 746, 592, 526; UV-vis (CHCl₃) λ_{max} /nm (log ε) 257 (4.96), 308 (4.54), 430 (3.53), 700 (2.45); MALDI FT-ICR MS m/z calcd for C₇₆H₁₆ [M⁻] 928.1252, found 928.1256.

Spectral data of **4c:** ¹H NMR (400 MHz, CS₂/CDCl₃) δ 8.13-8.08 (m, 1H), 7.77-7.74 (m, 1H), 7.60-7.56 (m, 2H), 5.14 (s, 2H); ¹³C NMR [75 MHz, CS₂/DMSO-*d*₆ with Cr(acac)₃ as relaxation reagent] (all 2C unless indicated) δ 156.26, 152.73, 146.30 (1C), 146.18 (1C), 145.07, 145.03, 145.01, 144.91 (4C), 144.77, 144.33, 144.17, 144.12 (4C), 143.45, 143.32, 142.09, 141.96, 141.54, 141.48, 141.28, 141.19, 141.09, 140.97, 140.85, 140.67, 140.43 (1C, aryl *C*), 139.52, 139.99, 138.67 (1C, aryl *C*), 134.08, 133.84, 128.46 (1C, aryl *C*), 127.77 (1C, aryl *C*), 125.79 (1C, aryl *C*), 125.11 (1C, aryl *C*), 75.36 (sp³-*C* of C₆₀), 68.04 (sp³-*C* of C₆₀), 46.69 (*C*H₂); FT-IR *v*/cm⁻¹ (KBr) 2920, 2851, 1454, 1428, 1183, 1103, 1032, 740, 524; UV-vis (CHCl₃) λ_{max}/nm (log ε) 257 (4.99), 317 (4.57), 433 (3.37), 692 (2.37); MALDI FT-ICR MS m/z calcd for C₆₇H₆ [M⁻] 810.0470, found 810.0466.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

S14

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

80 70 60 50 40 30 20

ppm

190 180 170 160 150 140 130 120 110 100 90

S21

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

