Supporting Information for Highly efficient chromatographic resolution of sulfoxides using a new homochiral MOF–silica composite

Koichi Tanaka*^a, Toshihide Muraoka^a, Daisuke Hirayama^a and Atsushi Ohnish^b

^aDepartment of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan. E-mail: ktanaka@kansai-u.ac.jp ^bCPI Company, Daicel Corporation., Aboshi, Himeji, Hyogo 671-1283, Japan.

Materials

Phenyl methyl sulfoxide 2 and phenyl vinyl sulfoxide 12 were purchased from Tokyo Kasei Kogyo co., ltd. Phenyl ethyl sulfoxide 3, 2-methylphenyl methyl sulfoxide 4, 4-methylphenyl methyl sulfoxide 5, 2-methoxyphenyl methyl sulfoxide 6, 4-methoxyphenyl methyl sulfoxide 7, 2-chlorophenyl methyl sulfoxide 8, 3-chlorophenyl methyl sulfoxide 9, 4-chlorophenyl methyl sulfoxide 10, 4-nitrophenyl methyl sulfoxide 11, benzyl methyl sulfoxide 13, benzyl phenyl sulfoxide 14, 2-naphthyl methyl sulfoxide 15, cyclohexyl methyl sulfoxide 16 and *n*-butyl methyl sulfoxide 17 were prepared as reported.¹

Synthesis of (R)-MOF, $Cu_2(BDA)_2$: The (R)-MOF was prepared by slightly modified method of the previously reported by W. Lin.² A DMF solution (1.5 mL) containing Cu(NO₃)₂•3H₂O, (54 mg, 0.223 mmol) and (R)-(+)-H₂BDA (50 mg, 0.134 mmol) in a glass-tube was heated at 80°C for 18 h. Green needles were collected, washed with DMF, and MeOH, and dried *in vacuo* to yield (R)-MOF, Cu₂(BDA)₂ (53 mg). The CD spectra and PXRD pattern were identical with those previously reported by W. Lin.²

Figure S2. CD spectra for (*R*)-(blue) and (*S*)-MOF (green) in KBr.

Figure S3. PXRD of (*R*)-MOF.

Synthesis of (R)-MOF-silica composite: A mixture of (R)-(+)-H₂BDA (50 mg, 0.13 mmol), $Cu(NO_3)_2 \cdot 3H_2O$ (54 mg, 0.223 mmol) and Daisogel (SP-120-7P)(150 mg) in

DMF (1.5 mL) and H_2O (0.3mL) was stirred and heated at 80°C for 8 h. The resulting green precipitate was filtered and washed with DMF and MeOH, and dried *in vacuo* at 80°C. The yield is 175 mg.

Figure S4. PXRD of (*R*)-MOF-silica composite.

Figure S5. Comparison of PXRD patterns of (*R*)-MOF (a) and (*R*)-MOF-silica composite (b).

Enantioselective chromatographic separation procedure: The suspension of (*R*)-MOF-silica composite **1** (2.0 g) in hexane/*i*-PrOH (90:10) was slurry-packed into a stainless steel column (15 cm long x 4.6 mm i.d.). Chromatography was performed on a JASCO HPLC instrument at 25°C. Each of sulfoxides was dissolved in hexane/EtOH = 50/50 (Eluent I) and hexane/*i*-PrOH = 90/10 (Eluent II) (usually 1.0 mg mL⁻¹). The absolute configurations of the chiral sulfoxides were established by comparison of the HPLC chromatograms with the patterns described in previous report.³

Sulfoxide	Eluent I ^b Eluent II ^c
C S Me	S 10^{-10} 10^{-
	$ \begin{array}{c} S \\ R \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
Me O II 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Me 5	$S R = \int_{0}^{\infty} \frac{100}{50} \int_{100}^{\infty} \int_{0}^{\infty} \frac{100}{100} \int_{200}^{\infty} \frac{92}{300} \int_{100}^{\infty} \frac{92}{50} \int_{0}^{\infty} \frac{92}{50$
OMe O II S Me 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
MeO 7	$S \\ R \\ C \\ C$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
CI S Me	10^{-10} 10^{-10} 15^{-10} 10^{-10} 15^{-10} 10^{-10} 15^{-10} 10^{-10} 15^{-10} 10^{-10} 15^{-10} 10^{-10} 15^{-10} 10^{-10}

Table S1 Chromatograms for the resolution of sulfoxides.^a

^a Flow rate : 1.0 mL min⁻¹; detection: UV 254 nm

^b Hexane/EtOH = 50/50

^c Hexane/*i*-PrOH = 90/10

Enantioselective sorption experiments: A racemic phenyl methyl sulfoxide **2** (70 mg, 0.5 mmol) was dissolved in CH_2Cl_2 (2 mL), and the evacuated (*R*)-MOF (heated at 80°C for 8 h *in vacuo* before use, 100 mg, 0.23 mmol) was added to the solution. The CH_2Cl_2 solution was stirred for 16 h at room temperature. The crystalline material was subsequently isolated by filtration. After the adsorbed sulfoxide was extracted with MeOH (3 x 5 mL), the solvent was removed *in vacuo*. The enantiomeric excess was measured by HPLC² (Chiralcel OD; flow rate, 0.5 mL min⁻¹; detection, 254 nm; hexane/*i*-PrOH 9:1) as shown in Fig. S6.

Figure S6. Chromatogram of phenyl methyl sulfoxide adsorbed in (*R*)-MOF.

References

F. Shi, M. K. Tse, H. M. Kaiser, M. Beller, *Adv. Synth. Catl.*, 2007, 349, 2425-2430.
 Y. Cui, H. L. Ngo, P. S. White, W. Lin, *Chem. Commun.*, 2003, 994-998.
 J. Legros, C. Bolm, *Chem. Eur. J.*, 2005, 11, 1086-1092.