Desymmetrisation of aromatic diamines and synthesis of non-symmetrical thiourea derivatives by click-mechanochemistry

Vjekoslav Štrukil,^a Davor Margetić,^a Marina Diana Igrc,^a Mirjana Eckert-

Maksić^{*,a} and Tomislav Friščić^{*,b}

^aDivision of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10002 Zagreb, Croatia; ^bDepartment of Chemistry, McGill University, 801 Sherbrooke St., H3A 2K6 Montréal, Québec, Canada

Supplementary Material

Table of contents

Section	Page
1. Experimental	2
1.1 General comments	2
1.2 Synthesis of mono-(thio)ureas 1a-e and 3a-b	2
1.3 Synthesis of bis-thioureas 2a-h and 4a-d	6
1.4 Synthesis of urea 2i and mixed urea-thioureas 2j-m	11
2. FTIR spectra	15
3. ¹ H and ¹³ C NMR spectra	18
4. DFT quantum chemical calculations	42
5. Frontier Molecular Orbital (FMO) analysis	47
6. Cartesian coordinates of mono-(thio)ureas	50

<u>1. Experimental</u>

1.1 General comments

All chemicals were purchased from commercial sources (Sigma Aldrich or Alfa Aesar) and were used as received (except for 4-nitrophenyl isothiocyanate which was purified by column chromatography). The experiments were carried out in a Retsch MM400 mill at a frequency of 30 Hz using a 10 mL stainless steel grinding jar and a single stainless steel ball of 12 mm diameter (unless otherwise stated). Dry methanol or ethylacetate were used as the liquid phase throughout all liquid-assisted grinding (LAG) experiments. Since the reactivity in mechanochemical milling is dependent on the ratio of the amount (mass or volume) of reacting material and the reaction jar volume, all experiments were systematically designed so as to provide ca. 200 mg of the solid product. Thus, reactions of non-symmetrical monosubstitution were done at 0.90 mmol scale, while the di-substitutions were conducted on half that scale. This facilitates the comparison of reactions by making reaction environments similar across all experiments, and also means that the same number of amino groups is transformed in each experiment.

¹H and ¹³C NMR spectra were recorded on Bruker Avance (300 and 600 MHz) spectrometers with tetramethylsilane as an internal standard, while IR spectra were obtained on an ABB Bomem MB102 spectrophotometer (CsI optics, DTGS detector, KBr pellets).

Quantum calculations were carried out with the GAUSSIAN03 program package¹ using Becke's three-parameter exchange functional with the correlation functional of Lee, Yang and Paar (B3LYP). Geometries were fully optimized with the 6-31G(d) valence double ζ -basis set of Pople and Hariharan, and were confirmed to be minima by computing their analytical vibrational frequencies. Single-point calculations were performed with the 6-311+G(d,p) basis set. The zero point vibrational energies computed at the B3LYP/6-31G(d) level were used unscaled. Frontier molecular orbitals (FMO) were obtained at the RHF/6-31G(d)//B3LYP/6-31G(d) level of theory.

1.2 Synthesis of mono-(thio)ureas 1a-e and 3a-b

N^{1} -(2-aminophenyl)- N^{2} -(4-methoxyphenyl)thiourea (1a)

An equimolar mixture of *o*-phenylenediamine (0.45 mmol, 48.7 mg) and 4-methoxyphenyl isothiocyanate (0.45 mmol, 62.2 μ L) was ground in the presence of 30 μ L of dry methanol

(LAG experiment, $\eta = 0.25 \ \mu L \ mg^{-1}$) for 30 minutes. The product was scraped off the walls of the grinding

jar affording thiourea **1a** in >98% yield.

 $\delta_{\rm H}(600 \text{ MHz}; d_6\text{-DMSO}; \text{Me}_4\text{Si}) 4.85 (2 \text{ H}, \text{ s}, \text{NH}_2),$

6.57 (1 H, t, J 7.5, Ar), 6.75 (1 H, d, J 7.9, Ar), 6.89 (2 H, d, J 8.8, Ar), 6.96 (1 H, t, J 7.8, Ar), 7.07 (1 H, d, J 7.7, Ar), 7.35 (2 H, d, J 8.8, Ar), 8.87 (1 H, s, NH), 9.30 (1 H, s, NH). $\delta_{\rm C}$ (75 MHz, d_6 -DMSO; Me₄Si) 55.2, 113.5, 115.8, 116.3, 124.1, 126.0, 127.0, 128.0, 132.3, 143.9, 156.4, 180.3. HRMS-MALDI found: 274.0998; calc. for C₁₄H₁₆N₃OS (M+H⁺): 274.1008.

H₃CO

N^{I} -(2-aminophenyl)- N^{2} -phenylthiourea (1b)

An equimolar mixture of *o*-phenylenediamine (0.6 mmol, 64.8 mg) and phenyl isothiocyanate (0.6 mmol, 72.0 μ L) was ground neat for 30 minutes. The product was scraped off the walls of the grinding jar affording thiourea **1b** in >96% yield.

 $\delta_{\rm H}(600 \text{ MHz}; d_6\text{-DMSO}; \text{Me}_4\text{Si}) 4.88 (2 \text{ H, s, NH}_2), 6.57 (1 \text{ H,} t, J 7.5, \text{Ar}), 6.75 (1 \text{ H, d}, J 8.0, \text{Ar}), 6.97 (1 \text{ H, t}, J 7.6, \text{Ar}),$

7.03-7.13 (2 H, overlapped Ar), 7.31 (2 H, t, *J* 7.8, Ar), 7.52 (2 H, d, *J* 7.7, Ar), 9.02 (1 H, s, NH), 9.52 (1 H, s, NH). δ_C(75

NH

MHz, d_6 -DMSO; Me₄Si) 115.8, 116.3, 123.5, 124.0, 124.2, 127.1, 128.1, 128.3, 139.6, 144.0, 180.0. v_{max} /cm⁻¹3439, 3389, 3270, 3047, 2974, 2934, 2860, 1618, 1607, 1541, 1501, 1450, 1366, 1315, 1025, 752, 698, 688, 634. HRMS-MALDI found: 244.0905; calc. for C₁₃H₁₄N₃S (M+H⁺): 244.0903.

N^{1} -(2-aminophenyl)- N^{2} -(4-chlorophenyl)thiourea (1c)

An equimolar mixture of *o*-phenylenediamine (0.45 mmol, 48.7 mg) and 4-chlorophenyl isothiocyanate (0.45 mmol, 76.3 mg) was ground in the presence of 32 μ L of dry methanol (LAG experiment, $\eta = 0.25 \mu$ L mg⁻¹) for 30 minutes. The product was scraped off the walls of the grinding jar affording thiourea **1c** in >99% yield.

δ_H(300 MHz; d₆-DMSO; Me₄Si) 4.90 (2 H, s, NH₂), 6.56

(1 H, t, J 7.5, Ar), 6.75 (1 H, d, J 8.0, Ar), 6.97 (1 H, t, J

7.6, Ar), 7.07 (1 H, d, J 7.8, Ar), 7.35 (2 H, d, J 8.8, Ar),

7.55 (2 H, d, J 8.8, Ar), 9.11 (1 H, s, NH), 9.61 (1 H, s,

NH). δ_C(75 MHz, d₆-DMSO; Me₄Si) 115.8, 116.2, 123.8, 125.1, 127.1, 127.9, 128.1 (2 C

overlapped), 138.7, 143.9, 180.1. HRMS-MALDI found: 278.0522; calc. for $C_{13}H_{13}CIN_3S$ (M+H⁺): 278.0513.

N^{1} -(2-aminophenyl)- N^{2} -(4-nitrophenyl)thiourea (1d)

An equimolar mixture of *o*-phenylenediamine (0.45 mmol, 48.7 mg) and 4-nitrophenyl isothiocyanate (0.45 mmol, 81.1 mg) was ground in the presence of 30 μ L of dry methanol (LAG experiment, $\eta = 0.25 \mu$ L mg⁻¹) for 30 minutes. The product was scraped off the walls of the grinding jar affording thiourea **1d** in >98% yield.

1d: $\delta_{\rm H}(600 \text{ MHz}; d_6\text{-DMSO}; \text{Me}_4\text{Si})$ 4.55-5.35 (2 H, brs,

NH₂), 6.57 (1 H, t, J 7.5, Ar), 6.76 (1 H, d, J 8.0, Ar),

6.99 (1 H, t, J 7.6, Ar), 7.09 (1 H, d, J 7.6, Ar), 7.91 (2 H,

d, J 9.1, Ar), 8.19 (2 H, d, J 9.1, Ar), 9.45 (1 H, s, NH), O₂

9.66-10.52 (1 H, brs, NH). $\delta_{\rm C}$ (75 MHz, $d_{\rm 6}$ -DMSO;

(1 H, s, NH), $O_2N \longrightarrow NH$, d_6 -DMSO;

Me₄Si) 115.8, 116.1, 121.3, 123.4, 124.2, 127.3, 128.0, 142.1, 143.9, 146.5, 179.8. HRMS-MALDI found: 289.0746; calc. for $C_{13}H_{13}N_4O_2S$ (M+H⁺): 289.0754.

N^{I} -(2-aminophenyl)- N^{2} -phenylurea (1e)

A 1:1 mixture of *o*-phenylenediamine (0.6 mmol, 64.8 mg) and phenyl isocyanate (0.6 mmol, 71.5 mg, 65.2 μ L) was ground neat for 30 minutes. ¹H NMR analysis indicated the formation of a mixture of unreacted *o*-phenylenediamine (10%), mono-urea **1e** (78%) and bis-urea **2i** (12%).

The pure urea **1e** was synthesised by a conventional solution-based approach. *o*-Phenylenediamine (3.0 mmol, 324.4 mg) was dissolved in 4 mL and phenyl isocyanate (1.0 mmol, 119.1 mg, 109 μ L) in 1 mL of dry dichloromethane. The isocyanate solution was added dropwise to the *o*-pda solution with stirring. The stirring was continued for 15 minutes at room temperature, the precipitated product was filtered off, washed with 15 mL of CH₂Cl₂ and dried in air to give mono-urea **1e** in 99% yield.

 $\delta_{\rm H}(300 \text{ MHz}; d_6\text{-DMSO}; \text{Me}_4\text{Si}) 4.75 (2 \text{ H, s, NH}_2), 6.57 (1 \text{ H,} t, J 7.8, \text{Ar}), 6.74 (1 \text{ H, d}, J 7.9, \text{Ar}), 6.84 (1 \text{ H, t}, J 7.2, \text{Ar}), 6.94 (1 \text{ H, t}, J 7.3, \text{Ar}), 7.26 (2 \text{ H, t}, J 7.5, \text{Ar}), 7.33 (1 \text{ H, d}, J 7.9, \text{Ar}), 7.9, \text{Ar}), 7.44 (2 \text{ H, d}, J 7.7, \text{Ar}), 7.70 (1 \text{ H, s}, \text{NH}), 8.72 (1 \text{ H, s}, 100 \text{ H})$

NH). $\delta_{C}(75 \text{ MHz}, d_{6}\text{-DMSO}; \text{Me}_{4}\text{Si})$ 115.8, 116.7, 117.9, 121.4, 123.7, 124.3, 124.7, 128.7, 140.0, 140.8, 153.1. HRMS-MALDI found: 228.1133; calc. for $C_{13}H_{14}N_{3}O$ (M+H⁺): 228.1131.

N^{1} -(4-aminophenyl)- N^{2} -(4-methoxyphenyl)thiourea (3a)

A mixture of *p*-phenylenediamine (0.45 mmol, 48.7 mg), 4-methoxyphenyl isothiocyanate (0.45 mmol, 62.2 μ L) and sodium chloride (974 mg, $20 \times m(p-pda)$) was ground in the presence of 100 μ L of ethylacetate (LAG experiment, $\eta = 0.8 \mu$ L mg⁻¹) in a 10 mL teflon grinding jar using a single 10 mm teflon ball (with steel core) for 30 minutes. The resulting mixture was suspended in 10 mL of distilled water and stirred for 10 minutes. Filtration over a sintered funnel and washing with 5 mL of water, followed by drying in air afforded the monothiourea **3a** in 97% yield.

Solution synthesis carried out by stirring the equimolar mixture of *p*-phenylenediamine (0.45 mmol, 48.7 mg) and 4-methoxyphenyl isothiocyanate (0.45 mmol, 62.2 μ L) in ethylacetate (2 mL) for 24 hours gave mono-thiourea **3a** in 78% yield.

 $\delta_{\rm H}(300 \text{ MHz}; d_6\text{-DMSO}; \text{Me}_4\text{Si}) 3.74 (3 \text{ H}, \text{ s}, OCH_3), 5.01 (2 \text{ H}, \text{ s}, NH_2), 6.52 (2 \text{ H}, \text{ d}, J 8.6, Ar), 6.87 (2 \text{ H}, \text{ d}, J 9.0, Ar), 6.98 (2 \text{ H}, \text{ d}, J 8.6, Ar), 7.29 (2 \text{ H}, \text{ d}, J 8.9, Ar), 9.12 (1 \text{ H}, \text{ s}, NH), 9.20 (1 \text{ H}, \text{ s}, NH)$

H, s, NH). $\delta_{\rm C}(150 \text{ MHz}, d_6\text{-DMSO}; \text{Me}_4\text{Si})$ 55.2, 113.4, 113.6, 126.1, 126.2, 127.4, 132.4, 146.4, 156.3, 180.0. HRMS-MALDI found: 274.0995; calc. for C₁₄H₁₆N₃OS (M+H⁺): 274.1008.

N^{1} -(4-aminophenyl)- N^{2} -(4-nitrophenyl)thiourea (3b)

A mixture of *p*-phenylenediamine (0.45 mmol, 48.7 mg), 4-nitrophenyl isothiocyanate (0.45 mmol, 81.1 mg) and sodium chloride (974 mg, $20 \times m(p-pda)$) was ground either neat (NG experiment) or in the presence of 32 µL of ethylacetate (LAG experiment, $\eta = 0.25$ µL mg⁻¹) in a 10 mL teflon grinding jar using a single 10 mm teflon ball (with steel core) for 30 minutes. ¹H NMR analysis in both cases indicated the formation of a mixture of unreacted *p*-phenylenediamine, mono-thiourea **3b** (54% NG, 62% LAG) and bis-thiourea **4b**. NG or LAG without NaCl in a stainless steel jar with 12 mm steel ball gave slightly better conversion to **3b** (76% NG, 68% LAG).

The pure thiourea **3b** was therefore synthesised by a conventional solution-based approach. *p*-Phenylenediamine (0.45 mmol, 48.7 mg) was dissolved in 1 mL of dry dichloromethane and 4-nitrophenyl isothiocyanate (0.45 mmol, 81.1 mg) was added to this solution. The stirring was continued for two hours at room temperature, the precipitated product was filtered off and dried in air to give thiourea **3b** in 88% yield.

 $\delta_{\rm H}(300 \text{ MHz}; d_6\text{-DMSO}; \text{Me}_4\text{Si}) 5.08 (2 \text{ H, s, NH}_2),$ 6.54 (2 H, d, J 8.6, Ar), 7.04 (2 H, d, J 8.5, Ar), 7.82 (2 H, d, J 9.2, Ar), 8.17 (2 H, d, J 9.2, Ar), 9.88 (1 H, s, NH), 9.99 (1 H, s, NH). $\delta_{\rm C}(150 \text{ MHz}, d_6\text{-}$

DMSO; Me₄Si) 113.6, 121.3, 124.2, 125.7, 126.9, 141.9, 146.6, 146.8, 179.0. HRMS-MALDI found: 289.0759; calc. for C₁₃H₁₃N₄O₂S (M+H⁺): 289.0754.

1.3 Synthesis of bis-thioureas 2a-h and 4a-d

N^{1} , N^{2} -bis[N-(4-methoxyphenyl)thiocarbamoyl]-1,2-diaminobenzene (2a)

A mixture of 4-methoxyphenyl isothiocyanate (0.9 mmol, 124 μ L), *o*-phenylenediamine (0.45 mmol, 48.7 mg) and 80 μ L of methanol ($\eta = 0.4 \ \mu$ L mg⁻¹) was ground for 540 minutes. The product was then scraped off the walls affording bis-thiourea **2a** in >95% yield.

H, s, NH). $\delta_{C}(75 \text{ MHz}, d_{6}\text{-DMSO}; \text{Me}_{4}\text{Si})$ 55.2, 113.9, 126.1, 127.9, 131.4, 134.6, 156.8, 180.0. HRMS-MALDI found: 439.1250; calc. for $C_{22}H_{23}N_{4}O_{2}S_{2}$ (M+H⁺): 439.1257.

N^{1} , N^{2} -bis[N-phenylthiocarbamoyl]-1,2-diaminobenzene (2b)

A mixture of phenyl isothiocyanate (144 μ L, 1.2 mmol) and *o*-phenylenediamine (64.8 mg, 0.6 mmol) and 60 μ L ($n = 0.25 \mu$ L mg⁻¹) or 75 μ L

 $(\eta = 0.33 \ \mu L \ mg^{-1})$ of methanol was ground for 180 minutes. The product was then scraped off the walls affording bis-thiourea **2b** in >99% yield.

δ_H(600 MHz; d₆-DMSO; Me₄Si) 7.14 (2 H, t, J 7.3,

Ar), 7.22-7.28 (2 H, m, Ar), 7.32 (4 H, t, *J* 7.8, Ar), 7.45 (4 H, d, *J* 7.8, Ar), 7.47-7.51 (2 H, m, Ar), 9.18 (2 H, s, NH), 9.97 (2 H, s, NH). δ_C(75 MHz, *d*₆-DMSO; Me₄Si) 123.8, 124.8, 126.2, 128.1, 128.6, 134.6, 138.9, 179.9.

N^{1} , N^{2} -bis[N-(4-chlorophenyl)thiocarbamoyl]-1,2-diaminobenzene (2c)

A mixture of 4-chlorophenyl isothiocyanate (0.9 mmol, 152.7 mg), *o*-phenylenediamine (0.45 mmol, 48.7 mg) and 50 μ L of methanol ($\eta = 0.25 \mu$ L mg⁻¹) was ground for 180 minutes. The product was then scraped off the walls affording bis-thiourea **2c** in >99% yield.

δ_H(300 MHz; d₆-DMSO; Me₄Si) 7.22-

7.31 (2 H, overlapped Ar), 7.36 (4 H, d, J

8.6, Ar), 7.43-7.56 (6 H, overlapped Ar),

9.26 (2 H, s, NH), 10.04 (2 H, s, NH).

 $\delta_{\rm C}(75 \text{ MHz}, d_6\text{-DMSO}; \text{Me}_4\text{Si})$ 125.3,

126.3, 128.0, 128.4, 128.6, 134.3, 138.0, 180.0. HRMS-MALDI found: 447.0284; calc. for $C_{20}H_{17}Cl_2N_4S_2$ (M+H⁺): 447.0266.

N^{1} , N^{2} -bis[N-(4-nitrophenyl)thiocarbamoyl]-1,2-diaminobenzene (2d)

A mixture of 4-nitrophenyl isothiocyanate (0.9 mmol, 162.2 mg), *o*-phenylenediamine (0.45 mmol, 48.7 mg) and 53µL of methanol ($\eta = 0.25 \mu L mg^{-1}$) was ground for 180 minutes. The product was then scraped off the walls affording bis-thiourea **2d** in >99% yield.

MHz, d_6 -DMSO; Me₄Si) 121.6, 124.3, 126.7, 128.1, 134.0, 142.5, 145.8, 179.9. HRMS-MALDI found: 491.0547; calc. for C₂₀H₁₆N₆O₄S₂Na (M+Na⁺): 491.0566.

N^{1} -[N-(4-chlorophenyl)thiocarbamoyl]- N^{2} -[N-(4-methoxyphenyl)thiocarbamoyl]-1,2-diaminobenzene (2e)

An equimolar mixture of mono-thiourea **1a** (0.45 mmol, 123.0 mg) and 4-chlorophenyl isothiocyanate (0.45 mmol, 76.3 mg) was ground in the presence of 50 μ L of dry methanol

(LAG experiment, $\eta = 0.25 \ \mu L \ mg^{-1}$) for 180 minutes. The product was scraped off the walls of the grinding jar affording bis-thiourea **2e** in >99% yield.

 $\delta_{\rm H}(300 \text{ MHz}; d_6\text{-DMSO}; \text{Me}_4\text{Si}) 3.71$

(3 H, s, OCH₃), 6.87 (2 H, d, J8.9, Ar),

7.20-7.30 (4 H, overlapped Ar), 7.37

(2 H, d, J8.8, Ar), 7.40-7.45 (1 H, m, H₃CO

Ar), 7.49 (2 H, d, J8.8, Ar), 7.52-7.57

(1 H, m, Ar), 8.96 (1 H, s, NH), 9.31 (1 H, s, NH), 9.79 (1 H, s, NH), 10.02 (1 H, s, NH). $\delta_{C}(150 \text{ MHz}, d_{6}\text{-DMSO}; \text{Me}_{4}\text{Si})$ 55.1, 113.9, 125.2, 126.0, 126.1, 126.2, 127.8, 127.9, 128.3, 128.5, 131.3, 134.1, 134.8, 138.0, 156.9, 179.99, 180.01. HRMS-MALDI found: 465.0591; calc. for C₂₁H₁₉ClN₄OS₂Na (M+Na⁺): 465.0581.

N^{1} -[N-(4-chlorophenyl)thiocarbamoyl]- N^{2} -[N-(4-methoxyphenyl)thiocarbamoyl]-1,2-diaminobenzene (2f)

An equimolar mixture of mono-thiourea **1a** (0.45 mmol, 123.0 mg) and 4-nitrophenyl isothiocyanate (0.45 mmol, 81.1 mg) was ground in the presence of 50 μ L of dry methanol (LAG experiment, $\eta = 0.25 \mu$ L mg⁻¹) for 180 minutes. The product was scraped off the walls of the grinding jar affording bis-thiourea **2f** in >99% yield.

9.2, Ar), 8.20 (2 H, d, J 9.2, Ar), 8.92 (1 H, s, NH), 9.67 (1 H, s, NH), 9.83 (1 H, s, NH), 10.56 (1 H, s, NH). $\delta_{\rm C}(150$ MHz, d_6 -DMSO; Me₄Si) 55.1, 113.9, 121.6, 124.2, 126.07, 126.10, 126.5, 127.8, 128.0, 131.2, 133.6, 134.9, 142.4, 145.8, 156.9, 179.9, 180.0. HRMS-MALDI found: 454.1014; calc. for C₂₁H₂₀N₅O₃S₂ (M+H⁺): 454.1002.

N^{1} -[N-(4-chlorophenyl)thiocarbamoyl]- N^{2} -[N-(4-nitrophenyl)thiocarbamoyl]-1,2-diaminobenzene (2g)

An equimolar mixture of mono-thiourea **1d** (0.45 mmol, 129.6 mg) and 4-chlorophenyl isothiocyanate (0.45 mmol, 76.3 mg) was ground in the presence of 50 μ L of dry methanol

(LAG experiment, $\eta = 0.25 \ \mu L \ mg^{-1}$) for 180 minutes. The product was scraped off the walls of the grinding jar affording bis-thiourea **2g** in >97% yield.

 $\delta_{\rm H}(300 \text{ MHz}; d_6\text{-DMSO}; \text{Me}_4\text{Si})$ 7.24-

7.39 (4 H, overlapped Ar), 7.45-7.58 (4

H, overlapped Ar), 7.86 (2 H, d, *J* 9.2, Ar), 8.19 (2 H, d, *J* 9.2, Ar), 9.24 (1 H,

s, NH), 9.63 (1 H, s, NH), 10.07 (1 H, s,

NH), 10.57 (1 H, s, NH). $\delta_{\rm C}(150 \text{ MHz}, d_6\text{-DMSO}; \text{Me}_4\text{Si})$ 121.6, 124.2, 125.2, 126.3, 126.6, 127.9, 128.1, 128.3, 128.6, 133.8, 134.4, 137.9, 142.5, 145.8, 179.9, 180.0. HRMS-MALDI found: 480.0320; calc. for C₂₀H₁₆ClN₅O₂S₂Na (M+Na⁺): 480.0326.

N^{1} -[N-(4-nitrophenyl)thiocarbamoyl]- N^{2} -[N-phenylthiocarbamoyl]-1,2-diaminobenzene (2h)

An equimolar mixture of mono-thiourea **1b** (0.45 mmol, 109.5 mg) and 4-nitrophenyl isothiocyanate (0.45 mmol, 81.1 mg) was ground in the presence of 50 μ L of dry methanol (LAG experiment, $\eta = 0.25 \mu$ L mg⁻¹) for 180 minutes. The product was scraped off the walls of the grinding jar affording bis-thiourea **2h** in >99% yield. The 30-minute reaction resulted in only 68% conversion according to ¹H NMR analysis of the reaction mixture.

 $\delta_{\rm H}(300 \text{ MHz}; d_6\text{-DMSO}; \text{Me}_4\text{Si})$ 7.13 (1 H, t, *J* 7.3, Ar), 7.22-7.37 (4 H, overlapped Ar), 7.39-7.50 (3 H, overlapped Ar), 7.53-7.60 (1 H, m, Ar), 7.86 (2 H, d, *J* 9.2, Ar), 8.19 (2 H, d, *J* 9.2, Ar), 9.14 (1 H, s, NH), 9.64 (1 H, s,

NH), 10.03 (1 H, s, NH), 10.58 (1 H, s, NH). $\delta_{\rm C}$ (75 MHz, d_6 -DMSO; Me₄Si) 121.6, 123.7, 124.3, 124.9, 126.2, 126.6, 127.9, 128.1, 128.6, 133.8, 134.7, 138.8, 142.5, 145.9, 179.89, 179.94. HRMS-MALDI found: 424.0898; calc. for C₂₁H₂₀ClN₄OS₂ (M+H⁺): 424.0896.

N^{1} , N^{2} -bis[N-(4-methoxyphenyl)thiocarbamoyl]-1,4-diaminobenzene (4a)

A mixture of 4-methoxyphenyl isothiocyanate (0.9 mmol, 124 μ L), *p*-phenylenediamine (0.45 mmol, 48.7 mg) and 50 μ L of

methanol ($\eta = 0.25 \ \mu L \ mg^{-1}$) was ground for 30 minutes. The product was then scraped

off the walls affording bis-thiourea 4a in >99% yield.

 $\delta_{\rm H}(300 \text{ MHz}; d_6\text{-}\text{DMSO}; \text{Me}_4\text{Si}) 3.75 (6 \text{ H}, \text{ s}, \text{OCH}_3), 6.90 (4 \text{ H}, \text{d}, J 8.9, \text{Ar}), 7.33 (4 \text{ H}, \text{d}, J 8.9, \text{Ar}), 7.41 (4 \text{ H}, \text{ s}, \text{Ar}), 9.52 (2 \text{ H}, \text{ s}, \text{NH}), 9.56 (2 \text{ H}, \text{ s}, \text{NH}). \\ \delta_{\rm C}(150 \text{ MHz}, d_6\text{-}\text{DMSO}; \text{Me}_4\text{Si}) 55.2, 113.6, 123.7, 125.9, 132.1, 135.8, 156.5, 179.8. HRMS-MALDI found: 439.1239; calc. for C_{22}H_{23}N_4O_2S_2 (M+H^+): 439.1257.$

N^{l} , N^{2} -bis[N-(4-nitrophenyl)thiocarbamoyl]-1,4-diaminobenzene (4b)

A mixture of 4-nitrophenyl isothiocyanate (0.9 mmol, 162.2 mg), *p*-phenylenediamine (0.45 mmol, 48.7 mg) and 50 μ L of methanol ($\eta = 0.25 \mu$ L mg⁻¹) was ground for 30 minutes. The product was then scraped off the walls affording bis-thiourea **4b** in >99% yield.

 $\delta_{H}(300 \text{ MHz}; d_{6}\text{-DMSO}; Me_{4}\text{Si})$ 7.50 (4 H, s, Ar), 7.84 (4 H, d, J 9.2, Ar), 8.20 (4 H, d, J 9.2, Ar), 10.25 (2 H, s, NH), 10.37 (2 H, s,

NH). $\delta_{\rm C}(75 \text{ MHz}, d_6\text{-}\text{DMSO}; \text{Me}_4\text{Si})$ 121.4, 123.9, 124.3, 135.8, 142.2, 146.2, 179.2. HRMS-MALDI found: 469.0731; calc. for C₂₀H₁₇N₆O₄S₂ (M+H⁺): 469.0747.

N^{1} -[N-(4-chlorophenyl)thiocarbamoyl]- N^{2} -[N-(4-methoxyphenyl)thiocarbamoyl]-1,4diaminobenzene (4c)

An equimolar mixture of mono-thiourea **3a** (0.45 mmol, 123.0 mg) and 4-chlorophenyl isothiocyanate (0.45 mmol, 76.3 mg) was ground in the presence of 50 μ L of dry methanol (LAG experiment, $\eta = 0.25 \mu$ L mg⁻¹) for 30 minutes. The product was scraped off the walls of the grinding jar affording bis-thiourea **4c** in >99% yield.

 $\delta_{\rm H}(300 \text{ MHz}; d_6\text{-DMSO}; \text{Me}_4\text{Si})$ 3.75 (3 H, s, OCH₃), 6.90 (2 H, d, J 8.9, Ar), 7.25-7.48 (8 H, m, overlapped Ar), 7.52 (2 H, d, J 8.8,

Ar), 9.54 (1 H, s, NH), 9.58 (1 H, s, NH), 9.79 (1 H, s, NH), 9.81 (1 H, s, NH). $\delta_{\rm C}(150 \text{ MHz}, d_6\text{-DMSO}; \text{Me}_4\text{Si})$ 55.2, 113.6, 123.7 (2 C, overlapped), 125.1, 125.9, 128.1, 128.2, 132.1, 135.5, 136.1, 138.4, 156.5, 179.6, 179.8. HRMS-MALDI found: 443.0775; calc. for $C_{21}H_{20}\text{ClN}_4\text{OS}_2$ (M+H⁺): 443.0761.

N^{1} -[N-(4-methoxyphenyl)thiocarbamoyl]- N^{2} -[N-(4-nitrophenyl)thiocarbamoyl]-1,4diaminobenzene (4d)

An equimolar mixture of mono-thiourea **3a** (0.45 mmol, 123.0 mg) and 4-nitrophenyl isothiocyanate (0.45 mmol, 81.1 mg) was ground in the presence of 50 μ L of dry methanol (LAG experiment, $\eta = 0.25 \,\mu$ L mg⁻¹) for 30 minutes. The product was scraped off the walls of the grinding jar affording bis-thiourea **4d** in >99% yield.

 $\delta_{\rm H}(300 \text{ MHz}; d_6\text{-DMSO}; {\rm Me}_4{\rm Si})$

3.75 (3 H, s, OCH₃), 6.90 (2 H,

d, J 8.9, Ar), 7.33 (2 H, d, J 8.9,

Ar), 7.38-7.53 (4 H, overlapped

Ar), 7.84 (2 H, d, J 9.2, Ar),

8.20 (2 H, d, J 9.2, Ar), 9.58 (1 H, s, NH), 9.60 (1 H, s, NH), 10.21 (1 H, s, NH), 10.32 (1 H, s, NH). $\delta_{\rm C}$ (75 MHz, d_6 -DMSO; Me₄Si) 55.2, 113.7, 121.4, 123.7, 123.8, 124.3, 125.9, 132.1, 135.1, 136.5, 142.2, 146.3, 156.5, 179.1, 179.8. HRMS-MALDI found: 454.0989; calc. for C₂₁H₂₀N₅O₃S₂ (M+H⁺): 454.1002.

1.4 Synthesis of urea 2i and mixed urea-thioureas 2j-m

N^{1} , N^{2} -*bis*[*N*-phenylcarbamoyl]-1,2-diaminobenzene (2i)

A 1:2 mixture of *o*-phenylenediamine (0.6 mmol, 64.8 mg) and phenyl isocyanate (1.2 mmol, 142.9 mg, 130.4 μ L) was ground neat for 30 minutes. The product was scraped off the walls of the grinding jar affording bis-urea **2i** in >99% yield.

δ_H(600 MHz; d₆-DMSO; Me₄Si) 6.96 (2 H, t, J 7.4,

Ar), 7.05-7.11 (2 H, m, Ar), 7.27 (4 H, t, J 7.8, Ar),

7.47 (4 H, d, J 7.8, Ar), 7.57-7.63 (2 H, m, Ar), 8.04 (2 H, s, NH), 9.04 (2 H, s, NH). $\delta_{\rm C}$ (75 MHz, d_6 -DMSO; Me₄Si) 118.1, 121.7, 123.89, 123.95,

128.7, 131.2, 139.8, 153.1. HRMS-MALDI found: 369.1329; calc. for $C_{20}H_{18}N_4O_2Na$ (M+Na⁺): 369.1322.

N^{1} -[N-(4-methoxyphenyl)thiocarbamoyl]- N^{2} -[N-phenylcarbamoyl]-1,2-diaminobenzene (2j)

An equimolar mixture of mono-thiourea **1a** (0.45 mmol, 123.0 mg, prepared by milling) and phenyl isocyanate (0.45 mmol, 53.6 mg, 49 μ L) was ground neat for 180 minutes. The product was scraped off the walls of the grinding jar affording mixed urea-thiourea **2j** in >99% yield.

*δ*_H(300 MHz; *d*₆-DMSO; Me₄Si) 3.72 (3 H, s, OCH₃), 6.88 (2 H, d, *J* 8.9, Ar), 6.97 (1 H, t, *J* 7.3, Ar), 7.05 (1 H, t, *J* 7.5, Ar), 7.20 (1 H, t, *J* 7.7, Ar), 7.27 (2 H, t, *J* 7.8, Ar), 7.31-7.50 (5 H, m, overlapped Ar),

7.79 (1 H, d, *J* 7.7, Ar), 8.10 (1 H, s, NH), 9.00 (1 H, s, NH), 9.25 (1 H, s, NH), 9.74 (1 H, s, NH). $\delta_{\rm C}$ (75 MHz, d_6 -DMSO; Me₄Si) 55.1, 113.8, 118.2, 121.8, 121.9, 122.7, 126.0, 126.4, 128.7 (2C overlapped), 130.2, 131.7, 134.8, 139.6, 152.8, 156.7, 180.9. HRMS-MALDI found: 393.1376; calc. for C₂₁H₂₀ClN₄OS₂ (M+H⁺): 393.1379.

N^{1} -[N-phenylthiocarbamoyl]- N^{2} -[N-phenylcarbamoyl]-1,2-diaminobenzene (2k)

An equimolar mixture of mono-thiourea **1b** (0.45 mmol, 109.5 mg, prepared by milling) and phenyl isocyanate (0.45 mmol, 53.6 mg, 49 μ L) was ground neat for 180 minutes. The product was scraped off the walls of the grinding jar affording mixed urea-thiourea **2k** in >99% yield.

δ_H(300 MHz; d₆-DMSO; Me₄Si) 6.97 (1 H, t, J 7.3,

Ar), 7.05 (1 H, t, *J* 7.5, Ar), 7.13 (1 H, t, *J* 7.4, Ar), 7.17-7.37 (6 H, m, overlapped Ar), 7.42 (2 H, d, *J* 7.5, Ar), 7.54 (2 H, d, *J* 7.7, Ar), 7.84 (1 H, d, *J* 8.2, Ar), 8.10 (1 H, s, NH), 9.17 (1 H, s, NH), 9.26 (1

\

H, s, NH), 9.93 (1 H, s, NH). $\delta_{C}(150 \text{ MHz}, d_{6}\text{-DMSO}; \text{Me}_{4}\text{Si})$ 118.2, 121.7, 121.8, 122.6, 123.6, 124.5, 126.6, 128.4, 128.7 (2C overlapped), 129.9, 135.0, 139.1, 139.6, 152.7, 180.8. HRMS-MALDI found: 363.1286; calc. for $C_{21}H_{20}\text{ClN}_{4}\text{OS}_{2}$ (M+H⁺): 363.1274.

N^{1} -[N-(4-chlorophenyl)thiocarbamoyl]- N^{2} -[N-phenylcarbamoyl]-1,2-diaminobenzene (2l)

An equimolar mixture of mono-thiourea **1c** (0.45 mmol, 125.0 mg, prepared by milling) and phenyl isocyanate (0.45 mmol, 53.6 mg, 49 μ L) was ground neat for 180 minutes. The product was scraped off the walls of the grinding jar affording mixed urea-thiourea **2l** in >99% yield.

The title compound was also synthesised by a reverse reaction between equimolar amounts of mono-urea **1e** (0.45 mmol, 102.3 mg) and 4-chlorophenyl isothiocyanate (0.45 mmol, 76.3 mg). LAG by using methanol (45 μ L, $\eta = 0.25 \mu$ L mg⁻¹) for 30 minutes gave only 65% of **2l** while 180 minutes of milling afforded the mixed urea-thiourea **2l** in >99% yield.

δ_H(300 MHz; d₆-DMSO; Me₄Si) 6.97 (1 H, t, J

7.3, Ar), 7.05 (1 H, t, *J* 7.5, Ar), 7.16-7.47 (8 H,
m, overlapped Ar), 7.58 (2 H, d, *J* 8.6, Ar),
7.87 (1 H, d, *J* 8.0, Ar), 8.09 (1 H, s, NH), 9.26
(2 H, s, overlapped NH), 10.00 (1 H, s, NH).

 $\delta_{\rm C}$ (75 MHz, d_6 -DMSO; Me₄Si) 118.1, 121.7, 121.8, 122.6, 125.2, 126.7, 128.27, 128.33, 128.66, 128.72, 129.5, 135.1, 138.3, 139.6, 152.7, 180.9. HRMS-MALDI found: 397.0878; calc. for C₂₁H₂₀ClN₄OS₂ (M+H⁺): 397.0884.

N^{1} -[N-(4-nitrophenyl)thiocarbamoyl]- N^{2} -[N-phenylcarbamoyl]-1,2-diaminobenzene (2m)

An equimolar mixture of mono-thiourea **1d** (0.45 mmol, 129.7 mg, prepared by milling) and phenyl isocyanate (0.45 mmol, 53.6 mg, 49 μ L) was ground neat for 180 minutes. The product was scraped off the walls of the grinding jar affording mixed urea-thiourea **2m** in >99% yield.

The title compound was also synthesised by a reverse reaction between equimolar amounts of mono-urea **1e** (0.45 mmol, 102.3 mg) and 4-nitrophenyl isothiocyanate (0.45 mmol, 81.1 mg). LAG by using methanol (45 μ L, $\eta = 0.25 \mu$ L mg⁻¹) for 30 minutes afforded the mixed urea-thiourea **2m** in >99% yield.

 $\delta_{\rm H}(300 \text{ MHz}; d_6\text{-DMSO}; \text{Me}_4\text{Si}) 6.96 (1 \text{ H}, \text{t}, J 7.3, \text{Ar}), 7.06 (1 \text{ H}, \text{t}, J 7.6, \text{Ar}), 7.21\text{-}7.33 (4 \text{ H}, \text{m}, \text{overlapped Ar}), 7.43 (2 \text{ H}, \text{d}, J 8.6, \text{Ar}), 7.90\text{-}7.99 (3 \text{ H}, \text{m}, \text{Ar}), 8.09 (1 \text{ H}, \text{s}, \text{Ar})$

NH), 8.20 (2 H, d, *J* 9.2, Ar), 9.24 (1 H, s, NH), 9.59 (1 H, s, NH), 10.54 (1 H, s, NH). $\delta_{\rm C}$ (75 MHz, d_6 -DMSO; Me₄Si) 118.1, 121.5, 121.6, 121.8, 122.6, 124.3, 127.1, 128.6, 128.7, 129.0, 135.3, 139.6, 142.4, 146.1, 152.6, 180.8. HRMS-MALDI found: 408.1140; calc. for C₂₀H₁₈N₅O₃S (M+H⁺): 408.1125.

2. FTIR spectra

Figure S1. IR spectra of mono-thioureas **1a-e**. The absence of the characteristic isothiocyanate stretching vibration band at $2000-2200 \text{ cm}^{-1}$ is notable.

Figure S2. IR spectra of bis-thioureas **2a-d**. The absence of the characteristic isothiocyanate stretching vibration band at $2000-2200 \text{ cm}^{-1}$ is notable.

Figure S3. IR spectra of desymmetrised bis-thioureas **2e-h**. The absence of the characteristic isothiocyanate stretching vibration band at $2000-2200 \text{ cm}^{-1}$ is notable.

Figure S4. IR spectra of bis-urea **2i** and mixed urea-thioureas **2j-m**. The absence of the characteristic isothiocyanate stretching vibration band at 2000–2200 cm⁻¹ is notable.

Figure S5. IR spectra of mono-thioureas **3a-b**. The absence of the characteristic isothiocyanate stretching vibration band at $2000-2200 \text{ cm}^{-1}$ is notable.

Figure S6. IR spectra of bis-thioureas **4a-d**. The absence of the characteristic isothiocyanate stretching vibration band at $2000-2200 \text{ cm}^{-1}$ is notable.

3. ¹H and ¹³C NMR spectra

Figure S7. ¹H and ¹³C NMR spectra of mono-thiourea 1a.

Figure S8. ¹H and ¹³C NMR spectra of mono-thiourea 1b.

Figure S9. ¹H and ¹³C NMR spectra of mono-thiourea 1c.

Figure S10. ¹H and ¹³C NMR spectra of mono-thiourea 1d.

Figure S11. ¹H and ¹³C NMR spectra of mono-urea 1e.

Figure S12. ¹H and ¹³C NMR spectra of bis-thiourea 2a.

Figure S13. ¹H and ¹³C NMR spectra of bis-thiourea 2b.

Figure S14. ¹H and ¹³C NMR spectra of bis-thiourea 2c.

Figure S15. ¹H and ¹³C NMR spectra of bis-thiourea 2d.

Figure S16. ¹H and ¹³C NMR spectra of bis-thiourea 2e.

Figure S17. ¹H and ¹³C NMR spectra of bis-thiourea **2f**.

Figure S18. ¹H and ¹³C NMR spectra of bis-thiourea 2g.

Figure S19. ¹H and ¹³C NMR spectra of bis-thiourea **2h**.

SpinWorks 3: Vjeko UKF-MI-251-13C

Figure S20. ¹H and ¹³C NMR spectra of bis-urea 2i.

Figure S21. ¹H and ¹³C NMR spectra of mixed urea-thiourea 2j.

Figure S22. ¹H and ¹³C NMR spectra of mixed urea-thiourea **2k**.

Figure S23. ¹H and ¹³C NMR spectra of mixed urea-thiourea 2l.

Figure S24. ¹H and ¹³C NMR spectra of mixed urea-thiourea **2m**.

Figure S25. ¹H and ¹³C NMR spectra of mono-thiourea **3a**.

Figure S26. ¹H and ¹³C NMR spectra of mono-thiourea 3b.

Figure S27. ¹H and ¹³C NMR spectra of bis-thiourea 4a.

Figure S28. ¹H and ¹³C NMR spectra of bis-thiourea 4b.

Figure S29. ¹H and ¹³C NMR spectra of bis-thiourea **4**c.

Figure S30. ¹H and ¹³C NMR spectra of bis-thiourea 4d.

4. DFT quantum chemical calculations

Table 1. Gas phase energies of *p*-methoxyphenyl mono-thiourea conformers **1a** calculated atthe B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level of theory.

Structure	$E_{\rm el}$ / a.u.	E _{ZPV} / a.u.	$E_{\rm tot}$ / a.u.	$E_{\rm rel} / {\rm kJ} { m mol}^{-1}$
la-cis	-1180.42926	0.27280	-1180.15646	14.6
la-cis2	-1180.42713	0.27315	-1180.15398	21.3
la-trans	-1180.43534	0.27328	-1180.16206	0.0
la-trans2	-1180.43454	0.27393	-1180.16061	3.8

Table	2.	Gas	phase	energies	of	phenyl	mono-thiourea	conformers	1b	calculated	at	the
B3LYF	P /6-	311+	G(d,p)	//B3LYP/	6-3	1G(d) 1	evel of theory.					

Structure	$E_{\rm el}$ / a.u.	$E_{\rm ZPV}$ / a.u.	$E_{\rm tot}$ / a.u.	E _{rel} / kJ mol ⁻¹
1b-cis	-1065.87375	0.24027	-1065.63348	15.1
1b-cis2	-1065.87183	0.24055	-1065.63128	20.9
1b-trans	-1065.87985	0.24060	-1065.63925	0.0
1b-trans2	-1065.87915	0.24130	-1065.63785	3.8

Table 3. Gas phase energies of <i>p</i> -chlorophenyl mono-thiourea conformers 1c calculated at the)
B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level of theory.	

Structure	$E_{\rm el}$ / a.u.	E _{ZPV} / a.u.	E _{tot} / a.u.	$E_{\rm rel}$ / kJ mol ⁻¹
Ic-cis	-1525.49604	0.23059	-1525.26545	15.9
Ic-cis2	-1525.49419	0.23086	-1525.26333	21.8
Ic-trans	-1525.50232	0.23076	-1525.27156	0.0
Ic-trans2	-1525.50171	0.23164	-1525.27007	3.8

Structure	$E_{\rm el}$ / a.u.	$E_{\rm ZPV}$ / a.u.	$E_{\rm tot}$ / a.u.	$E_{\rm rel}$ / kJ mol ⁻¹
Id-cis	-1270.43813	0.24296	-1270.19517	17.6
Id-cis2	-1270.43671	0.24330	-1270.19341	22.2
Id-trans	-1270.44493	0.24311	-1270.20182	0.0
	-1270.44446	0.24405	-1270.20041	3.8
1d-trans2				

Table 4. Gas phase energies of *p*-nitrophenyl mono-thiourea conformers 1d calculated at theB3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level of theory.

Table 5. Gas phase energies of *trans*- mono-urea conformers calculated at the B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level of theory.

Structure	$E_{\rm el}$ / a.u.	$E_{\rm ZPV}$ / a.u.	$E_{\rm tot}$ / a.u.
OMe-mono-urea	-857.48449	0.276438	-857.20805
1e (H-mono-urea)	-742.93029	0.243825	-742.68647
Cl-mono-urea	-1202.55311	0.234142	-1202.31897
NO mu	-947.49683	0.246555	-947.25028
NO ₂ -mono-urea			

5. Frontier Molecular Orbital (FMO) analysis

Table 6. HOMO and HOMO-1 energies of the most stable *trans*- conformers of monothioureas **1a-d** and LUMO energies of *p*-substituted phenyl isothiocyanates calculated at the RHF/6-31G(d)//B3LYP/6-31G(d) level of theory.

Mono-thiourea	HOMO / eV	HOMO-1 / eV	Isothiocyanate	LUMO / eV
1a-trans (OMe)	-7.7	-8.3	4-methoxyphenyl	2.6
1b-trans (H)	-8.0	-8.4	phenyl	2.3
1c-trans (Cl)	-8.2	-8.5	4-chlorophenyl	2.0
1d-trans (NO ₂)	-8.6	-8.9	4-nitrophenyl	0.6

Table 7. HOMO–LUMO gaps for the reaction of mono-thioureas **1a-d** with *p*-substituted phenyl isothiocyanates calculated at the RHF/6-31G(d)//B3LYP/6-31G(d) level of theory.

Bis-thiourea (mono-thiourea + isothiocyanate)	HOMO–LUMO gap / eV	(HOMO-1)–LUMO gap / eV
2a (OMe + OMe)	10.3	10.9
2b (H + H)	10.3	10.7
2c (Cl + Cl)	10.2	10.5
$\mathbf{2d} (\mathrm{NO}_2 + \mathrm{NO}_2)$	9.2	9.5
2e (OMe + Cl)	9.7	10.3
$2f(OMe + NO_2)$	8.3	8.9
$2g(NO_2 + Cl)$	10.6	10.9
2h (H + NO ₂)	8.6	9.0

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Figure S31. The comparison of the frontier molecular orbitals of *trans*- conformers of monothioureas **1a-d** and the corresponding urea analogues. The difference in the relative sizes of the orbital coefficients on the sulfur, oxygen and free NH_2 nitrogen atoms is notable.

Figure S32. (HOMO-1)–LUMO gaps (calculated at the RHF/6-31G(d)//B3LYP/6-31G(d) level of theory) for different combinations of mono-thioureas **1a-d** and *p*-substituted phenyl isothiocyanates. In the case of NO₂ mono-thiourea **1d** HOMO–LUMO values are displayed.

6. Cartesian coordinates of mono-(thio)ureas

B3LYP/6-31G(d) geometries:

1a-cis

С	-1.389543	-0.182379	5.329340
C	-1.448168	-0.437612	3.961564
C	-0.300776	-0.394524	3.165076
C	0.952480	-0.075900	3.737128
C	0.989701	0.192685	5.117416
С	-0.155975	0.131796	5.903420
H	-2.291456	-0.220320	5.932367
H	-2.397938	-0.675478	3.488269
H	1.946287	0.443930	5.570815
H	-0.084775	0.339824	6.967730
Ν	-0.418228	-0.817441	1.803822
H	-0.912335	-1.695376	1.685794
N	2.120002	-0.099591	2.977345
H	2.007917	0.329632	2.060386
H	2.911051	0.311459	3.460878
С	-0.193913	-0.092101	0.663998
S	0.298125	1.514826	0.667994
N	-0.405462	-0.843577	-0.468198
H	-0.422889	-1.847726	-0.332969
C	-0.299116	-0.447303	-1.829736
C	-0.926700	0.705618	-2.324679
C	-0.847346	1.013994	-3.674474
C	-0.161723	0.172344	-4.564156
C	0.450080	-0.987557	-4.078970
C	0.382886	-1.282312	-2.714774
H	-1.467890	1.356036	-1.649071
H 	-1.323336	1.906036	-4.068931
H 	0.986950	-1.659046	-4./38/69
H	0.877654	-2.175634	-2.339995
0	-0.156019	0.568224	-5.8/0/54
C II	0.527300	-0.242243	-6.8124/1
H	0.407750	0.253497	-1.111529
H	1.590859	-0.322069	-0.5/0223
н	0.094995	-1.250560	-0.80/519
1a-cis2			
C	1 100151	0 907420	1 012700
C	-1 10/170	-0.007420 -0.721510	7.914/09 3 552006
C	0 098252	_0 199881	3 139329
C	1 020193	0.278604	4 096319
C	0 709209	0.276001	5 454675
C		-0 366988	5 864393
н	-2 382596	-1 222362	5 224047
н	-1 825215	-1 090410	2 809995
H	1,422935	0.541295	6.190529
н	-0.739276	-0.431390	6,923921
N	0.543107	-0.188157	1.798495
 H	1.557202	-0.232896	1.732387
	2.00,202	0.202000	

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

N	2.264042	0.783218	3.632347
н	2.146479	1.584821	3.015197
 Н	2 872711	1 053472	4 398920
C		0 025958	0 627930
	1 724066	0.023030	0.027930
5	-1./24966	0.5/4959	0.532441
N	0.654296	-0.258567	-0.459237
H	1.439230	-0.870985	-0.270007
C	0.374148	-0.097476	-1.841728
С	-0.188594	1.076214	-2.366763
С	-0.379558	1.203633	-3.734575
С	0.001263	0.177534	-4.612783
С	0.578779	-0.986567	-4.097339
Ċ	0 752646	-1 116324	-2 717083
U U	-0 480430	1 877620	
11		1.077020	-1.700477
п	-0.019720	2.104115	-4.151004
H	0.886001	-1./9/933	-4./46/43
Н	1.185338	-2.032925	-2.321713
0	-0.227012	0.414213	-5.938706
C	0.124145	-0.596882	-6.868159
H	-0.429970	-1.526882	-6.682728
Н	-0.145414	-0.207360	-7.851610
Н	1.201540	-0.810369	-6.846699
19-trans			
ia mans			
a	0 421000	1 601010	4 601041
C	-0.431922	1.681310	4.621841
C	0.543127	1.160693	3.772977
C	0.285932	0.031162	2.990160
С	-0.968428	-0.607082	3.077774
С	-1.950568	-0.064531	3.917022
C	-1.685214	1.069053	4.681497
0			
H	-0.218188	2.561749	5.219983
н Н	-0.218188 1.518978	2.561749 1.633803	5.219983 3.699609
H H H	-0.218188 1.518978 -2 922153	2.561749 1.633803 -0.550025	5.219983 3.699609 3.977778
H H H	-0.218188 1.518978 -2.922153 -2.458382	2.561749 1.633803 -0.550025 1.467133	5.219983 3.699609 3.977778 5.332608
H H H H	-0.218188 1.518978 -2.922153 -2.458382	2.561749 1.633803 -0.550025 1.467133	5.219983 3.699609 3.977778 5.332608
H H H N	-0.218188 1.518978 -2.922153 -2.458382 1.321968	2.561749 1.633803 -0.550025 1.467133 -0.520283	5.219983 3.699609 3.977778 5.332608 2.167991
H H H N H	-0.218188 1.518978 -2.922153 -2.458382 1.321968 2.245345	2.561749 1.633803 -0.550025 1.467133 -0.520283 -0.510392	5.219983 3.699609 3.977778 5.332608 2.167991 2.585492
H H H N H N	-0.218188 1.518978 -2.922153 -2.458382 1.321968 2.245345 -1.227540	2.561749 1.633803 -0.550025 1.467133 -0.520283 -0.510392 -1.729314	5.219983 3.699609 3.977778 5.332608 2.167991 2.585492 2.266752
H H H N H N H	-0.218188 1.518978 -2.922153 -2.458382 1.321968 2.245345 -1.227540 -0.414129	2.561749 1.633803 -0.550025 1.467133 -0.520283 -0.510392 -1.729314 -2.332485	5.219983 3.699609 3.977778 5.332608 2.167991 2.585492 2.266752 2.165168
H H H N H N H	-0.218188 1.518978 -2.922153 -2.458382 1.321968 2.245345 -1.227540 -0.414129 -2.037518	2.561749 1.633803 -0.550025 1.467133 -0.520283 -0.510392 -1.729314 -2.332485 -2.264469	5.219983 3.699609 3.977778 5.332608 2.167991 2.585492 2.266752 2.165168 2.560805
H H H N H N H H C	$\begin{array}{c} -0.218188\\ 1.518978\\ -2.922153\\ -2.458382\\ 1.321968\\ 2.245345\\ -1.227540\\ -0.414129\\ -2.037518\\ 1.435429\end{array}$	$\begin{array}{c} 2.561749\\ 1.633803\\ -0.550025\\ 1.467133\\ -0.520283\\ -0.510392\\ -1.729314\\ -2.332485\\ -2.264469\\ -0.405557\end{array}$	5.219983 3.699609 3.977778 5.332608 2.167991 2.585492 2.266752 2.165168 2.560805 0.780764
H H H N H N H H C S	$\begin{array}{c} -0.218188\\ 1.518978\\ -2.922153\\ -2.458382\\ 1.321968\\ 2.245345\\ -1.227540\\ -0.414129\\ -2.037518\\ 1.435429\\ 2.968535\end{array}$	$\begin{array}{c} 2.561749\\ 1.633803\\ -0.550025\\ 1.467133\\ -0.520283\\ -0.510392\\ -1.729314\\ -2.332485\\ -2.264469\\ -0.405557\\ -0.470581\end{array}$	5.219983 3.699609 3.977778 5.332608 2.167991 2.585492 2.266752 2.165168 2.560805 0.780764 0.093804
H H H N H N H H C S N	$\begin{array}{c} -0.218188\\ 1.518978\\ -2.922153\\ -2.458382\\ 1.321968\\ 2.245345\\ -1.227540\\ -0.414129\\ -2.037518\\ 1.435429\\ 2.968535\\ 0.248148\end{array}$	$\begin{array}{c} 2.561749\\ 1.633803\\ -0.550025\\ 1.467133\\ -0.520283\\ -0.510392\\ -1.729314\\ -2.332485\\ -2.264469\\ -0.405557\\ -0.470581\\ -0.292007\end{array}$	5.219983 3.699609 3.977778 5.332608 2.167991 2.585492 2.266752 2.165168 2.560805 0.780764 0.093804 0.131046
H H H N H H C S N H	$\begin{array}{c} -0.218188\\ 1.518978\\ -2.922153\\ -2.458382\\ 1.321968\\ 2.245345\\ -1.227540\\ -0.414129\\ -2.037518\\ 1.435429\\ 2.968535\\ 0.248148\\ -0.573067\end{array}$	$\begin{array}{c} 2.561749\\ 1.633803\\ -0.550025\\ 1.467133\\ -0.520283\\ -0.510392\\ -1.729314\\ -2.332485\\ -2.264469\\ -0.405557\\ -0.470581\\ -0.292007\\ -0.550644 \end{array}$	5.219983 3.699609 3.977778 5.332608 2.167991 2.585492 2.266752 2.165168 2.560805 0.780764 0.093804 0.131046 0.675171
H H H N H H C S N H C	$\begin{array}{c} -0.218188\\ 1.518978\\ -2.922153\\ -2.458382\\ 1.321968\\ 2.245345\\ -1.227540\\ -0.414129\\ -2.037518\\ 1.435429\\ 2.968535\\ 0.248148\\ -0.573067\\ -0.018628\end{array}$	$\begin{array}{c} 2.561749\\ 1.633803\\ -0.550025\\ 1.467133\\ -0.520283\\ -0.510392\\ -1.729314\\ -2.332485\\ -2.264469\\ -0.405557\\ -0.470581\\ -0.292007\\ -0.550644\\ -0.160126\end{array}$	5.219983 3.699609 3.977778 5.332608 2.167991 2.585492 2.266752 2.165168 2.560805 0.780764 0.093804 0.131046 0.675171 -1.256707
H H H N H N H C S N H C C	$\begin{array}{c} -0.218188\\ 1.518978\\ -2.922153\\ -2.458382\\ 1.321968\\ 2.245345\\ -1.227540\\ -0.414129\\ -2.037518\\ 1.435429\\ 2.968535\\ 0.248148\\ -0.573067\\ -0.018628\\ 0.774162\end{array}$	$\begin{array}{c} 2.561749\\ 1.633803\\ -0.550025\\ 1.467133\\ -0.520283\\ -0.510392\\ -1.729314\\ -2.332485\\ -2.264469\\ -0.405557\\ -0.470581\\ -0.292007\\ -0.550644\\ -0.160126\\ 0.579318\end{array}$	5.219983 3.699609 3.977778 5.332608 2.167991 2.585492 2.266752 2.165168 2.560805 0.780764 0.093804 0.131046 0.675171 -1.256707 -2 136708
H H H N H H C S N H C C C C	$\begin{array}{c} -0.218188\\ 1.518978\\ -2.922153\\ -2.458382\\ 1.321968\\ 2.245345\\ -1.227540\\ -0.414129\\ -2.037518\\ 1.435429\\ 2.968535\\ 0.248148\\ -0.573067\\ -0.018628\\ 0.774162\\ 0.411003\end{array}$	$\begin{array}{c} 2.561749\\ 1.633803\\ -0.550025\\ 1.467133\\ -0.520283\\ -0.510392\\ -1.729314\\ -2.332485\\ -2.264469\\ -0.405557\\ -0.470581\\ -0.292007\\ -0.550644\\ -0.160126\\ 0.579318\\ 0.702188\end{array}$	5.219983 3.699609 3.977778 5.332608 2.167991 2.585492 2.266752 2.165168 2.560805 0.780764 0.093804 0.131046 0.675171 -1.256707 -2.136708 2.479668
H H H N H H C S N H C C C C C	$\begin{array}{c} -0.218188\\ 1.518978\\ -2.922153\\ -2.458382\\ 1.321968\\ 2.245345\\ -1.227540\\ -0.414129\\ -2.037518\\ 1.435429\\ 2.968535\\ 0.248148\\ -0.573067\\ -0.018628\\ 0.774162\\ 0.411003\\ 2.758107\end{array}$	$\begin{array}{c} 2.561749\\ 1.633803\\ -0.550025\\ 1.467133\\ -0.520283\\ -0.510392\\ -1.729314\\ -2.332485\\ -2.264469\\ -0.405557\\ -0.470581\\ -0.292007\\ -0.550644\\ -0.160126\\ 0.579318\\ 0.703188\\ 0.100705\end{array}$	5.219983 3.699609 3.977778 5.332608 2.167991 2.585492 2.266752 2.165168 2.560805 0.780764 0.093804 0.131046 0.675171 -1.256707 -2.136708 -3.479668
H H H N H H C S N H C C C C C C	$\begin{array}{c} -0.218188\\ 1.518978\\ -2.922153\\ -2.458382\\ 1.321968\\ 2.245345\\ -1.227540\\ -0.414129\\ -2.037518\\ 1.435429\\ 2.968535\\ 0.248148\\ -0.573067\\ -0.018628\\ 0.774162\\ 0.411003\\ -0.758107\\ \end{array}$	2.561749 1.633803 -0.550025 1.467133 -0.520283 -0.510392 -1.729314 -2.332485 -2.264469 -0.405557 -0.470581 -0.292007 -0.550644 -0.160126 0.579318 0.703188 0.100795 -0.202007	5.219983 3.699609 3.977778 5.332608 2.167991 2.585492 2.266752 2.165168 2.560805 0.780764 0.093804 0.131046 0.675171 -1.256707 -2.136708 -3.479668 -3.956375
H H H H N H H C S N H C C C C C C C	$\begin{array}{c} -0.218188\\ 1.518978\\ -2.922153\\ -2.458382\\ 1.321968\\ 2.245345\\ -1.227540\\ -0.414129\\ -2.037518\\ 1.435429\\ 2.968535\\ 0.248148\\ -0.573067\\ -0.018628\\ 0.774162\\ 0.411003\\ -0.758107\\ -1.564566\\ 1.564566\end{array}$	2.561749 1.633803 -0.550025 1.467133 -0.520283 -0.510392 -1.729314 -2.332485 -2.264469 -0.405557 -0.470581 -0.292007 -0.550644 -0.160126 0.579318 0.703188 0.100795 -0.626292	5.219983 3.699609 3.977778 5.332608 2.167991 2.585492 2.266752 2.165168 2.560805 0.780764 0.093804 0.131046 0.675171 -1.256707 -2.136708 -3.479668 -3.956375 -3.069969
H H H N H H C S N H C C S N H C C C C C C C	$\begin{array}{c} -0.218188\\ 1.518978\\ -2.922153\\ -2.458382\\ 1.321968\\ 2.245345\\ -1.227540\\ -0.414129\\ -2.037518\\ 1.435429\\ 2.968535\\ 0.248148\\ -0.573067\\ -0.018628\\ 0.774162\\ 0.411003\\ -0.758107\\ -1.564566\\ -1.195320\end{array}$	$\begin{array}{c} 2.561749\\ 1.633803\\ -0.550025\\ 1.467133\\ -0.520283\\ -0.510392\\ -1.729314\\ -2.332485\\ -2.264469\\ -0.405557\\ -0.470581\\ -0.292007\\ -0.550644\\ -0.160126\\ 0.579318\\ 0.703188\\ 0.100795\\ -0.626292\\ -0.755749\end{array}$	5.219983 3.699609 3.977778 5.332608 2.167991 2.585492 2.266752 2.165168 2.560805 0.780764 0.093804 0.131046 0.675171 -1.256707 -2.136708 -3.479668 -3.956375 -3.069969 -1.739112
H H H N H H C S N H C C C C C C C C H	$\begin{array}{c} -0.218188\\ 1.518978\\ -2.922153\\ -2.458382\\ 1.321968\\ 2.245345\\ -1.227540\\ -0.414129\\ -2.037518\\ 1.435429\\ 2.968535\\ 0.248148\\ -0.573067\\ -0.018628\\ 0.774162\\ 0.411003\\ -0.758107\\ -1.564566\\ -1.195320\\ 1.679509\end{array}$	2.561749 1.633803 -0.550025 1.467133 -0.520283 -0.510392 -1.729314 -2.332485 -2.264469 -0.405557 -0.470581 -0.292007 -0.550644 -0.160126 0.579318 0.703188 0.100795 -0.626292 -0.755749 1.051909	5.219983 3.699609 3.977778 5.332608 2.167991 2.585492 2.266752 2.165168 2.560805 0.780764 0.093804 0.131046 0.675171 -1.256707 -2.136708 -3.479668 -3.956375 -3.069969 -1.739112 -1.780608
H H H N H H C S N H C C C C C C C C H H	$\begin{array}{c} -0.218188\\ 1.518978\\ -2.922153\\ -2.458382\\ 1.321968\\ 2.245345\\ -1.227540\\ -0.414129\\ -2.037518\\ 1.435429\\ 2.968535\\ 0.248148\\ -0.573067\\ -0.018628\\ 0.774162\\ 0.411003\\ -0.758107\\ -1.564566\\ -1.195320\\ 1.679509\\ 1.050937\end{array}$	2.561749 1.633803 -0.550025 1.467133 -0.520283 -0.510392 -1.729314 -2.332485 -2.264469 -0.405557 -0.470581 -0.292007 -0.550644 -0.160126 0.579318 0.703188 0.100795 -0.626292 -0.755749 1.051909 1.278099	5.219983 3.699609 3.977778 5.332608 2.167991 2.585492 2.266752 2.165168 2.560805 0.780764 0.093804 0.131046 0.675171 -1.256707 -2.136708 -3.479668 -3.956375 -3.069969 -1.739112 -1.780608 -4.139111
H H H N H N H H C S S N H C C C C C C C C C H H H	$\begin{array}{c} -0.218188\\ 1.518978\\ -2.922153\\ -2.458382\\ 1.321968\\ 2.245345\\ -1.227540\\ -0.414129\\ -2.037518\\ 1.435429\\ 2.968535\\ 0.248148\\ -0.573067\\ -0.018628\\ 0.774162\\ 0.411003\\ -0.758107\\ -1.564566\\ -1.195320\\ 1.679509\\ 1.050937\\ -2.471662\end{array}$	2.561749 1.633803 -0.550025 1.467133 -0.520283 -0.510392 -1.729314 -2.332485 -2.264469 -0.405557 -0.470581 -0.292007 -0.550644 -0.160126 0.579318 0.703188 0.100795 -0.626292 -0.755749 1.051909 -278099 -1.087781	5.219983 3.699609 3.977778 5.332608 2.167991 2.585492 2.266752 2.165168 2.560805 0.780764 0.093804 0.131046 0.675171 -1.256707 -2.136708 -3.479668 -3.956375 -3.069969 -1.739112 -1.780608 -4.139111 -3.447059
H H H N H N H C S N H C C C C C C C C C C C H H H H H H H	$\begin{array}{c} -0.218188\\ 1.518978\\ -2.922153\\ -2.458382\\ 1.321968\\ 2.245345\\ -1.227540\\ -0.414129\\ -2.037518\\ 1.435429\\ 2.968535\\ 0.248148\\ -0.573067\\ -0.018628\\ 0.774162\\ 0.411003\\ -0.758107\\ -1.564566\\ -1.195320\\ 1.679509\\ 1.050937\\ -2.471662\\ -1.821679\end{array}$	2.561749 1.633803 -0.550025 1.467133 -0.520283 -0.510392 -1.729314 -2.332485 -2.264469 -0.405557 -0.470581 -0.292007 -0.550644 -0.160126 0.579318 0.703188 0.703188 0.100795 -0.626292 -0.755749 1.051909 1.278099 -1.087781 -1.329694	5.219983 3.699609 3.977778 5.332608 2.167991 2.585492 2.266752 2.165168 2.560805 0.780764 0.093804 0.131046 0.675171 -1.256707 -2.136708 -3.479668 -3.956375 -3.069969 -1.739112 -1.780608 -4.139111 -3.447059 -1.060065

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

C	-0.412597	0.874941	-6.188960
H	-0.935399	0.789112	-7.143506
H	-0.322194	1.936078	-5.920267
Н	0.592307	0.442606	-6.285700
1a-trans2			
C	-1.961841	-1.389365	3.596024
C	-0.800326	-1.400783	2.825408
C	0.106213	-0.335512	2.880252
C	-0.133445 -1.207139	0.701518	3.742105
C	-2.197905	-0 310435	4 452394
н	-2.661029	-2.217888	3.542883
Н	-0.572632	-2.241522	2.175802
Н	-1.490813	1.581128	5.201539
Н	-3.093648	-0.290342	5.067288
N	1.306624	-0.339800	2.109293
Н	2.195663	-0.348374	2.595730
Ν	0.799825	1.785535	3.836696
H	1.375516	1.922464	3.014254
H	0.457204	2.655111	4.223942
C	1.445560	-0.244228	0.739736
S	2.996463	-0.1/0/35	0.086307
N U	0.204389	-0.198285	0.005/33
C C	-0.025720	-0.056094	-1 315499
C	0.805127	-0.498526	-2.347469
C	0.412077	-0.352500	-3.680420
С	-0.821678	0.222690	-3.999704
C	-1.663861	0.652007	-2.964287
C	-1.266500	0.516919	-1.642780
Н	1.761017	-0.946503	-2.114072
H	1.082577	-0.700661	-4.457737
H	-2.621092	1.095943	-3.218222
H	-1.924611	0.866487	-0.849/42
0 C	-1.2956//	0.407809	-5.20/833
Ч		-0.003231 0 527741	-6 361089
н	-0.289897	-1.086691	-6.326363
Н	-1.037467	0.240843	-7.257536
1b-cis			
С	-1.386953	-0.650626	-4.459876
C	-1.511658	-0.463798	-3.085707
C	-0.497876	0.144741	-2.340449
С	0.689726	0.578430	-2.973488
С	0.803817	0.367027	-4.359543
С	-0.216998	-0.226840	-5.093657
Н	-2.185016	-1.125358	-5.022155
H	-2.408774	-0.794026	-2.567170
н	1.714435	0.690321	-4.859477
H	-0.093300	-0.365996	-6.164324
IN	-0./663/2	0.434395	-0.965854

Н	-1.673880	0.858118	-0.805162
N	1.678862	1.259528	-2.267580
Н	1.875316	0.850274	-1.356369
Н	2.537857	1.363934	-2.796409
С	-0.116548	-0.033335	0.146215
S	1.188586	-1.087722	0.078469
Ν	-0.654917	0.497196	1.298192
Н	-1.207382	1.336416	1.166001
С	-0.362711	0.231449	2.658805
С	-0.039245	-1.043985	3.139154
С	0.177825	-1.228347	4.504009
С	0.061022	-0.166207	5.402362
С	-0.278284	1.099431	4.922696
С	-0.484762	1.299082	3.559532
H	0.044201	-1.875080	2.452250
H	0.432826	-2.220614	4.866071
H	-0.376226	1.938232	5.606360
H	-0.734178	2.291014	3.187480
H	0.229604	-0.323631	6.463775
1b-cis2			
a	1 266518		4 140650
C	-1.366517	0.794163	-4.142653
C	-1.090863	0.741853	-2.776803
C	0.104826	0.1/0343	-2.326891
C	1.029106	-0.352652	-3.2544/3
C	0.747622	-0.2/0801	-4.020030
C II	-0.443103	1 222210	-5.005050
п	1 702205	1 120012	-4.401911
п	1 462001	0 674465	-2.000400 5.000400
п u	_0 651887	-0.074405	-6 130873
N	0 524475	0.330303	-0.130873
IN IN	1 528//2	0.101241	-0.977557
N	2 247221	-0 884944	-2 754506
н	2 094034	-1 673337	-2 128236
н	2 865756	-1 183463	-3 502487
C	-0 192466	0 006645	0 183121
S	-1 785713	-0 497101	0 253073
N	0 599648	0 303252	1 276624
н	1 393348	0 900673	1 075970
C	0.343817	0.163616	2.661659
C	-0.375788	-0.907811	3.207288
C	-0.529351	-0.998881	4.589976
C	0.036057	-0.049125	5.442806
C	0.765949	1.007838	4.897771
С	0.915654	1.116688	3.517102
Н	-0.812349	-1.652197	2.555626
Н	-1.093627	-1.831188	5.001959
Н	1.215233	1.756642	5.544417
Н	1.472858	1.951315	3.095690
Н	-0.088883	-0.132907	6.518563

1b-trans

С	-0.063512	-1.499255	-4.007492
С	0.803773	-0.996901	-3.039105
С	0.424952	0.071413	-2.220632
С	-0.841185	0.667095	-2.392266
С	-1.715263	0.142312	-3.353242
С	-1.330434	-0.931109	-4.152971
н	0 243184	-2 332576	-4 632070
и и	1 787381	-1 437622	-2 898642
и и	2 606607	0 504025	2.00042
11	-2.090007	1 216402	4 000107
п	1 252150	-1.310403	1 260271
IN	1.353159	0.600937	-1.2003/1
H	2.311045	0.002551	-1.594/93
N TT	-1.224/15	1./25241	-1.544181
H	-0.454713	2.357574	-1.336457
Н	-2.031566	2.240869	-1.879022
C	1.342049	0.400033	0.112054
S	2.800053	0.466296	0.943455
N	0.099601	0.211228	0.633679
H	-0.670050	0.498320	0.030319
С	-0.307257	-0.052755	1.964448
С	0.452128	-0.787721	2.883809
С	-0.065716	-1.041113	4.153679
С	-1.332267	-0.584437	4.521594
С	-2.091962	0.135715	3.598365
С	-1.584237	0.401379	2.329330
Н	1,433830	-1.147262	2,608426
н	0 532912	-1 609419	4 860552
н	-3 081492	0 497606	3 864484
ч	-2 173522	0 968643	1 612294
и и	_1 723359	-0 789032	5 514199
11	I. 123337	0.700052	5.514177
1h turne?			
10 <i>-trans2</i>			
C	-1 822828	-1 325347	2 958216
C	-0 746645	_1 3//031	2.00210
C	0 221551	-1.J110J1	2.072713
C	0.221331	-0.332840	2.100003
C	0.134511	0.712010	3.051030
C	-0.943649	0.703721	3.953344
C	-1.908460	-0.29/842	3.901/32
H	-2.570730	-2.111255	2.925265
Н	-0.635307	-2.149386	1.351855
H	-1.019557	1.497353	4.693075
Н	-2.735473	-0.274003	4.606166
Ν	1.340147	-0.344346	1.215097
Н	2.267995	-0.449643	1.609505
N	1.132658	1.675222	3.115706
Н	1.629758	1.838411	2.248033
Н	0.883630	2.532240	3.592247
С	1.352582	-0.256256	-0.162015
S	2.834450	-0.326580	-0.957239
Ν	0.116093	-0.089357	-0.710734
Н	-0.630936	-0.005811	-0 028671
		0.00011	0.0200/1
C	-0.339250	0.053849	-2.042381

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

С С С Н Н Н Н	$\begin{array}{c} 0.419203 \\ -0.160281 \\ -1.481130 \\ -2.236336 \\ -1.671750 \\ 1.443768 \\ 0.439229 \\ -3.267921 \\ -2.265606 \end{array}$	-0.227320 -0.072512 0.350439 0.623022 0.477856 -0.555428 -0.292586 0.952887 0.697978	-3.186732 -4.446993 -4.593029 -3.450748 -2.187733 -3.085450 -5.326325 -3.539045 -1.302270
H 1c-cis	-1.917427	0.465441	-5.581102
	1 201202	0 765674	
C	-1.291392	-0./050/4	-5.208500
C	-1.45/465	-0.555981	-3.902269
C	-0.486092	0.106601	-3.146683
C	0.699433	0.573362	-3.759417
C	0.855537	0.338911	-5.137679
C	-0.123275	-0.309119	-5.882932
H	-2.056136	-1.282676	-5.839697
H	-2.353777	-0.910093	-3.398379
H	1.765015	0.687132	-5.622606
H	0.031988	-0.464958	-6.947125
Ν	-0.798859	0.412726	-1.784644
Н	-1.721979	0.812427	-1.653608
N	1.643918	1.306767	-3.044641
Н	1.837837	0.923207	-2.121911
Н	2.508985	1.439165	-3.557021
С	-0.156633	-0.004592	-0.650611
S	1.185153	-1.012742	-0.661843
N	-0.738670	0.532778	0.479789
H	-1.312863	1.352224	0.319423
C	-0 454169	0 306684	1 846686
C	-0 107741	-0 950067	2 360075
C	0 101892	-1 109901	3 727929
C	-0 050688		4 588568
C	-0 411186	1 228260	4 095378
C	-0.411100	1 207662	2 7 2 5 7 7 0
		1 706072	1 605271
п	0.001240	-1./900/2	1.095571
п	0.373082	-2.062325	4.124025
H	-0.529264	2.069829	4.709135
H	-0.871293	2.368214	2.336513
CI	0.208560	-0.236016	6.314959
1c- <i>cis2</i>			
C	-1 394090	0 762396	-4 938373
C	-1 106771	0.723647	-3.574492
C	0 094263	0 164967	-3 130421
C	1 011023	_0 370505	_4 060700
C	1.011032	-0.370335	
C	0.110220	-0.302491 0 963070	-J.424992 E 064000
U U		U.2030/U 1 106317	-3.00499U
л II	-2.33143/	1 106510	
н	-1.803/42	1.120512	-2.051239
н	1.428170	-0.711220	-b.141002

Н	-0.696085	0.301638	-6.928455
N	0.527913	0.183486	-1.785273
Н	1.543261	0.187167	-1.715526
Ν	2.235770	-0.894913	-3.564826
Н	2.090483	-1.691065	-2.946355
Н	2.856746	-1.181295	-4.315619
С	-0.176179	0.027124	-0.616504
S	-1.772501	-0.459488	-0.517288
N	0 633466	0 326260	0 466698
н	1 429112	0 916275	0 252561
C	0 385756	0 201753	1 852006
C	-0 337892	-0 859476	2 412997
C	-0 488473	-0.946917	3 795053
C	0 094148	0 011450	4 622946
C	0 829262	1 063966	4 082215
C	0.029202	1 155718	2 699693
U U		_1 607828	1 773/20
п u	1 051012	-1.007828	1 227041
п	-1.051613	-1.707000	4.227041
п	1 526064	1 005007	4.729974
H Cl	1.520904	1.90500/ 0.111000	
CI	-0.095336	-0.111022	0.30/53/
1 /			
Ic-trans			
a	0 000155	1 (10(4)	
C	-0.60/155	-1.612646	-4.595/56
C	0.419764	-1.1302/4	-3./86548
C	0.226261	-0.009605	-2.9/341/
C	-1.014200	0.659765	-2.990643
C	-2.047971	0.155527	-3.790182
C	-1.846816	-0.970600	-4.584789
H	-0.443543	-2.487152	-5.217799
H	1.386141	-1.627394	-3.767729
H	-3.009280	0.664500	-3.796510
H	-2.659401	-1.339191	-5.204346
N	1.314160	0.499362	-2.190114
H	2.216161	0.479647	-2.652004
N	-1.206852	1.773473	-2.147255
H	-0.383168	2.369407	-2.095900
H	-2.028099	2.320969	-2.382289
C	1.488315	0.362302	-0.813803
S	3.048886	0.370427	-0.194892
N	0.322058	0.283391	-0.113313
H	-0.505708	0.601989	-0.616824
С	0.099492	0.113346	1.272133
С	0.942510	-0.617436	2.119724
С	0.609855	-0.777078	3.463585
С	-0.565316	-0.219714	3.963559
С	-1.421337	0.497848	3.130528
С	-1.083929	0.661524	1.790420
Н	1.854448	-1.051702	1.734504
Н	1.264834	-1.341125	4.119012
Н	-2.336231	0.927785	3.523822
Н	-1.744088	1.226418	1.136739
Cl	-0.976273	-0.426018	5.662558

1c-trans2

C	2 021716	1 200602	2 162200
C	-2.031/10	-1.390083	0.95902209
C	-0.829/3/	-1.389352	2./5/235
C	0.052457	-0.305663	2.847964
С	-0.253046	0.797059	3.681094
С	-1.459563	0.770877	4.402575
С	-2.334567	-0.304857	4,289093
U U	-2 711242	-2 222211	3 382558
11		2.233211	2 122040
Н	-0.551058	-2.233298	2.132040
H	-1.705143	1.608215	5.051559
H	-3.263240	-0.294195	4.853188
N	1.295107	-0.297619	2.144208
Н	2.156522	-0.332884	2.677436
N	0 654132	1 837995	3 816404
U	1 202200	1 070050	2 022006
11	1.203390	1.970950	1 170504
H	0.277917	2.706829	4.1/2504
C	1.508036	-0.240310	0.783820
S	3.089435	-0.227073	0.210220
N	0.356708	-0.172641	0.053402
Н	-0.488080	-0.123981	0.614324
C	0 109346	-0 073302 -	1 333467
C	1 036612	_0 381987 _	2 228216
C	1.050012	-0.301907 -	2.550210
C	0.669258	-0.2/6000 -	-3.6/9240
C	-0.617803	0.126854 -	4.025709
С	-1.554760	0.427179 -	3.038252
С	-1.186269	0.327397 -	1.701232
Н	2.036193	-0.694893 -	2.071991
н	1 390463	-0 513913 -	4 453944
u u	2 557456	0.720200	2 200604
11	-2.337430	0.759200 -	0 021070
H al	-1.915/99	0.569860 -	-0.931272
CI	-1.069091	0.256882 -	-5.721173
ld-cis			
C	E E1714000	0 47402400	1 46000700
C	-5.51/14000	-0.4/402400	
C	-4.14801700	-0./1849500	-1.40595600
C	-3.40933400	-0.43487800	-0.25389900
С	-4.04010200	0.11897600	0.88331700
С	-5.42175900	0.37063200	0.80198100
С	-6.15071900	0.07219000	-0.34368800
н	-6 07633500	-0 69876900	-2 36500600
и П	-3 62906700		-2.26501000
11	-3.02900700		-2.20591000
H	-5.92184500	0.801/4400	1.00052200
H	-7.21783400	0.27593800	-0.36497400
N	-2.04031800	-0.85103200	-0.22312800
Н	-1.88967400	-1.80650900	-0.52924800
N	-3.33943500	0.33602400	2.06780700
н	-2.42291600	0.75480600	1.92778400
 H	-3 86880100	0 87166600	2.72696100
	0 000000000		
	-0.92398500		
S	-0.96323900	1.59412300	0.04013500
N	0.21754400	-0.86170800	-0.02143100
Н	0.05059000	-1.82698000	0.23876000
С	1.57969900	-0.52197500	-0.03032200

С

С	2.09522300	0.63788400	-0.63371000
С	3.46637800	0.86258700	-0.63745300
С	4.32373500	-0.06729700	-0.05121500
С	3.83397200	-1.23029600	0.54169200
С	2.46525500	-1.45042100	0.54999100
Н	1.42754200	1.35517000	-1.08829700
H	3.88104300	1.75018800	-1.09912300
H	4.52302000	-1.93541500	0.98940400
H	2.07173400	-2.34899100	1.01980800
N	5.76727900	0.17542000	-0.06284800
0	6.17091500	1.21276700	-0.59042800
0	6.49529200	-0.67394800	0.45503400
1d-cis2			
С	5.26292400	-1.24554400	-0.86006100
С	3.89027900	-1.00500400	-0.82072300
С	3.39949000	0.11902900	-0.15199300
С	4.28923500	1.00534000	0.49292400
С	5.66310800	0.76086300	0.42434800
С	6.15051100	-0.35740000	-0.25109300
Н	5.63590700	-2.12283900	-1.37994700
Н	3.19769500	-1.67846200	-1.30891200
Н	6.34890000	1.44631400	0.91753300
Н	7.22077600	-0.53898200	-0.28855400
N	2.04145900	0.51440700	-0.15798700
Н	1.94344900	1.52309500	-0.05908000
N	3.74328700	2.15473500	1.12544200
H	3.13071500	1.91318800	1.90256500
Н	4.46757400	2.77746600	1.47041900
C	0.89607400	-0.23563900	-0.08399900
S	0.84057500	-1.86900000	0.25469500
N	-0.20707800	0.57121000	-0.34581300
H	0.00760300	1.41356600	-0.86716800
C	-1.58393900	0.34299200	-0.21377200
C	-2.14942000	-0.59543700	0.66771600
C	-3.53088100	-0.70778800	0.76357600
C	-4.35081700	0.11401/00	-0.00846800
C	-3.8111/800	1.05835100	-0.8813/500
U U	-2.45515000	1 22001000	1 26222900
H	-1.51089600	-1.23091800	1 42002000
n u	-4 47092500	-1.42401200	_1 46929000
n u		1 002420300	-1.40929000
II N	-5 80434100	_0 00896000	0 10169900
0	-6 25268700	-0.85258200	0.2020500
0	-6.49754800	0.74085000	-0.58944400
1d-trans2			
C	3 59974900	-2 10657400	-1 36739100
C	2 94664300	-0 87599400	-1 37276200
C	3 07773600	0 00836900	-0 29446500
C	3,90083000	-0.32291400	0.80809200
-			

-1.55999800

0.78816800

4.56957100

C	4.41568700	-2.43650700	-0.28082200
Н	3.48961600	-2.78766600	-2.20509200
H	2.33263000	-0.57633500	-2.21785500
Н	5.21022700	-1.82713600	1.62518800
H	4.93968500	-3.38820700	-0.26485700
Ν	2.42654900	1.28093400	-0.29368700
Н	2.99541400	2.11770300	-0.36079600
N	4.07998100	0.58423000	1.84094300
Н	3.33020800	1.25176500	1.97382600
Н	4.43015400	0.20278800	2.70978100
С	1.07824900	1.55211300	-0.24790200
S	0.56508400	3.14986400	-0.29351500
N	0.30482800	0.42415300	-0.14197100
Н	0.84307700	-0.43597700	-0.09620000
C	-1.07934300	0.20940100	-0.06499000
C	-2.06415500	1.20458700	-0.19044400
C	-3.40830900	0.85793800	-0.10699500
C	-3.77548000	-0.46997200	0.09862600
С	-2.81410800	-1.47352500	0.22292000
С	-1.47548200	-1.12937700	0.14069000
Н	-1.77261300	2.23255100	-0.34907800
H	-4.17898200	1.61305700	-0.20222900
H	-3.12544500	-2.49829000	0.38219000
H	-0.71939400	-1.90519200	0.23841300
Ν	-5.19264400	-0.82311700	0.18601400
0	-6.01937300	0.08317000	0.07252700
0	-5.47768400	-2.00886800	0.36841100

1d-trans

С	4.73027900	-0.74792300	1.68168200
С	3.98720600	0.32086900	1.18438800
С	3.19919600	0.17377400	0.03899300
С	3.17785900	-1.06022000	-0.64062700
С	3.90998200	-2.13524500	-0.12183100
С	4.67828900	-1.98129300	1.02978100
Н	5.33271400	-0.62085400	2.57568800
Н	4.00005900	1.28312000	1.68953000
Н	3.88565600	-3.09187000	-0.63884500
Н	5.24594400	-2.82557400	1.41019900
Ν	2.48141700	1.30352400	-0.47840200
Н	2.98583800	2.18194000	-0.43766500
Ν	2.35853700	-1.20305200	-1.78240300
Н	2.40000100	-0.39043600	-2.39458800
Н	2.54878700	-2.04935700	-2.30931800
С	1.11380800	1.54077900	-0.38335600
S	0.56597700	3.12439500	-0.36885800
Ν	0.35993000	0.39796500	-0.37178400
Н	0.84175500	-0.43184900	-0.72487900
С	-1.01779000	0.20302700	-0.19073200
С	-1.87387000	1.10604000	0.46294100
С	-3.21561200	0.78624200	0.63233400
С	-3.70579600	-0.42904300	0.15676900
С	-2.87144600	-1.34339700	-0.48651100
С	-1.53397300	-1.02361000	-0.65585400
Н	-1.49084800	2.04833300	0.82652200

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

H	-3.88849400	1.46968900	1.13544700
H	-3.27863100	-2.28076600	-0.84436600
Н	-0.87246200	-1.72438400	-1.15844100
Ν	-5.11953700	-0.75748300	0.33918600
0	-5.83417500	0.07004500	0.90740700
0	-5.51547300	-1.84567000	-0.08510600

OMe-mono-urea

С	-1.165064	-0.742130	-5.395993
C	-1.410037	-0.533554	-4.041034
C	-0.456789	0.058018	-3.206045
С	0.800895	0.442521	-3.730728
С	1.036460	0.202312	-5.097150
C	0.072214	-0.367358	-5.921832
Н	-1.924319	-1.197689	-6.024257
Н	-2.364113	-0.831164	-3.609886
H	2.001131	0.489834	-5.510518
H	0.292646	-0.525251	-6.974159
N	-0.845141	0.350508	-1.864705
Н	-1.832907	0.539994	-1.756694
N	1.743773	1.103402	-2.946325
Н	1.836175	0.697754	-2.016170
H	2.645513	1.186402	-3.402127
С	-0.145360	0.008367	-0.721181
0	0.979873	-0.489799	-0.745333
N	-0.832497	0.309015	0.440417
H	-1.690171	0.834740	0.343142
С	-0.416986	0.116818	1.778857
C	0.740304	-0.592465	2.144815
С	1.060304	-0.746507	3.487563
С	0.248979	-0.210480	4.496291
C	-0.904184	0.493043	4.137016
C	-1.225345	0.650507	2.787677
H	1.377276	-1.007133	1.376680
H	1.953161	-1.291366	3.778390
H	-1.558349	0.923371	4.886471
H	-2.126197	1.202192	2.523918
0	0.666219	-0.427467	5.781330
C	-0.119796	0.101187	6.834550
Н	0.386728	-0.181463	7.759431
Н	-0.187514	1.196468	6.780027
Н	-1.134314	-0.320711	6.835221

1e (H-mono-urea)

С	-1.240966	-0.689177	-4.516874
С	-1.451938	-0.483229	-3.155930
С	-0.464258	0.073709	-2.337333
С	0.793403	0.424288	-2.884811
С	0.993568	0.187440	-4.257540
С	-0.004019	-0.347207	-5.065642
Н	-2.026058	-1.117441	-5.132394
Н	-2.405359	-0.755378	-2.707040
H	1.957716	0.449049	-4.688855

Cl

H	0.189905	-0.503841	-6.123339
Ν	-0.816545	0.367856	-0.985961
ч	_1 792754	0 599480	_0 857217
11		1 050450	0.037217
IN	1.//1/56	1.050456	-2.115697
H	1.872052	0.635591	-1.190617
Н	2.665752	1.110985	-2.589889
С	-0 105094	-0 001093	0 139895
0	1 002255	0 524464	0 001001
0	1.002255	-0.534404	0.091091
N	-0.758922	0.320011	1.318382
H	-1.608214	0.862289	1.238311
С	-0.336951	0.095802	2.646183
C	0 821000	-0 620474	2 986180
C	1 1/3/10		1 221658
	1.143410	-0.799224	H.JJI0J0
e	0.339134	-0.282490	5.347878
C	-0.812036	0.428284	5.004698
С	-1.148460	0.616598	3.667267
н	1 449779	-1 020253	2 203741
ц	2 042080	1 255220	1 502500
н 	2.042989	-1.333329	4.562569
H	-1.454218	0.840785	5.778290
H	-2.048562	1.172646	3.409761
Н	0.604157	-0.430498	6.390695
CI-mono-urea			
С	-1.083591	-0.805348	-5.378988
C	_1 361961	-0.575212	-4 034299
	1.301901	0.070212	
C.	-0.432026	0.038557	-3.189253
C	0.834365	0.424320	-3.690103
С	1.103438	0.162606	-5.046508
С	0.162793	-0.429122	-5.882422
н	-1 824058	-1 278077	-6 016761
11	2 2 2 2 2 1 0 2 0	0.070750	2.610020
п	-2.323317	-0.0/2/52	-3.019032
Н	2.075103	0.450398	-5.442718
H	0.408599	-0.603478	-6.926431
Ν	-0.853936	0.350533	-1.861277
н	-1 840628	0 558494	-1 780892
N	1 752407	1 106120	2 005505
IN 	1.753467	1.100130	-2.095565
Н	1.833675	0.715220	-1.958503
H	2.662762	1.196355	-3.334676
С	-0.179801	0.035699	-0.699404
0	0 945357	-0 460389	-0 683450
N	0 002276	0.264001	0.000100
	-0.893378	0.304001	0.444579
Н	-1.756263	0.874866	0.317602
С	-0.514248	0.187128	1.789647
С	0.656833	-0.474802	2.190732
С	0 944076	-0.614814	3 547653
c			A E07070
	0.0/4052	-0.102593	4.50/9/2
C	-1.091541	0.556025	4.124448
С	-1.379601	0.697129	2.770842
Н	1.331182	-0.867864	1.443704
н	1 850195	-1 126348	3 854968
 U	1 767/00	1 0EE034	1 072010
п 	-1./0/499	0.955034	4.0/3049
Н	-2.291537	1.211977	2.474690

-0.286668

0.449069

6.218087

NO₂-mono-urea

С	-5.65505400	-1.00389800	-0.89774500
С	-4.31273000	-1.30592600	-0.68720900
С	-3.46650400	-0.42958500	-0.00056600
С	-3.96121700	0.80500200	0.48229000
С	-5.31625600	1.09940800	0.24028400
С	-6.15391500	0.21155200	-0.42520800
Н	-6.29503800	-1.70151600	-1.42880900
Н	-3.90124400	-2.24268700	-1.05798000
Н	-5.70923400	2.04716000	0.60231800
Н	-7.19639200	0.47471000	-0.58197700
N	-2.13992800	-0.88158500	0.27894600
Н	-2.06588100	-1.87798400	0.43713600
N	-3.16421700	1.66430900	1.23515000
Н	-2.22810900	1.77897700	0.85163400
Н	-3.60328100	2.56211000	1.40487200
С	-0.97821600	-0.19019900	0.02788200
0	-0.94802400	0.96533300	-0.38672800
N	0.16627100	-0.93165500	0.32345700
Н	0.02983300	-1.83013900	0.76669900
С	1.50579500	-0.55559600	0.17406100
С	1.91658700	0.66291800	-0.39941600
С	3.27193100	0.94473500	-0.51624800
С	4.21812400	0.02421600	-0.06758900
С	3.83039600	-1.18853700	0.50225100
С	2.47938800	-1.47217400	0.61971100
Н	1.17410800	1.36937200	-0.73996700
Н	3.60659800	1.87689800	-0.95474600
Н	4.58534700	-1.88622000	0.84274500
Н	2.16905500	-2.41597600	1.06268700
N	5.64151200	0.33175200	-0.19522900
0	5.95389600	1.41074200	-0.70214800
0	6.44897800	-0.50681500	0.21189200

Gaussian 03. Revision C.02. Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Montgomery Jr JA. Vreven T. Kudin KN. Burant JC. Millam JM. Iyengar SS. Tomasi J. Barone V. Mennucci B. Cossi M. Scalmani G. Rega N. Petersson GA. Nakatsuji H. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Klene M. Li X. Knox JE. Hratchian HP. Cross JB. Bakken V. Adamo C. Jaramillo J. Gomperts R. Stratmann RE. Yazyev O. Austin AJ. Cammi R. Pomelli C. Ochterski JW. Ayala PY. Morokuma K. Voth GA. Salvador P. Dannenberg JJ. Zakrzewski V G. Dapprich S. Daniels AD. Strain MC. Farkas O. Malick DK. Rabuck AD. Raghavachari K. Foresman JB. Ortiz JV. Cui Q. Baboul AG. Clifford S. Cioslowski J. Stefanov BB. Liu G. Liashenko A. Piskorz P. Komaromi I. Martin RL. Fox DJ. Keith T. Al-Laham MA. Peng CY. Nanayakkara A. Challacombe M. Gill PMW. Johnson B. Chen W. Wong MW. Gonzalez C. Pople JA (2004) Gaussian Inc Wallingford CT