# Supporting Information 

for

## Paramagnetic Aluminum $\beta$-Diketiminate

by

Jani Moilanen, Javier Borau Garcia, Roland Roesler, and Heikki M. Tuononen*

## 1. Experimental details

All reactions and manipulations were performed under an argon atmosphere by using Schlenk techniques or an inert atmosphere glove box. Compounds $\mathrm{MeAlCl}_{2}$ ( 1 M in hexanes, Aldrich) and $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, Aldrich) were used as received. $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (Aldrich) were dried with $\mathrm{HMe}_{2} \mathrm{SiCl}$ and sublimed before use. $\mathrm{CoCp}_{2}^{*}$ and $\mathrm{CoCp}_{2}$ (Aldrich) were sublimed before use. Compound 7 was prepared according to a literature procedure (Eur. J. Org. Chem., 2004, 4319). All solvents were dried and deoxygenated prior to use. NMR spectra were recorded on a Bruker Avance 400 MHZ or Bruker Avance II 300 MHZ spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were referenced to the residual solvent signal and the chemical shifts are reported relative to $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$. Solutions of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ and neat $\mathrm{C}_{6} \mathrm{~F}_{6}$ were used as internal references in ${ }^{11} \mathrm{~B}$ and ${ }^{19} \mathrm{~F}$ measurements, respectively. The EPR spectrum of $\mathbf{4} \mathbf{j}$ was recorded using an X-band Bruker EMX10/12 spectrometer. Elemental analyses were performed by Analytical Services at the Department of Chemistry, University of Calgary. Although the calculated and experimental data for the elemental analysis of both $9 \mathbf{a}$ and $\mathbf{9 b}$ deviate slightly ( $0.75-1.47 \%$ ), the purity of the compounds is clearly shown by NMR spectroscopy (see below) as there there are no ${ }^{11} \mathrm{~B}$ - or ${ }^{19} \mathrm{~F}$-containing impurities present in the sample. Consequently, we address the minor errors in elemental analysis to a small amount of H -grease present in the products.

8: A solution of $7(681 \mathrm{mg}, 4.0 \mathrm{mmol})$ in THF $(10 \mathrm{ml})$ was cooled to $-78{ }^{\circ} \mathrm{C}$ and $n$ BuLi ( 2.5 ml of a 1.6 M solution in hexane, 4.0 mmol ) was added by syringe. The solution was stirred for 1 h at $-78^{\circ} \mathrm{C}$ and then warmed to $-40^{\circ} \mathrm{C} . \mathrm{MeAlCl}_{2}(2.0 \mathrm{ml}$ of a 1 M solution in hexane, 2.0 mmol ) was added by syringe and the solution was allowed to warm to ambient temperature over 1 h , after which it was warmed to $45^{\circ} \mathrm{C}$ and stirred for additional 45 min . The hot solution was filtered and the solvents evaporated under vacuum. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$, filtered and the solvent was evaporated under vacuum. The solid residue was washed with hexane ( 2 x 10 ml ) to afford 8 as an orange powder ( $430 \mathrm{mg}, 57 \%$ ). Crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielded orange single crystals suitable for X-ray analysis (see below). ${ }^{1} \mathrm{H}$ NMR (400.14 MHz, THF-d8,
$300 \mathrm{~K}) \delta(\mathrm{ppm})=7.29(\mathrm{~d}, \mathrm{~J}=5.20 \mathrm{~Hz}, 4 \mathrm{H}), \delta=7.01(\mathrm{~m}, 4 \mathrm{H}), \delta=6.67(\mathrm{~d}, \mathrm{~J}=8.81 \mathrm{~Hz}$, $4 \mathrm{H}), \delta=6.14(\mathrm{t}, \mathrm{J}=6.00 \mathrm{~Hz}, 4 \mathrm{H}), \delta=5.22(\mathrm{~s}, 2 \mathrm{H}), \delta=-1.31(\mathrm{~S}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.65 MHz, THF-d8, 300 K$) \delta(\mathrm{ppm})=156.99, \delta=143.79, \delta=134.58, \delta=122.67, \delta=110.93$, $\delta=90.77, \delta=-2.37$. Elemental analysis calcd. (\%) for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{AlN}_{4}: \mathrm{C} 72.60, \mathrm{H} 5.56, \mathrm{~N}$ 14.73; found: C 72.39, H 5.70, N 14.35.

9a: $\mathbf{8}(300 \mathrm{mg}, 0.79 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ and a solution of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(404 \mathrm{mg}, 0.79 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added by syringe at ambient temperature. The solution was stirred for 2 h at ambient temperature and the solvent was evaporated under vacuum. The residue was washed with hexane ( 1 x 10 ml ) to afford $9 \mathbf{9 a}$ as an orange powder $(580 \mathrm{mg}, 82 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400.14 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right) \delta(\mathrm{ppm})=$ $7.40(\mathrm{~m}, 4 \mathrm{H}), \delta=7.31(\mathrm{~d}, \mathrm{~J}=6.40 \mathrm{~Hz}, 4 \mathrm{H}), \delta=7.09(\mathrm{~d}, \mathrm{~J}=8.81 \mathrm{~Hz}, 4 \mathrm{H}), \delta=6.55(\mathrm{td}, \mathrm{J}$ $=6.80,1.2 \mathrm{~Hz}, 4 \mathrm{H}), \delta=5.63(\mathrm{~s}, 2 \mathrm{H}), \delta=0.46(\mathrm{~S}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}($ partial $) \mathrm{NMR}(100.65 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right) \delta(\mathrm{ppm})=154.41, \delta=149.57, \delta=147.14, \delta=138.27, \delta=137.24, \delta=$ $136.24, \delta=135.17, \delta=124.80, \delta=113.40, \delta=90.60 .{ }^{11} \mathrm{~B} \mathrm{NMR}\left(128.38 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $300 \mathrm{~K}) \delta(\mathrm{ppm})=-14.94 .{ }^{19} \mathrm{~F}$ NMR $\left(376.47 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right) \delta(\mathrm{ppm})=-133.07, \delta=$ $-165.29, \delta=-167.90$. Elemental analysis calcd. (\%) for $\mathrm{C}_{41} \mathrm{H}_{21} \mathrm{AlBF}_{15} \mathrm{~N}_{4}$ : C 55.18, H 2.37, N 6.28; found: C 53.71, H 3.12, N 5.53.

9b: $8(135 \mathrm{mg}, 0.35 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ and a solution of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}(86 \mathrm{mg}, 0.35 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added by syringe at ambient temperature. The solution was stirred for 2 h at ambient temperature and the solvent was evaporated under vacuum. The residue was washed with hexane ( 1 x 10 ml ) to afford $\mathbf{9 b}$ as an orange powder $(135 \mathrm{mg}, 61 \%) .{ }^{1} \mathrm{H}$ NMR $\left(300.13 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 293 \mathrm{~K}\right) \delta(\mathrm{ppm})=$ $7.65-6.80($ several $\mathrm{m}, 31 \mathrm{H}), \delta=5.33(\mathrm{~s}, 2 \mathrm{H}), \delta=0.27\left(\mathrm{q}, \mathrm{J}=4.08 \mathrm{~Hz}, 3 \mathrm{H} .{ }^{13} \mathrm{C}\right.$ (partial) NMR (75.48 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 293 \mathrm{~K}\right) ~ \delta(\mathrm{ppm})=139.77, \delta=137.57, \delta=135.77, \delta=$ $133.75, \delta=128.74, \delta=127.10, \delta=126.62, \delta=125.06, \delta=122.97, \delta=120.89 .{ }^{11} \mathrm{~B}$ NMR (96.29 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 294 \mathrm{~K}\right) \delta(\mathrm{ppm})=-11.51$. Elemental analysis calcd. (\%) for $\mathrm{C}_{41} \mathrm{H}_{42} \mathrm{AlBN}_{4}$ : C 78.34, H 6.73, N 8.91; found: C 78.67, H 5.83, N 8.19.

4j: Method a: 9a ( $200 \mathrm{mg}, 0.22 \mathrm{mmol}$ ) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ and a solution of $\mathrm{CoCp}^{*}{ }_{2}(74 \mathrm{mg}, 0.22 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added by syringe at ambient temperature. The solution was stirred for overnight at ambient temperature after
which the solvent was evaporated under vacuum to afford grayish brown solid residue, which was analyzed by EPR spectroscopy to contain $\mathbf{4 j}$.

Method b: 9a ( $5 \mathrm{mg}, 0.022 \mathrm{mmol}$ ) and a piece of potassium metal was added in toluene ( 2 ml ) and transferred into an EPR tube. The EPR tube was sonicated for 15 min and the dark red solution was analyzed by EPR spectroscopy to contain $\mathbf{4} \mathbf{j}$.

Method c: $9 \mathbf{9 b}(80 \mathrm{mg}, 0.13 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ and a solution of $\mathrm{CoCp}_{2}(45 \mathrm{mg}, 0.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added by syringe at ambient temperature. The solution was stirred for overnight at ambient temperature after which the solvent was evaporated under vacuum to afford grayish brown solid residue. Crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ :toluene (50:50) mixture afforded the cobaltocenium salt of trisphenylmethylborate as yellow crystals suitable for X-ray analysis (see below).

## 2. Crystallographic data

## Crystallographic data of $\mathbf{8}$ :



| Formula weight | 446.25 |
| :---: | :---: |
| Temperature | 123(2) K |
| Wavelength | 0.71073 A |
| Crystal system | orthorhombic |
| Space group | Pmn 21 |
| Unit cell dimensions | $a=11.2305(3) \AA$ A $\quad \alpha=90^{\circ}$. |
|  | $\mathrm{b}=13.0554(2) \AA \quad \beta=90^{\circ}$. |
|  | $\mathrm{c}=15.4758(3) \AA$ A $\quad \gamma=90^{\circ}$. |
| Volume | 2269.04(8) $\AA^{3}$ |
| Z | 4 |
| Density (calculated) | $1.306 \mathrm{Mg} / \mathrm{m}^{3}$ |
| Absorption coefficient | $0.770 \mathrm{~mm}^{-1}$ |
| F(000) | 936 |
| Crystal size | $0.15 \times 0.2 \times 0.3 \mathrm{~mm}^{3}$ |
| Theta range for data collection | 2.73 to $24.99^{\circ}$. |
| Index ranges | $0<=\mathrm{h}<=13,-15<=\mathrm{k}<=0,-18<=1<=18$ |
| Reflections collected | 4153 |
| Independent reflections | $4153[\mathrm{R}(\mathrm{int})=0.0000]$ |
| Completeness to theta $=24.99^{\circ}$ | 99.4\% |
| Refinement method | Full-matrix least-squares on $\mathrm{F}^{2}$ |
| Data / restraints / parameters | 4153 / 1 / 302 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.169 |
| Final R indices [ $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ ] | $\mathrm{R} 1=0.0574, \mathrm{wR} 2=0.1450$ |
| R indices (all data) | $\mathrm{R} 1=0.0605, \mathrm{wR} 2=0.1476$ |
| Absolute structure parameter | 0.74(2) |
| Largest diff. peak and hole | 2.320 and -0.644 e. $\AA^{-3}$ |



Figure S1. The crystal structure of $\left[\mathrm{CoCp}_{2}\right]\left[\mathrm{Ph}_{3} \mathrm{BMe}\right]$ (thermal ellipsoids drawn at $30 \%$ probability; hydrogen atoms omitted for clarity).

## 3. Spectroscopic data



Figure S2. The ${ }^{11} \mathrm{~B}$ NMR spectrum of 9 a in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.



Figure S4. The ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{9 b}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.


Figure S5. EPR-spectrum of $\mathbf{4} \mathbf{j}$ as obtained from a powder sample ( $\mathrm{T}=295 \mathrm{~K}$, mod.amp. $=1.0 \mathrm{G}$ ).

## 4. Computational details

The structures of radicals 3-6 were optimized by using density functional theory and the PBE1PBE hybrid functional. ${ }^{1}$ The calculations used the Ahlrichs' def2-TZVP basis sets; ${ }^{2}$ for indium, the corresponding effective core potential basis set was used. Frequency analyses were performed for optimized geometries to ensure that they correspond to stable minima on the potential energy hypersurface. Calculated spin densities were partitioned to contributions from individual atoms with the help of Mulliken population analysis All calculations were done with the Turbomole 6.3 and Gaussian 09 program packages. ${ }^{3}$

1 (a) J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1997, 78, 1396; (b) J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865; (c) J. P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys., 1996, 105, 9982; (d) C. Adamo, V. Barone, J. Chem. Phys., 1999, 10, 6158.
(a) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297; (b) F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, Chem. Phys. Lett., 1998, 294, 143.
(a) TURBOMOLE V6.3 2011, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com. (b) Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S.

Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

## 5. Computational data



Figure S6. The SOMOs (left) and spin densities (right) of 4a-k. Colour code: orange $=$ positive spin density, green $=$ negative spin density.

Tabel S1. Molecular point groups of 3-6.

|  | Point <br> group |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{3 a}$ | $\mathrm{S}_{4}$ | $\mathbf{4 a}$ | $\mathrm{D}_{2 d}$ | $\mathbf{5 a}$ | $\mathrm{D}_{2 d}$ | $\mathbf{6 a}$ | $\mathrm{C}_{2}{ }^{a}$ |
| $\mathbf{3 b}$ | $\mathrm{~S}_{4}$ | $\mathbf{4 b}$ | $\mathrm{D}_{2 d}$ | $\mathbf{5 b}$ | $\mathrm{D}_{2 d}$ | $\mathbf{6 b}$ | $\mathrm{C}_{2 v}{ }^{a}$ |
| $\mathbf{3 c}$ | $\mathrm{D}_{2}$ | $\mathbf{4} \mathbf{c}$ | $\mathrm{D}_{2}$ | $\mathbf{5 c}$ | $\mathrm{C}_{2}{ }^{a}$ | $\mathbf{6 c}$ | $\mathrm{C}_{2}{ }^{a}$ |
| $\mathbf{3 d}$ | $\mathrm{D}_{2 d}$ | $\mathbf{4 d}$ | $\mathrm{D}_{2 d}$ | $\mathbf{5 d}$ | $\mathrm{D}_{2 d}$ | $\mathbf{6 d}$ | $\mathrm{C}_{1}{ }^{a}$ |
| $\mathbf{3 e}$ | $\mathrm{~S}_{4}$ | $\mathbf{4 e}$ | $\mathrm{~S}_{4}$ | $\mathbf{5 e}$ | $\mathrm{C}_{2}{ }^{a}$ | $\mathbf{6 e}$ | $\mathrm{C}_{1}{ }^{a}$ |
| $\mathbf{3 f}$ | $\mathrm{D}_{2}$ | $\mathbf{4 f}$ | $\mathrm{D}_{2}$ | $\mathbf{5 f}$ | $\mathrm{C}_{2}{ }^{a}$ | $\mathbf{6 f}$ | $\mathrm{C}_{2}{ }^{a}$ |
| $\mathbf{3 g}$ | $\mathrm{~S}_{4}$ | $\mathbf{4 g}$ | $\mathrm{~S}_{4}$ | $\mathbf{5 g}$ | $\mathrm{C}_{2}{ }^{a}$ | $\mathbf{6 g}$ | $\mathrm{C}_{2}{ }^{a}$ |
| $\mathbf{3 h}$ | $\mathrm{C}_{2}{ }^{a}$ | $\mathbf{4 h}$ | $\mathrm{C}_{2}{ }^{a}$ | $\mathbf{5 h}$ | $\mathrm{C}_{2}{ }^{a}$ | $\mathbf{6 h}$ | $\mathrm{C}_{2}{ }^{a}$ |
| $\mathbf{3 i}$ | $\mathrm{C}_{s}{ }^{a}$ | $\mathbf{4 i}$ | $\mathrm{~S}_{4}$ | $\mathbf{5 i}$ | $\mathrm{D}_{2}$ | $\mathbf{6 i}$ | $\mathrm{D}_{2}$ |
| $\mathbf{3 j}$ | $\mathrm{D}_{2 d}$ | $\mathbf{4 j}$ | $\mathrm{D}_{2 d}$ | $\mathbf{5 j}$ | $\mathrm{D}_{2 d}$ | $\mathbf{6 j}$ | $\mathrm{D}_{2 d}$ |
| $\mathbf{3 k}$ | $\mathrm{C}_{2}$ | $\mathbf{4 k}$ | $\mathrm{C}_{2}$ | $\mathbf{5 k}$ | $\mathrm{C}_{2}$ | $\mathbf{6 k}$ | $\mathrm{C}_{2}$ |

${ }^{\text {a) }}$ Spin density localized on one ligand only.

Table S2. Mulliken spin densities of 3-6 at the PBE1PBE/def2-TZVP level of theory.

|  | $\mathrm{N}^{1} / \mathrm{N}^{5}$ | $\mathrm{C}^{2} / \mathrm{C}^{4}$ | $\mathrm{C}^{3}$ | B |  | $\mathrm{~N}^{1} / \mathrm{N}^{5}$ | $\mathrm{C}^{2} / \mathrm{C}^{4}$ | $\mathrm{C}^{3}$ | Ga |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{3 a}$ | 0.036 | 0.288 | -0.122 | -0.021 | $\mathbf{5 a}$ | 0.052 | 0.258 | -0.115 | 0.009 |
| 3b | 0.037 | 0.288 | -0.118 | -0.026 | $\mathbf{5 b}$ | 0.045 | 0.267 | -0.120 | 0.041 |
| 3c | 0.017 | 0.278 | -0.112 | -0.033 | $\mathbf{5 c}$ | $0.003 /$ | $0.068 /$ | $-0.029 /$ | 0.019 |
| 3d | 0.030 | 0.274 | -0.126 | -0.015 | $\mathbf{5 d}$ | 0.044 | 0.049 | 0.243 | -0.188 |
| 3e | 0.031 | 0.290 | -0.138 | -0.057 | $\mathbf{5 e}$ | $0.001 /$ | $0.032 /$ | -0.116 | $0.019 /$ |
|  |  |  |  |  |  | 0.092 | 0.470 | -0.231 | 0.014 |
| 3f | 0.037 | 0.217 | -0.107 | -0.022 | $\mathbf{5 f}$ | $0.098 /$ | $0.329 /$ | $-0.173 /$ |  |
|  |  |  |  |  |  | 0.006 | 0.035 | -0.015 | 0.009 |
| 3g | 0.036 | 0.270 | -0.128 | -0.024 | $\mathbf{5 g}$ | $0.083 /$ | $0.413 /$ | $-0.211 /$ | 0.050 |
|  | $0.002 /$ | $0.064 /$ | $-0.025 /$ |  |  | 0.003 | 0.083 | -0.039 |  |
| 3h | 0.016 | 0.457 | -0.219 | -0.002 | $\mathbf{5 h}$ | $0.035 /$ | $0.474 /$ | $-0.233 /$ | 0.026 |
|  | $0.023 /$ | $-0.158 /$ | $0.568 /$ |  |  | -0.001 | 0.011 | -0.004 |  |
| 3i | 0.001 | 0.002 | 0.002 | 0.008 | $\mathbf{5 i}$ | 0.016 | -0.080 | 0.291 | 0.003 |
| 3j | 0.051 | 0.157 | -0.101 | -0.003 | $\mathbf{5 j}$ | 0.066 | 0.145 | -0.099 | 0.007 |
| 3k | 0.050 | 0.153 | -0.098 | 0.001 | $\mathbf{5 k}$ | 0.066 | 0.149 | -0.095 | 0.006 |

Table S2. Continued.

|  | $\mathrm{N}^{1} / \mathrm{N}^{5}$ | $\mathrm{C}^{2} / \mathrm{C}^{4}$ | $\mathrm{C}^{3}$ | Al |  | $\mathrm{N}^{1} / \mathrm{N}^{5}$ | $\mathrm{C}^{2} / \mathrm{C}^{4}$ | $\mathrm{C}^{3}$ | In |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4a | 0.039 | 0.267 | -0.116 | 0.034 | 6a | $\begin{gathered} 0.001 / \\ 0.124 \end{gathered}$ | $\begin{gathered} 0.012 / \\ 0.488 \end{gathered}$ | $\begin{gathered} -0.005 / \\ -0.220 \end{gathered}$ | -0.003 |
| 4b | 0.034 | 0.258 | -0.120 | 0.064 | 6b | $\begin{gathered} 0.112 / \\ 0.004 \end{gathered}$ | $\begin{gathered} 0.465 / \\ 0.043 \end{gathered}$ | $\begin{gathered} -0.213 / \\ -0.020 \end{gathered}$ | 0.019 |
| 4c | 0.017 | 0.257 | -0.109 | 0.045 | 6c | $\begin{aligned} & 0.054 \text { / } \\ & -0.001 \end{aligned}$ | $\begin{gathered} 0.473 / \\ 0.008 \end{gathered}$ | $\begin{gathered} -0.212 / \\ -0.004 \end{gathered}$ | 0.007 |
| 4d | 0.036 | 0.251 | -0.117 | 0.041 | 6d | $\begin{array}{r} 0.109 / \\ 0.004 \end{array}$ | $\begin{gathered} 0.442 / \\ 0.029 \end{gathered}$ | $\begin{gathered} -0.215 / \\ -0.014 \end{gathered}$ | 0.009 |
| 4 e | 0.034 | 0.258 | -0.120 | 0.032 | 6 e | $\begin{array}{r} 0.103 / \\ -0.003 \end{array}$ | $0.489 \text { / }$ | $\begin{gathered} -0.243 / \\ 0.000 \end{gathered}$ | 0.020 |
| 4f | 0.040 | 0.196 | -0.095 | 0.039 | 6 f | $\begin{array}{r} 0.000 \text { / } \\ 0.111 \end{array}$ | $\begin{gathered} 0.002 / \\ 0.355 \end{gathered}$ | $\begin{gathered} 0.000 / \\ -0.189 \end{gathered}$ | 0.007 |
| 4g | 0.032 | 0.256 | -0.124 | 0.074 | 6g | $\begin{aligned} & 0.109 / \\ & -0.003 \end{aligned}$ | $\begin{gathered} 0.465 / \\ 0.013 \end{gathered}$ | $\begin{gathered} -0.243 / \\ -0.006 \end{gathered}$ | 0.026 |
| 4h | $\begin{gathered} -0.003 / \\ 0.027 \end{gathered}$ | $\begin{gathered} 0.029 \text { / } \\ 0.467 \end{gathered}$ | $\begin{gathered} -0.011 / \\ -0.227 \end{gathered}$ | 0.041 | 6h | $\begin{gathered} 0.039 / \\ 0.000 \end{gathered}$ | $\begin{gathered} 0.466 / \\ 0.001 \end{gathered}$ | $\begin{gathered} -0.230 / \\ 0.001 \end{gathered}$ | 0.028 |
| 4i | 0.014 | -0.081 | 0.289 | 0.006 | 61 | 0.017 | -0.078 | 0.292 | 0.002 |
| 4j | 0.057 | 0.148 | -0.098 | 0.027 | 6j | 0.070 | 0.143 | -0.100 | 0.004 |
| 4k | 0.056 | 0.152 | -0.096 | 0.025 | 6k | 0.051 | 0.024 | -0.001 | 0.777 |

