# **Supporting Information**

for

# Paramagnetic Aluminum β-Diketiminate

by

Jani Moilanen, Javier Borau Garcia, Roland Roesler, and Heikki M. Tuononen\*

#### **1. Experimental details**

All reactions and manipulations were performed under an argon atmosphere by using Schlenk techniques or an inert atmosphere glove box. Compounds MeAlCl<sub>2</sub> (1 M in hexanes, Aldrich) and n-BuLi (1.6 M in hexanes, Aldrich) were used as received.  $B(C_6H_5)_3$  and  $B(C_6F_5)_3$  (Aldrich) were dried with HMe<sub>2</sub>SiCl and sublimed before use.  $CoCp_{2}^{*}$  and  $CoCp_{2}$  (Aldrich) were sublimed before use. Compound 7 was prepared according to a literature procedure (Eur. J. Org. Chem., 2004, 4319). All solvents were dried and deoxygenated prior to use. NMR spectra were recorded on a Bruker Avance 400 MHZ or Bruker Avance II 300 MHZ spectrometer. <sup>1</sup>H and <sup>13</sup>C spectra were referenced to the residual solvent signal and the chemical shifts are reported relative to  $(CH_3)_4Si$ . Solutions of BF<sub>3</sub>·Et<sub>2</sub>O in C<sub>6</sub>D<sub>6</sub> and neat C<sub>6</sub>F<sub>6</sub> were used as internal references in <sup>11</sup>B and <sup>19</sup>F measurements, respectively. The EPR spectrum of **4**j was recorded using an X-band Bruker EMX10/12 spectrometer. Elemental analyses were performed by Analytical Services at the Department of Chemistry, University of Calgary. Although the calculated and experimental data for the elemental analysis of both 9a and 9b deviate slightly (0.75 - 1.47%), the purity of the compounds is clearly shown by NMR spectroscopy (see below) as there there are no <sup>11</sup>B- or <sup>19</sup>F-containing impurities present in the sample. Consequently, we address the minor errors in elemental analysis to a small amount of H-grease present in the products.

8: A solution of 7 (681 mg, 4.0 mmol) in THF (10 ml) was cooled to -78 °C and *n*-BuLi (2.5 ml of a 1.6 M solution in hexane, 4.0 mmol) was added by syringe. The solution was stirred for 1 h at -78 °C and then warmed to -40 °C. MeAlCl<sub>2</sub> (2.0 ml of a 1 M solution in hexane, 2.0 mmol) was added by syringe and the solution was allowed to warm to ambient temperature over 1 h, after which it was warmed to 45 °C and stirred for additional 45 min. The hot solution was filtered and the solvents evaporated under vacuum. The residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (10 ml), filtered and the solvent was evaporated under vacuum. The solid residue was washed with hexane (2 x 10 ml) to afford 8 as an orange powder (430 mg, 57%). Crystallization from CH<sub>2</sub>Cl<sub>2</sub> yielded orange single crystals suitable for X-ray analysis (see below). <sup>1</sup>H NMR (400.14 MHz, THF-d8,

300 K)  $\delta$  (ppm) = 7.29 (d, J = 5.20 Hz, 4H),  $\delta$  = 7.01 (m, 4H),  $\delta$  = 6.67 (d, J = 8.81 Hz, 4H),  $\delta$  = 6.14 (t, J = 6.00 Hz, 4H),  $\delta$  = 5.22 (s, 2H),  $\delta$  = -1.31 (S, 3H). <sup>13</sup>C NMR (100.65 MHz, THF-d8, 300 K)  $\delta$  (ppm) = 156.99,  $\delta$  = 143.79,  $\delta$  = 134.58,  $\delta$  = 122.67,  $\delta$  = 110.93,  $\delta$  = 90.77,  $\delta$  = -2.37. Elemental analysis calcd. (%) for C<sub>23</sub>H<sub>21</sub>AlN<sub>4</sub>: C 72.60, H 5.56, N 14.73; found: C 72.39, H 5.70, N 14.35.

**9a: 8** (300 mg, 0.79 mmol) was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (5 ml) and a solution of B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (404 mg, 0.79 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5 ml) was added by syringe at ambient temperature. The solution was stirred for 2 h at ambient temperature and the solvent was evaporated under vacuum. The residue was washed with hexane (1x 10 ml) to afford **9a** as an orange powder (580 mg, 82 %).<sup>1</sup>H NMR (400.14 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 300 K)  $\delta$  (ppm) = 7.40 (m, 4H),  $\delta$  = 7.31 (d, J = 6.40 Hz, 4H),  $\delta$  = 7.09 (d, J = 8.81 Hz, 4H),  $\delta$  = 6.55 (td, J = 6.80, 1.2 Hz, 4H),  $\delta$  = 5.63 (s, 2H),  $\delta$  = 0.46 (S, 3H).<sup>13</sup>C (partial) NMR (100.65 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 300 K)  $\delta$  (ppm) = 154.41,  $\delta$  = 149.57,  $\delta$  = 147.14,  $\delta$  = 138.27,  $\delta$  = 137.24,  $\delta$  = 136.24,  $\delta$  = 135.17,  $\delta$  = 124.80,  $\delta$  = 113.40,  $\delta$  = 90.60.<sup>11</sup>B NMR (128.38 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 300 K)  $\delta$  (ppm) = -14.94.<sup>19</sup>F NMR (376.47 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 300 K)  $\delta$  (ppm) = -133.07,  $\delta$  = -165.29,  $\delta$  = -167.90. Elemental analysis calcd. (%) for C<sub>41</sub>H<sub>21</sub>AlBF<sub>15</sub>N<sub>4</sub>: C 55.18, H 2.37, N 6.28; found: C 53.71, H 3.12, N 5.53.

**9b**: **8** (135 mg, 0.35 mmol) was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (5 ml) and a solution of  $B(C_6H_5)_3$  (86 mg, 0.35 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5 ml) was added by syringe at ambient temperature. The solution was stirred for 2 h at ambient temperature and the solvent was evaporated under vacuum. The residue was washed with hexane (1x 10 ml) to afford **9b** as an orange powder (135 mg, 61 %). <sup>1</sup>H NMR (300.13 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 293 K)  $\delta$  (ppm) = 7.65 – 6.80 (several m, 31H),  $\delta$  = 5.33 (s, 2H),  $\delta$  = 0.27 (q, J = 4.08 Hz, 3H. <sup>13</sup>C (partial) NMR (75.48 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 293 K)  $\delta$  (ppm) = 139.77,  $\delta$  = 137.57,  $\delta$  = 135.77,  $\delta$  = 133.75,  $\delta$  = 128.74,  $\delta$  = 127.10,  $\delta$  = 126.62,  $\delta$  = 125.06,  $\delta$  = 122.97,  $\delta$  = 120.89. <sup>11</sup>B NMR (96.29 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 294 K)  $\delta$  (ppm) = -11.51. Elemental analysis calcd. (%) for C<sub>41</sub>H<sub>42</sub>AlBN<sub>4</sub>: C 78.34, H 6.73, N 8.91; found: C 78.67, H 5.83, N 8.19.

**4j**: **Method a**: **9a** (200 mg, 0.22 mmol) was dissolved in  $CH_2Cl_2$  (10 ml) and a solution of  $CoCp_2^*$  (74 mg, 0.22 mmol) in  $CH_2Cl_2$  (5 ml) was added by syringe at ambient temperature. The solution was stirred for overnight at ambient temperature after

which the solvent was evaporated under vacuum to afford grayish brown solid residue, which was analyzed by EPR spectroscopy to contain **4j**.

**Method b: 9a** (5 mg, 0.022 mmol) and a piece of potassium metal was added in toluene (2 ml) and transferred into an EPR tube. The EPR tube was sonicated for 15 min and the dark red solution was analyzed by EPR spectroscopy to contain **4j**.

**Method c: 9b** (80 mg, 0.13 mmol) was dissolved in  $CH_2Cl_2$  (10 ml) and a solution of  $CoCp_2$  (45 mg, 0.13 mmol) in  $CH_2Cl_2$  (5 ml) was added by syringe at ambient temperature. The solution was stirred for overnight at ambient temperature after which the solvent was evaporated under vacuum to afford grayish brown solid residue. Crystallization from  $CH_2Cl_2$ :toluene (50:50) mixture afforded the cobaltocenium salt of trisphenylmethylborate as yellow crystals suitable for X-ray analysis (see below).

## 2. Crystallographic data

### Crystallographic data of 8:

| Identification code                                      | shelxl                             |                                    |  |  |
|----------------------------------------------------------|------------------------------------|------------------------------------|--|--|
| Empirical formula                                        | C23 H21 Al N4                      | C23 H21 Al N4                      |  |  |
| Formula weight                                           | a weight 380.42                    |                                    |  |  |
| Temperature                                              | 173(2) K                           |                                    |  |  |
| Wavelength                                               | 0.71073 Å                          |                                    |  |  |
| Crystal system                                           | Monoclinic                         |                                    |  |  |
| Space group                                              | P 21/c                             |                                    |  |  |
| Unit cell dimensions                                     | a = 13.3810(9) Å                   | $\alpha = 90^{\circ}$ .            |  |  |
|                                                          | b = 9.4130(4) Å                    | $\beta = 90.540(2)^{\circ}.$       |  |  |
|                                                          | c = 15.6040(10)  Å                 | $\gamma = 90^{\circ}$ .            |  |  |
| Volume                                                   | 1965.3(2) Å <sup>3</sup>           |                                    |  |  |
| Z                                                        | 4                                  |                                    |  |  |
| Density (calculated)                                     | 1.286 Mg/m <sup>3</sup>            |                                    |  |  |
| Absorption coefficient                                   | 0.119 mm <sup>-1</sup>             |                                    |  |  |
| F(000)                                                   | 800                                |                                    |  |  |
| Crystal size                                             | 0.24 x 0.04 x 0.04 mm <sup>3</sup> |                                    |  |  |
| Theta range for data collection                          | 2.96 to 24.99°.                    |                                    |  |  |
| Index ranges                                             | -15<=h<=15, -11<=k<=               | -15<=h<=15, -11<=k<=11, -18<=l<=18 |  |  |
| Reflections collected                                    | 5851                               |                                    |  |  |
| Independent reflections                                  | 3399 [R(int) = 0.0534]             |                                    |  |  |
| Completeness to theta = $24.99^{\circ}$                  | 98.3 %                             |                                    |  |  |
| Absorption correction                                    | Semi-empirical from equ            | Semi-empirical from equivalents    |  |  |
| Max. and min. transmission                               | 0.9953 and 0.9720                  |                                    |  |  |
| Refinement method                                        | Full-matrix least-squares          | s on $F^2$                         |  |  |
| Data / restraints / parameters                           | 3399 / 0 / 261                     |                                    |  |  |
| Goodness-of-fit on F <sup>2</sup>                        | 1.058                              |                                    |  |  |
| inal R indices [I>2sigma(I)] $R1 = 0.0739, wR2 = 0.1354$ |                                    |                                    |  |  |
| R indices (all data)                                     | 555                                |                                    |  |  |
| Largest diff. peak and hole0.268 and -0.338 e.Å-3        |                                    |                                    |  |  |

### Crystallographic data of [CoCp<sub>2</sub>][Ph<sub>3</sub>BMe]:

| Identification code | shelxl       |
|---------------------|--------------|
| Empirical formula   | C29 H28 B Co |

| 446.25                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 123(2) K                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 0.71073 Å                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| orthorhombic                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Pmn 21                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| a = 11.2305(3) Å                                  | α= 90°.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| b = 13.0554(2) Å                                  | β= 90°.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| c = 15.4758(3) Å                                  | $\gamma = 90^{\circ}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 2269.04(8) Å <sup>3</sup>                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 4                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 1.306 Mg/m <sup>3</sup>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 0.770 mm <sup>-1</sup>                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 936                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| $0.15 \text{ x } 0.2 \text{ x } 0.3 \text{ mm}^3$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 2.73 to 24.99°.                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Index ranges 0<=h<=13, -15<=k<=0, -18<=h          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 4153                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Independent reflections $4153 [R(int) = 0.0000]$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 99.4 %                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Full-matrix least-squares on F <sup>2</sup>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 4153 / 1 / 302                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 1.169                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| R1 = 0.0574, wR2 = 0.1450                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| R1 = 0.0605, wR2 = 0.1476                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 0.74(2)                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 2.320 and -0.644 e.Å <sup>-3</sup>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                                   | 446.25<br>123(2) K<br>0.71073 Å<br>orthorhombic<br>Pmn 21<br>a = 11.2305(3) Å<br>b = 13.0554(2) Å<br>c = 15.4758(3) Å<br>2269.04(8) Å <sup>3</sup><br>4<br>1.306 Mg/m <sup>3</sup><br>0.770 mm <sup>-1</sup><br>936<br>0.15 x 0.2 x 0.3 mm <sup>3</sup><br>2.73 to 24.99°.<br>0<=h<=13, -15<=k<=0, -18<=<br>4153<br>4153 [R(int) = 0.0000]<br>99.4 %<br>Full-matrix least-squares on F <sup>2</sup><br>4153 / 1 / 302<br>1.169<br>R1 = 0.0574, wR2 = 0.1450<br>R1 = 0.0605, wR2 = 0.1476<br>0.74(2)<br>2.320 and -0.644 e.Å <sup>-3</sup> |  |  |

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012



**Figure S1.** The crystal structure of  $[CoCp_2][Ph_3BMe]$  (thermal ellipsoids drawn at 30% probability; hydrogen atoms omitted for clarity).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

### 3. Spectroscopic data



**Figure S2.** The <sup>11</sup>B NMR spectrum of **9a** in  $CD_2Cl_2$ .



**Figure S3.** The <sup>19</sup>F NMR spectrum of **9a** in  $CD_2Cl_2$ .



Figure S4. The <sup>11</sup>B NMR spectrum of 9b in  $CD_2Cl_2$ .



**Figure S5.** EPR-spectrum of **4j** as obtained from a powder sample (T = 295 K, mod.amp. = 1.0 G).

#### 4. Computational details

The structures of radicals **3-6** were optimized by using density functional theory and the PBE1PBE hybrid functional.<sup>1</sup> The calculations used the Ahlrichs' def2-TZVP basis sets;<sup>2</sup> for indium, the corresponding effective core potential basis set was used. Frequency analyses were performed for optimized geometries to ensure that they correspond to stable minima on the potential energy hypersurface. Calculated spin densities were partitioned to contributions from individual atoms with the help of Mulliken population analysis All calculations were done with the Turbomole 6.3 and Gaussian 09 program packages.<sup>3</sup>

- <sup>1</sup> (a) J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.*, 1997, **78**, 1396; (b) J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865; (c) J. P. Perdew, M. Ernzerhof, K. Burke, *J. Chem. Phys.*, 1996, **105**, 9982; (d) C. Adamo, V. Barone, *J. Chem. Phys.*, 1999, **10**, 6158.
- <sup>2</sup> (a) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297; (b) F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, *Chem. Phys. Lett.*, 1998, 294, 143.
- <sup>3</sup> (a) TURBOMOLE V6.3 2011, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com. (b) Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S.

Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

## 5. Computational data



**Figure S6.** The SOMOs (left) and spin densities (right) of **4a-k**. Colour code: orange = positive spin density, green = negative spin density.

|           | Point           |    | Point           |    | Point           |            | Point           |
|-----------|-----------------|----|-----------------|----|-----------------|------------|-----------------|
|           | group           |    | group           |    | group           |            | group           |
| 3a        | $S_4$           | 4a | D <sub>2d</sub> | 5a | D <sub>2d</sub> | 6a         | $C_2^a$         |
| 3b        | $S_4$           | 4b | D <sub>2d</sub> | 5b | D <sub>2d</sub> | 6b         | $C_{2v}^{a}$    |
| 3c        | $D_2$           | 4c | $D_2$           | 5c | $C_2^{a}$       | 6c         | $C_2^a$         |
| 3d        | D <sub>2d</sub> | 4d | D <sub>2d</sub> | 5d | D <sub>2d</sub> | 6d         | $C_1^{a}$       |
| 3e        | $S_4$           | 4e | $S_4$           | 5e | $C_2^{a}$       | 6e         | $C_1^{a}$       |
| 3f        | $D_2$           | 4f | $D_2$           | 5f | $C_2^a$         | 6f         | $C_2^a$         |
| 3g        | $S_4$           | 4g | $S_4$           | 5g | $C_2^{a}$       | 6g         | $C_2^a$         |
| 3h        | $C_2^a$         | 4h | $C_2^{a}$       | 5h | $C_2^{a}$       | 6h         | $C_2^a$         |
| <b>3i</b> | $C_s^a$         | 4i | $S_4$           | 5i | $D_2$           | <b>6</b> i | $D_2$           |
| Зј        | D <sub>2d</sub> | 4j | D <sub>2d</sub> | 5j | D <sub>2d</sub> | 6j         | D <sub>2d</sub> |
| 3k        | C <sub>2</sub>  | 4k | C <sub>2</sub>  | 5k | C <sub>2</sub>  | 6k         | C <sub>2</sub>  |

| <b>Tabel S1.</b> Molecular point | nt groups of <b>3-6</b> . |
|----------------------------------|---------------------------|
|----------------------------------|---------------------------|

<sup>a)</sup> Spin density localized on one ligand only.

|            | $N^{1}/N^{5}$ | $C^2/C^4$ | C <sup>3</sup> | В                |         | $N^1/N^5$ | $C^2/C^4$ | C <sup>3</sup> | Ga    |
|------------|---------------|-----------|----------------|------------------|---------|-----------|-----------|----------------|-------|
| 3a         | 0.036         | 0.288     | -0.122         | -0.021           | 5a      | 0.052     | 0.258     | -0.115         | 0.009 |
| 3b         | 0.037         | 0.288     | -0.118         | -0.026           | 5b      | 0.045     | 0.267     | -0.120         | 0.041 |
| 20         | 0.017         | 0.270     | 0 112          | 0.022            | 5c      | 0.003 /   | 0.068 /   | -0.029 /       | 0.010 |
| 30         | 0.017         | 0.278     | -0.112         | -0.055           |         | 0.044     | 0.427     | -0.188         | 0.019 |
| 3d         | 0.030         | 0.274     | -0.126         | -0.015           | 5d      | 0.049     | 0.243     | -0.116         | 0.019 |
| 30         | 0.031         | 0.290     | -0.138         | -0.057           | Fo      | 0.001 /   | 0.032 /   | -0.014 /       | 0.014 |
| 36         |               |           |                |                  | 5e      | 0.092     | 0.470     | -0.231         |       |
| 3f         | 0.037         | 0.217     | -0.107         | -0.022           | 5f      | 0.098 /   | 0.329 /   | -0.173 /       | 0.009 |
|            |               |           |                |                  |         | 0.006     | 0.035     | -0.015         |       |
| 2σ         | 0.036         | 0.270     | 0 1 2 8        | 0.024            | 5g      | 0.083 /   | 0.413 /   | -0.211 /       | 0.050 |
| 35         | 0.050         | 0.270     | 0.120          | 0.024            |         | 0.003     | 0.083     | -0.039         |       |
| 3h         | 0.002 /       | 0.064 /   | -0.025 /       | -0.002 <b>5h</b> | 0.035 / | 0.474 /   | -0.233 /  | 0.026          |       |
| 511        | 0.016         | 0.457     | -0.219         | 0.002            | 211     | -0.001    | 0.011     | -0.004         | 0.020 |
| <b>c</b> : | 0.023 /       | -0.158 /  | 0.568 /        | 0.009            | E;      | 0.016     | -0.080    | 0 201          | 0.003 |
| 51         | 0.001         | 0.002     | 0.002          | 0.008            | 51      | 0.010     | -0.080    | 0.291          | 0.003 |
| 3j         | 0.051         | 0.157     | -0.101         | -0.003           | 5j      | 0.066     | 0.145     | -0.099         | 0.007 |
| 3k         | 0.050         | 0.153     | -0.098         | 0.001            | 5k      | 0.066     | 0.149     | -0.095         | 0.006 |

 Table S2. Mulliken spin densities of 3-6 at the PBE1PBE/def2-TZVP level of theory.

Table S2. Continued.

|            | $N^1/N^5$ | $C^2/C^4$ | C <sup>3</sup> | Al    |                 | $N^{1}/N^{5}$ | $C^2/C^4$ | C <sup>3</sup> | In     |
|------------|-----------|-----------|----------------|-------|-----------------|---------------|-----------|----------------|--------|
| 4a         | 0.020     | 0.267     | -0.116         | 0.034 | 6a              | 0.001/        | 0.012 /   | -0.005 /       | -0.003 |
|            | 0.059     |           |                |       |                 | 0.124         | 0.488     | -0.220         |        |
| 46         | 0.024     | 0.259     | 0 1 2 0        | 0.064 | 6h              | 0.112 /       | 0.465 /   | -0.213 /       | 0.019  |
| 40         | 0.034     | 0.238     | -0.120         | 0.004 | 00              | 0.004         | 0.043     | -0.020         |        |
| 40         | 0.017     | 0.257     | -0 109         | 0.045 | 6c              | 0.054 /       | 0.473 /   | -0.212 /       | 0.007  |
| 40         | 0.017     | 0.237     | -0.105         | 0.045 |                 | -0.001        | 0.008     | -0.004         | 0.007  |
| 44         | 0.026     | 0.251     | -0.117         | 0.041 | 64              | 0.109 /       | 0.442 /   | -0.215 /       | 0.009  |
| 40         | 0.050     |           |                |       | ou              | 0.004         | 0.029     | -0.014         |        |
| 4e         | 0.034     | 0.258     | -0.120         | 0.032 | 6e              | 0.103 /       | 0.489 /   | -0.243 /       | 0.020  |
|            |           |           |                |       |                 | -0.003        | 0.002     | 0.000          |        |
| <u>م د</u> | 0.040     | 0.196     | -0.095         | 0.039 | 6f              | 0.000 /       | 0.002 /   | 0.000 /        | 0.007  |
|            |           |           |                |       |                 | 0.111         | 0.355     | -0.189         |        |
| Δσ         | 0.032     | 0.256     | -0.124         | 0.074 | 6g              | 0.109 /       | 0.465 /   | -0.243 /       | 0.026  |
| 75         |           |           |                |       |                 | -0.003        | 0.013     | -0.006         |        |
| 4h         | -0.003 /  | 0.029 /   | -0.011 /       | 0.041 | 0.041 <b>6h</b> | 0.039 /       | 0.466 /   | -0.230 /       | 0.028  |
|            | 0.027     | 0.467     | -0.227         | 0.041 |                 | 0.000         | 0.001     | 0.001          |        |
| 4i         | 0.014     | -0.081    | 0.289          | 0.006 | 6i              | 0.017         | -0.078    | 0.292          | 0.002  |
| 4j         | 0.057     | 0.148     | -0.098         | 0.027 | 6j              | 0.070         | 0.143     | -0.100         | 0.004  |
| 4k         | 0.056     | 0.152     | -0.096         | 0.025 | 6k              | 0.051         | 0.024     | -0.001         | 0.777  |