Electronic Supplementary Information (ESI)

Efficient synthesis of diverse hetero-bis-metallated alkenes as modular reagents towards highly conjugated and isolated olefinic systems

Mario Altendorfer ${ }^{\dagger}$ and Dirk Menche ${ }^{\ddagger, * *}$
${ }^{\dagger}$ Universität Heidelberg, Institut für Organische Chemie, INF 270, D-69120 Heidelberg, Germany and
*Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.

E-mail: dirk.menche@uni-bonn.de

Contents

I. Experimental Details and Characterization Data. S2
 II. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. S31

General Remarks: All reactions were performed under an atmosphere of argon in flame-dried glassware which had been cooled under argon unless stated otherwise. All flasks were equipped with rubber septa and reactants were handled using standard Schlenk techniques. Temperatures above $\mathrm{rt}\left(23^{\circ} \mathrm{C}\right)$ refer to oil bath temperatures which were controlled by a temperature modulator. For cooling, the following baths were used: ethanol/liquid nitrogen $\left(-98^{\circ} \mathrm{C}\right)$, acetone/dry ice $\left(-78^{\circ} \mathrm{C}\right)$, water/ice $\left(0^{\circ} \mathrm{C}\right)$. All reagents, anhydrous DMF and anhydrous 1,4-dioxane were purchased from commercial suppliers (Sigma-Aldrich, Alfa Aesar, Strem) in the highest grade available and used without further purification unless otherwise stated. Anhydrous solvents (THF, diethyl ether and dichloromethane) were freshly obtained from a solvent drying system MB SPS-800. Reactions were monitored via TLC on silica gel $60 \mathrm{~F}_{254}$ precoated plates $(0.2 \mathrm{~mm} \mathrm{SiO} 2$, Machery-Nagel) and visualized using UV light and/or staining with a solution of CAM (1 g $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}, 2.5 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24}, 8 \mathrm{~mL}$ conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in $\left.100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}\right)$ and subsequent heating. For column chromatography, silica gel (pore size $60 \AA, 40-63 \mu \mathrm{~m}$) obtained from Aldrich was

For column chromatography, silica gel (pore size $60 \AA, 40-63 \mu \mathrm{~m}$) obtained from Aldrich was used. Solvents were destilled prior to use. Optical Rotations were measured with a Perkin Elmer 241 polarimeter in a 10 mm cuvette and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AC-300, DRX-300, AVB-400, DRX-500 and Avance III 600 spectrometers with ${ }^{13} \mathrm{C}$ operating frequencies of $75,100,125$ and 150 MHz , respectively. Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift (multiplicity, coupling constants in Hertz, number of hydrogens). Abbreviations are as follows: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m (multiplet), br (broad). Mass spectra (MS) and High-resolution - mass spectra (HR-MS) were recorded at the Department of Organic Chemistry on the following mass spectrometers: Bruker ICR APEX-QE, Vacuum Generators ZAB-2F, Finnigan MAT TSQ 700 and JEOL JMS-700. Ionization processes and mol peaks were given.

I. Experimental Details and Characterization Data.

General procedure for hydrostannation of alkynes 4 and 8

$\mathrm{Pd}_{2} \mathrm{dba}_{3} \quad(4.60 \mathrm{mg}, \quad 5.00 \mu \mathrm{~mol}, \quad 0.5 \mathrm{~mol} \%$), tricyclohexylphosphonium tetrafluoroborate ($7.40 \mathrm{mg}, 20.0 \mu \mathrm{~mol}, 2.0 \mathrm{~mol} \%$) and diisopropylethylamine ($5.20 \mathrm{mg}, 40.0 \mu \mathrm{~mol}, 4 \mathrm{~mol} \%$) were added successively to dry dichloromethane $(10 \mathrm{~mL})$ and the resulting mixture was stirred at room temperature for 10 minutes. Alkyne ($1.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added and the reaction mixture was cooled to $0^{\circ} \mathrm{C} . \mathrm{Bu}_{3} \mathrm{SnH}(1.20 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was diluted in dry dichloromethane (5 mL) and added dropwise via a syringe over 5 minutes. The reaction was then allowed to stir at $0^{\circ} \mathrm{C}$ for 2 hours. The reaction mixture was concentrated under reduced pressure and purified by silica gel chromatography (petroleum ether/ethyl acetate, 9:1) to afford the corresponding vinylstannane.

(E)-5-(tributylstannyl)prop-2-en-1-ol 5a

5a

The reaction was performed according to the general procedure as described above for $\mathrm{Pd}_{2} \mathrm{dba}_{3} \quad(82.0 \mathrm{mg}, \quad 89.0 \mu \mathrm{~mol}, \quad 0.5 \mathrm{~mol} \%$), tricyclohexylphosphonium tetrafluoroborate ($131 \mathrm{mg}, 365 \mu \mathrm{~mol}, 2.0 \mathrm{~mol} \%$), diisopropylethylamine ($92.0 \mathrm{mg}, 712 \mu \mathrm{~mol}, 4 \mathrm{~mol} \%$) in dichloromethane (100 mL), propargyl alcohol $4 \mathrm{a}(1.00 \mathrm{~g}, 17.8 \mathrm{mmol}, 1.0 \mathrm{eq}),. \mathrm{Bu}_{3} \mathrm{SnH}$ $(6.23 \mathrm{~g}, 21.4 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) in dichloromethane (50 \mathrm{~mL})$ to give stannane 5 a as a yellow oil $(3.88 \mathrm{~g}, 11.2 \mathrm{mmol}, 63 \%) . \mathrm{R}_{f}=0.34$ (n-hexane/ethyl acetate, $9: 1$); ${ }^{1} \mathrm{H}$ NMR (300.132 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=0.90(\mathrm{~m}, 15 \mathrm{H}), 1.31(\mathrm{dq}, J=14.5 \mathrm{~Hz}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.49(\mathrm{~m}, 6 \mathrm{H}), 4.18$ (dd, $J=5.9 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.18(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.4,13.7,27.3$, 29.1, 66.4, 128.3, 147.0; EI MS (70 eV, m/z (\%)): 291 ([M] ${ }^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 100$).

(2E,4E)-5-(tributylstannyl)penta-2,4-dien-1-ol 5b

5b

The reaction was performed according to the general procedure as described above for $\mathrm{Pd}_{2} \mathrm{dba}_{3} \quad(5.60 \mathrm{mg}, \quad 6.10 \mu \mathrm{~mol}, \quad 0.5 \mathrm{~mol} \%$), tricyclohexylphosphonium tetrafluoroborate ($9.60 \mathrm{mg}, 24.4 \mu \mathrm{~mol}, 2.0 \mathrm{~mol} \%$), diisopropylethylamine ($6.36 \mathrm{mg}, 48.8 \mu \mathrm{~mol}, 4.0 \mathrm{~mol} \%$) in dry dichloromethane (7 mL), Pent-2,4-diyn-1-ol $\mathbf{4 b}$ ($100 \mathrm{mg}, 1.22 \mathrm{mmol}, 1.0 \mathrm{eq}.), \mathrm{Bu}_{3} \mathrm{SnH}$ $(426 \mathrm{mg}, 1.46 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) in dry dichloromethane (4 \mathrm{~mL})$ to give stannane $\mathbf{5 b}$ as a yellow oil ($273 \mathrm{mg}, 732 \mathrm{mmol}, 60 \%$). $\mathrm{R}_{f}=0.24$ (n-hexane/ethyl acetate, $9: 1$); ${ }^{1} \mathrm{H}$ NMR (300.132 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=0.90(\mathrm{~m}, 15 \mathrm{H}), 1.32(\mathrm{dq}, J=14.8 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.50(\mathrm{~m}, 6$ H), $4.21(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{dt}, J=15.5 \mathrm{~Hz}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~m}, 2 \mathrm{H}), 6.55$ (dd, $J=18.9 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.5,13.7,27.3,29.1,63.3$, 130.7, 134.6, 135.1, 145.9; HR-MS (EI): $m / z=317.0930\left(\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OSn}\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}\right)$, calculated $m / z=317.0922$.

(E)-5-(tributylstannyl)pent-4-en-1-ol 9a

9a

The reaction was performed according to the general procedure as described above for $\mathrm{Pd}_{2} \mathrm{dba}_{3}(9.20 \mathrm{mg}, \quad 0.01 \mathrm{mmol}, \quad 0.5 \mathrm{~mol} \%$), tricyclohexylphosphonium tetrafluoroborate ($14.8 \mathrm{mg}, 0.04 \mathrm{mmol}, 2.0 \mathrm{~mol} \%$), diisopropylethylamine ($10.4 \mathrm{mg}, 0.08 \mathrm{mmol}, 4.0 \mathrm{~mol} \%$) in dichloromethane (10 mL), Pent-4-yn-1-ol 8a ($168 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.), Bu $\mathrm{B}_{3} \mathrm{SnH}(698 \mathrm{mg}$, $2.40 \mathrm{mmol}, 1.2 \mathrm{eq}$.) in dry dichloromethane (6 mL) to give stannane 9 a as a colourless oil ($675 \mathrm{mg}, 1.80 \mathrm{mmol}, 90 \%$). $\mathrm{R}_{f}=0.31$ (n-hexane/ethyl acetate, $8: 1$); ${ }^{1} \mathrm{H}$ NMR (500.130 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=0.88(\mathrm{~m}, 15 \mathrm{H}), 1.31(\mathrm{dq}, J=14.8 \mathrm{~Hz} . J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.49(\mathrm{~m}, 6 \mathrm{H}) 1.69$ (qiun, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.23 (td, $J=7.3 \mathrm{~Hz}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.67$ (m, 2 H), 5.96 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($125.78 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.4,13.7,27.3,29.1,31.8,34.1,62.6,128.2,148.6$; HRMS (EI): found $m / z=319.1093\left([M]^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$, calculated $m / z=319.0645$.

(E)-7-(tributylstannyl)hept-6-en-1-ol 9b

9b

The reaction was performed according to the general procedure as described above for $\mathrm{Pd}_{2} \mathrm{dba}_{3} \quad(82.0 \mathrm{mg}, \quad 89.0 \mu \mathrm{~mol}, \quad 0.5 \mathrm{~mol} \%$), tricyclohexylphosphonium tetrafluoroborate ($131 \mathrm{mg}, 365 \mu \mathrm{~mol}, 0.02$ eq.), diisopropylethylamine ($92.0 \mathrm{mg}, 712 \mu \mathrm{~mol}, 0.04$ eq.) in dry dichloromethane (100 mL), Hept-6-yn-1-ol 8b ($2.00 \mathrm{~g}, 17.8 \mathrm{mmol}, 1.0 \mathrm{eq}.), \mathrm{Bu}_{3} \mathrm{SnH}(6.23 \mathrm{~g}$, $21.4 \mathrm{mmol}, 1.2 \mathrm{eq}$.) in dry dichloromethane (50 mL) to give stannane $\mathbf{9 b}$ as a colourless oil $(5.24 \mathrm{~g}, \quad 13.0 \mathrm{mmol}, 73 \%) . \mathrm{R}_{f}=0.26$ (petroleum ether/ethyl acetate, $9: 1$); ${ }^{1} \mathrm{H}$ NMR ($300.132 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.89(\mathrm{~m}, 15 \mathrm{H}), 1.46(\mathrm{~m}, 18 \mathrm{H}), 2.17(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~m}, 2 \mathrm{H}), 5.94$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.4,13.7,25.2,27.2,28.7,29.1,32.6,37.8,63.0$, 127.3, 149.4; HR-MS (EI): $\quad m / z=347.1400 \quad\left(\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{OSn} \quad\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}\right)$, calculated $m / z=347.1391$.

(E)-9-(tributylstannyl)non-8-en-1-ol 9c

9c

The reaction was performed according to the general procedure as described above for $\mathrm{Pd}_{2} \mathrm{dba}_{3}(82.0 \mathrm{mg}, \quad 89.0 \mu \mathrm{~mol}, \quad 0.5 \mathrm{~mol} \%$), tricyclohexylphosphonium tetrafluoroborate ($131 \mathrm{mg}, 365 \mu \mathrm{~mol}, 0.02$ eq.), diisopropylethylamine ($92.0 \mathrm{mg}, 712 \mu \mathrm{~mol}, 0.04 \mathrm{eq}$.) in dry dichloromethane (100 mL), Non-8-yn-1-ol 8c ($2.50 \mathrm{~g}, 17.8 \mathrm{mmol}, 1.0 \mathrm{eq}.), \mathrm{Bu}_{3} \mathrm{SnH}(6.23 \mathrm{~g}$, $21.4 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) in dry dichloromethane (50 \mathrm{~mL}$) to give stannane 9 c as a light yellow oil $(5.81 \mathrm{~g}, 13.5 \mathrm{mmol}, 76 \%) . \mathrm{R}_{f}=0.28$ (petroleum ether/ethyl acetate, $9: 1$); ${ }^{1} \mathrm{H}$ NMR ($300.132 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=(\mathrm{m}, 15 \mathrm{H}), 1.43(\mathrm{~m}, 22 \mathrm{H}), 2.13(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~m}, 2 \mathrm{H}), 5.91(\mathrm{~m}$, 2 H); ${ }^{13} \mathrm{C}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.4,13.7,25.7,27.3,28.8,29.1,29.1,29.3,32.8$, 37.8, 63.1, 127.1, 149.7; HR-MS (EI): $m / z=375.1713\left(\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{OSn}\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}\right)$, calculated $m / z=375.1704$.

General procedure for the oxidation of allylic alcohols 5

Activated $\mathrm{MnO}_{2}(1.48 \mathrm{~g}, 17.0 \mathrm{mmol}, 17 \mathrm{eq})$ was suspended in dichloromethane (10 mL). Allylic alcohol ($1.00 \mathrm{mmol}, 1 \mathrm{eq}$) in dichloromethane $(6 \mathrm{~mL})$ was added at room temperature and the mixture was stirred for 2 h . The mixture was filtered through a short pad of celite with dichloromethane $(30 \mathrm{~mL})$ and ethyl acetate $(50 \mathrm{~mL})$. The solvent was evaporated under reduced pressure. The resulting residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate; 12:1) to afford the corresponding aldehyde.

(E)-3-(tributylstannyl)acrylaldehyde 6a

6a

The reaction was performed according to the general procedure as described above for, MnO_{2} ($8.52 \mathrm{~g}, 97.9 \mathrm{mmol}, 17 \mathrm{eq}$) in dichloromethane (55 mL), (E)-5-(tributylstannyl)prop-2-en-1-ol $5 \mathrm{a}(2.00 \mathrm{~g}, 5.76 \mathrm{mmol}, 1 \mathrm{eq})$ in dichloromethane $(35 \mathrm{~mL})$ to give the aldehyde $\mathbf{6 a}(1.76 \mathrm{~g}$, $5.07 \mathrm{mmol}, 88 \%$) as a yellow oil. $\mathrm{R}_{f}=0.75$ (n-hexane/ethyl acetate; $10: 1$); ${ }^{1} \mathrm{H}$ NMR ($300.132 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.90(\mathrm{~m}, 10 \mathrm{H}), 1.02(\mathrm{~m}, 5 \mathrm{H}), 1.32(\mathrm{dq}, J=14.8 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}$, $6 \mathrm{H}), 1.53(\mathrm{~m}, 6 \mathrm{H}), 6.63(\mathrm{dd}, J=19.2 \mathrm{~Hz}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=19.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.42$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.2,14.0,27.6,29.4,148.0,163.7$, 194.1; HR-MS $\left(\mathrm{EI}^{+}\right)$: found $m / z=289.0623 \quad\left(\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{OSn} \quad\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}\right)$, calculated $m / z=289.0176$.

(2E,4E)-5-(tributylstannyl)penta-2,4-dienal 6b

6b
The reaction was performed according to the general procedure as described above for MnO_{2} $(198 \mathrm{~g}, 2.28 \mathrm{mmol}, 17 \mathrm{eq})$ in dichloromethane (1.5 mL), ($2 E, 4 E$)-5-(tributylstannyl)penta-2,4-dien-1-ol $5 \mathbf{b}(50.0 \mathrm{mg}, 134 \mu \mathrm{~mol}, 1.0 \mathrm{eq})$ in dichloromethane $(0.5 \mathrm{~mL})$ to give the aldehyde 6b ($42.7 \mathrm{mg}, 115 \mu \mathrm{~mol}, 86 \%$) as a yellow oil. $\mathrm{R}_{f}=0.43$ (n-pentane/diethyl ether, $100: 5$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300.132 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.94(\mathrm{~m}, 15 \mathrm{H}), 1.33(\mathrm{dq}, J=14.6 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$, $1.54(\mathrm{~m}, 6 \mathrm{H}), 6.07(\mathrm{dd}, J=15.1 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~m}, 2 \mathrm{H}), 9.58(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.7,13.7,27.2,29.0,130.1,144.2,151.4$, 153.5, 194.4; HR-MS (EI): found $m / z=315.0773\left(\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{OSn}\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}\right)$, calculated $m / z=317.0765$.

General procedure for the oxidation of alcohols 9

To a solution of alcohol ($1.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in dichloromethane (25 \mathrm{~mL}$) was added a spatula load of dried $4 \AA$ powdered molecular sieves, followed by NMO ($351 \mathrm{mg}, 3.00 \mathrm{mmol}$, 3.0 eq.) and TPAP ($35.1 \mathrm{mg}, 0.10 \mu \mathrm{~mol}, 0.1 \mathrm{eq}$.). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min then directly purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ ethyl acetate, 20:1), yielding the corresponding aldehyde.

(E)-5-(tributylstannyl)pent-4-enal 10a

10a

The reaction was performed according to the general procedure as described above for $(E)-5-$ (tributylstannyl)pent-4-enol 9a ($50.0 \mathrm{mg}, 133 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) in dichloromethane (3 mL), NMO ($40.8 \mathrm{mg}, 400 \mu \mathrm{~mol}, 3.0 \mathrm{eq}$.) and TPAP ($4.60 \mathrm{mg}, 13.3 \mu \mathrm{~mol}, 0.1 \mathrm{eq}$.) yielding the desired aldehyde $10 \mathrm{a}\left(39.8 \mathrm{mg}, 107 \mu \mathrm{~mol}, 80 \%\right.$) as a colourless oil. $\mathrm{R}_{f}=0.73$ (petroleum ether/ethyl acetate, 10:1); ${ }^{1} \mathrm{H}$ NMR ($300.132 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.88(\mathrm{~m}, 15 \mathrm{H}), 1.30(\mathrm{~m}, 6 \mathrm{H})$, $1.49(\mathrm{~m}, 6 \mathrm{H}), 2.51(\mathrm{~m}, 4 \mathrm{H}), 5.97(\mathrm{~m}, 2 \mathrm{H}), 9.78(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.48 MHz ,
CDCl_{3}) $\delta=9.4,13.7,27.2,29.1,29.9,42.7,129.2,146.3,202.3$; HR-MS (EI): found $m / z=317.0947\left(\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OSn}\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}\right)$, calculated $m / z=317.0489$.

(E)-7-(tributylstannyl)hept-6-enal 10b

10b

The reaction was performed according to the general procedure as described above for (E)-7-(tributylstannyl)hept-6-en-1-ol 9b ($50.0 \mathrm{mg}, 124 \mu \mathrm{~mol}, 1.0$ eq.) in dichloromethane (3 mL), NMO ($43.6 \mathrm{mg}, 371 \mu \mathrm{~mol}, 3.0 \mathrm{eq}$.) and TPAP ($4.40 \mathrm{mg}, 12.4 \mu \mathrm{~mol}, 0.1 \mathrm{eq}$.) yielding the desired aldehyde $\mathbf{1 0 b}(40.3 \mathrm{mg}, 100 \mu \mathrm{~mol}, 81 \%)$ as a colourless liquid. $\mathrm{R}_{f}=0.60$ (n-hexane/ethyl acetate, $9: 1$); ${ }^{1} \mathrm{H}$ NMR ($300.132 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.88(\mathrm{~m}, 15 \mathrm{H}), 1.31$ (dq, $J=14.6 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.57(\mathrm{~m}, 8 \mathrm{H}), 2.17(\mathrm{td}, J=7.4 \mathrm{~Hz}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{td}$, $J=7.3 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}$), $5.86(\mathrm{~m}, 2 \mathrm{H}), 9.77(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.48 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=9.4,13.7,21.6,27.3,28.3,29.1,37.4,43.8,128.0,148.7,202.7$; HR-MS (ESI): $m / z=425.1841\left(\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{OSnNa}\right)$, calculated $m / z=425.1840$.

(E)-9-(tributylstannyl)non-8-enal 10c

The reaction was performed according to the general procedure as described above for $(E)-7-$ (tributylstannyl)non-8-en-1-ol $9 \mathbf{c}(50.0 \mathrm{mg}, 116 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) in dichloromethane (3 \mathrm{~mL}$), NMO ($40.8 \mathrm{mg}, 348 \mu \mathrm{~mol}, 3.0 \mathrm{eq}$.) and TPAP ($4.10 \mathrm{mg}, 11.6 \mu \mathrm{~mol}, 0.1 \mathrm{eq}$.) yielding the desired aldehyde $10 \mathrm{c}(40.7 \mathrm{mg}, 94.8 \mathrm{mmol}, 82 \%)$ as a colourless liquid. $\mathrm{R}_{f}=0.60$ (n-hexane/ethyl acetate, $9: 1$); ${ }^{1} \mathrm{H}$ NMR ($300.132 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.88$ (m, 15 H), 1.47 (m, $20 \mathrm{H}), 2.13(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{td}, J=7.3 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.89(\mathrm{~m}, 2 \mathrm{H}), 9.77(\mathrm{t}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.4,13.7,22.0,27.3,28.6,28.8,29.0,29.1,37.7$, 43.9, 127.3, 149.5, 202.8; HR-MS (ESI): $m / z=453.2153\left(\mathrm{C}_{21} \mathrm{H}_{42} \mathrm{OSnNa}\right)$, calculated $m / z=453.2153$.

General procedure for the Boryl-Takai olefination of aldehydes 6 and 10

The following process was conducted in the dark. A solution of aldehyde ($1.00 \mathrm{mmol}, 1.0 \mathrm{eq}$) and dioxaborolane $7(422 \mathrm{mg}, 2.00 \mathrm{mmol}, 2.0 \mathrm{eq})$ in THF (8.5 mL) was added via syringe to a mixture of anhydrous chromium(II) chloride ($983 \mathrm{mg}, 8.00 \mathrm{mmol}, 8 \mathrm{eq}$) in THF (8.5 mL). A solution of lithium iodide ($535 \mathrm{mg}, 4.00 \mathrm{mmol}, 4.0 \mathrm{eq}$) in THF (8.5 mL) was added via syringe and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h . The reaction was quenched by the addition of water. The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine ($2 \times 20 \mathrm{~mL}$), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was passed through a pad of celite and the filter cake was washed thoroughly with $\mathrm{Et}_{2} \mathrm{O}$. After concentration of the residue the crude product was purified by chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/diethyl ether, 100:1) to afford the corresponding pinacolborane.

Tributyl((1E,3E)-4-(4,4,5,5-tetramethyl-1,3,2 dioxaborolan 2 yl)buta-1,3-dienyl)stannane 2a

2a

The reaction was performed according to the general procedure as described above for $(E)-3$ (tributylstannyl) acrylaldehyde 6a ($200 \mathrm{mg}, \quad 0.58 \mathrm{mmol}, \quad 1.0 \mathrm{eq})$ and 2-(dichloromethyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 7 ($244 \mathrm{mg}, 1.16 \mathrm{mmol}, 2.0 \mathrm{eq}$) in THF (5 mL), anhydrous chromium(II) chloride ($548 \mathrm{mg}, 4.46 \mathrm{mmol}, 8 \mathrm{eq}$) in THF (5 mL), lithium iodide ($298 \mathrm{mg}, 2.23 \mathrm{mmol}, 4.0 \mathrm{eq}$) in THF (5 mL) to afford the conjugated diene $\mathbf{2 a}$ ($260 \mathrm{mg}, 550 \mathrm{mmol}, 75 \%$) as a green-clear liquid. $\mathrm{R}_{f}=0.48$ (n-hexane/ethyl acetate, 100:5); ${ }^{1} \mathrm{H}$ NMR ($300.132 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.91$ (m, 15 H), $1.30(\mathrm{~m}, 18 \mathrm{H}), 1.50(\mathrm{~m}, 6 \mathrm{H}), 5.48(\mathrm{~d}$, $J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{dd}, J=17.6 \mathrm{~Hz}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.1,13.3,24.3,24.5,26.8,28.6,82.7,140.0,148.1,151.8 ;$ HR-MS (EI): found $m / z=413.1687 \mathrm{C}_{18} \mathrm{H}_{44} \mathrm{BO}_{2} \mathrm{Sn}\left(\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}\right)$, calculated $m / z=413.1235$.

Tributyl((1E,3E,5E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexa-1,3,5-trien-1-yl)stannane 2b

2b

The reaction was performed according to the general procedure as described above for ($2 E, 4 E$)-5-(tributylstannyl)penta-2,4-dienal $\quad \mathbf{6 b} \quad(531 \mathrm{mg}, \quad 1.43 \mathrm{mmol}, \quad 1.0 \mathrm{eq})$ and 2-(dichloromethyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 7 ($603 \mathrm{mg}, 2.86 \mathrm{mmol}, 2.0 \mathrm{eq}$) in THF (11 mL), anhydrous chromium chloride ($1.41 \mathrm{~g}, 11.4 \mathrm{mmol}, 8.0 \mathrm{eq}$) in THF (11 mL), lithium iodide ($766 \mathrm{mg}, 5.72 \mathrm{mmol}, 4.0 \mathrm{eq}$) in THF (11 mL) to afford triene $\mathbf{2 b}$ (526 mg , $1.06 \mathrm{mmol}, 74 \%$) as an orange oil. $\mathrm{R}_{f}=0.57$ (n-hexane/diethyl ether, $100: 1$); ${ }^{1} \mathrm{H}$ NMR ($300.132 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.92(\mathrm{~m}, 15 \mathrm{H}), 1.43(\mathrm{~m}, 24 \mathrm{H}), 5.58(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.31$ (m, 3 H), $6.60(\mathrm{~m}, 1 \mathrm{H}), 7.04$ (dd, $J=17.6 \mathrm{~Hz}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100.61 MHz , CDCl_{3} : $\delta=9.6,13.7,24.8,26.6,27.3,29.1,83.2,133.1,138.6,138.9,146.5,149.8$; HR-MS (EI): found $m / z=439.1838 \mathrm{C}_{20} \mathrm{H}_{46} \mathrm{BO}_{2} \mathrm{Sn}\left(\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}\right)$, calculated $m / z=439.1825$.

Tributyl((1E,5E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexa-1,5dienyl)stannane 3a

3a

The reaction was performed according to the general procedure as described above for (E)-5-(tributylstannyl)pent-4-enal $\quad \mathbf{1 0 a} \quad(715 \mathrm{mg}, \quad 1.92 \mathrm{mmol}, \quad 1.0 \mathrm{eq}) \quad$ and 2-(dichloromethyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 7 ($810 \mathrm{mg}, 3.84 \mathrm{mmol}, 2.0 \mathrm{eq}$) in THF (12 mL), anhydrous chromium(II) chloride ($1.89 \mathrm{~g}, 15.4 \mathrm{mmol}, 8.0 \mathrm{eq}$) in THF (12 mL), lithium iodide $(1.03 \mathrm{~g}, 7.68 \mathrm{mmol}, 4.0 \mathrm{eq})$ in THF $(12 \mathrm{~mL})$ to afford diene 3 a (740 mg , $1.49 \mu \mathrm{~mol}, 76 \%$) as a colourless oil. $\mathrm{R}_{f}=0.38$ (n-hexane/diethyl ether, $100: 5$); ${ }^{1} \mathrm{H}$ NMR ($300.132 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.87(\mathrm{~m}, 15 \mathrm{H}), 1.30(\mathrm{~m}, 18 \mathrm{H}), 1.50(\mathrm{~m}, 6 \mathrm{H}), 2.26(\mathrm{~m}, 4 \mathrm{H})$,
5.45 (d, $J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~m}, J=5.5 \mathrm{~Hz}, J=18.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.65$ (d, $J=17.9 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.0,13.3,24.3,26.8,28.7,34.8,35.8,82.6,127.3,148.0$, 153.5. HR-MS (ESI): found $m / z=521.2578\left(\mathrm{C}_{24} \mathrm{H}_{47} \mathrm{BO}_{2} \mathrm{SnNa}\right)$, calculated $m / z=521.2589$.

Tributyl((1E,7E)-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octa-1,7-dien-1yl)stannane 3b

3b

The reaction was performed according to the general procedure as described above for (E)-7-(tributylstannyl)hept-6-enal 10b ($317 \mathrm{mg}, 790 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) and 2-(dichloromethyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane $7(333 \mathrm{mg}, 1.58 \mathrm{mmol}, 2.0 \mathrm{eq})$ in THF (6 mL), anhydrous chromium chloride ($777 \mathrm{mg}, 6.43 \mathrm{mmol}, 8.0 \mathrm{eq}$) in THF (6 mL), lithium iodide (432 mg , $3.16 \mathrm{mmol}, 4.0 \mathrm{eq}$) in THF (6 mL) to afford diene $\mathbf{3 b}$ ($404 \mathrm{mg}, 769 \mu \mathrm{~mol}, 97 \%$) as a colourless liquid. $\mathrm{R}_{f}=0.66$ (petroleum ether/ethyl acetate, 100:5); ${ }^{1} \mathrm{H}$ NMR (300.132 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=0.86(\mathrm{~m}, 15 \mathrm{H}), 1.43(\mathrm{~m}, 28 \mathrm{H}), 2.13(\mathrm{~m}, 4 \mathrm{H}), 4.96(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{dt}$, $J=17.8 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{dt}, J=18.0 \mathrm{~Hz}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.4,13.7,24.4,24.8,27.3,28.4,29.0,29.1,33.6,35.6,37.7,83.0$, 114.3, 127.2, 138.9, 149.4, 154.5; HR-MS (ESI): $m / z=565.2641\left(\mathrm{C}_{26} \mathrm{H}_{51} \mathrm{BO}_{2} \mathrm{SnK}\right)$, calculated $m / z=565.2643$.

Tributyl((1E,9E)-10-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)deca-1,9-dien-1-

 yl)stannane 3c

3c

The reaction was performed according to the general procedure as described above for $(E)-9-$ (tributylstannyl)non-8-enal 10c ($35.0 \mathrm{mg}, 81.5 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) and 2-(dichloromethyl-4,4,5,5-
tetramethyl-1,3,2-dioxaborolane $7(34.4 \mathrm{mg}, 163 \mathrm{mmol}, 2.0 \mathrm{eq})$ in THF (1 mL), anhydrous chromium(II) chloride ($80.1 \mathrm{mg}, 652 \mu \mathrm{~mol}, 8.0 \mathrm{eq}$) in THF (1 mL), lithium iodide (43.6 mg , $326 \mu \mathrm{~mol}, 4.0 \mathrm{eq})$ in THF (1 mL) to afford diene 3 c as a colourless oil $(40.1 \mathrm{mg}, 72.5 \mu \mathrm{~mol}$, 89%). $\mathrm{R}_{f}=0.64$ (petroleum ether/ethyl acetate, $10: 1$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300.132 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ $\delta=0.85(\mathrm{~m}, 15 \mathrm{H}), 1.38(\mathrm{~m}, 32 \mathrm{H}), 2.14(\mathrm{~m}, 4 \mathrm{H}), 5.43(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~m}, 2 \mathrm{H})$, 6.64 (dt, $J=17.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.4,13.7,24.8,27.3,27.5$, 28.2, 28.8, 28.9, 29.1, 29.1, 35.8, 37.9, 83.0, 114.1, 127.0, 149.8, 154.8; HR-MS (ESI): $m / z=425.1841\left(\mathrm{C}_{28} \mathrm{H}_{55} \mathrm{BO}_{2} \mathrm{SnK}\right)$, calculated $m / z=425.1840$.

General procedure for the Stille coupling reactions of vinylstannanes 2 and 3

The following process was executed in the dark and conducted in an amber glass septum vial. $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}(2.60 \mathrm{mg}, 10.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$ was added to a solution of 2-Acetyl-5iodothiophene 11 ($25.2 \mathrm{mg}, 100 \mu \mathrm{~mol}, 1.0$ eq.) and the stannane 2 or 3 ($200 \mu \mathrm{~mol}, 2.0 \mathrm{eq}$.) in degassed, anhydrous DMF ($400 \mu \mathrm{~L}$). After stirring for 1-2 h the reaction mixture was diluted with diethyl ether (3 mL) and washed with a concentrated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$. The organic phase was separated and the aqueous phase was extracted with diethyl ether ($3 \times 5 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4}, filtered and concentrated under reduced pressure. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate, 10:1) afforded the product $\mathbf{1 2}$ or $\mathbf{1 4}$.

1-(5-((1E,3E)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)buta-1,3-dien-1-yl)thiophen-2-yl)ethanone 12a

12a

The reaction was performed according to the general procedure as described above for $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}(2.80 \mathrm{mg}, 10.7 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$, 2-Acetyl-5-iodothiophene 11 (36.0 mg , $142 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) and stannane \mathbf{2 a}(100 \mathrm{mg}, 213 \mu \mathrm{~mol}, 1.5 \mathrm{eq}$.$) in degassed, anhydrous DMF$ $(400 \mu \mathrm{~L})$ to afford the product $12 \mathrm{a}(42.3 \mathrm{mg}, 139 \mu \mathrm{~mol}, 98 \%)$ as a yellow oil with little impurities of $\mathrm{Bu}_{3} \mathrm{SnI}$. $\mathrm{R}_{f}=0.16$ (petroleum ether/ethyl acetate, $10: 1$); ${ }^{1} \mathrm{H}$ NMR (300.132 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta=1.29(\mathrm{~s}, 12 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 5.75(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~d}$, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.8,26.6,83.4,127.3,133.0,133.6,143.0,148.1,150.0,190.3 ; H R-M S$ (ESI): $m / z=327.1196\left(\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~B} 0_{3} \mathrm{SNa}\right)$, calculated $\mathrm{m} / \mathrm{z}=327.1197$.

1-(5-((1E,3E,5E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexa-1,3,5-trien-1-

 yl)thiophen-2-yl)ethanone 12b

12b

The reaction was performed according to the general procedure as described above for $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}(875 \mu \mathrm{~g}, 3.37 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$, 2-Acetyl-5-iodothiophene 11 (17.0 mg , $67.3 \mu \mathrm{~mol}, 1.0$ eq.) and stannane $\mathbf{2 b}(50.0 \mathrm{mg}, 101 \mu \mathrm{~mol}, 1.5 \mathrm{eq}$.$) in degassed, anhydrous$ DMF $(300 \mu \mathrm{~L})$. to afford the triene $\mathbf{1 2 b}(19.2 \mathrm{mg}, 58.1 \mu \mathrm{~mol}, 86 \%)$ as a dark red solid with little impurities of $\mathrm{Bu}_{3} \mathrm{SnI} . \mathrm{R}_{f}=0.16$ (petroleum ether/ethyl acetate, $10: 1$); ${ }^{1} \mathrm{H}$ NMR (300.132 MHz, CDCl_{3}) $\delta=1.29(\mathrm{~s}, 12 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 5.67(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~m}, 1$ H), $6.70(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~m}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, 1 H); ${ }^{13} \mathrm{C}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.8,26.6,26.9,83.4,126.3,126.7,131.9,133.2$, 135.0, 136.9, 142.6, 148.9, 150.6, 190.3; HR-MS (ESI): $m / z=305.1377\left(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{BO}_{3} \mathrm{~S}\right)$, calculated $m / z=305.1380$.

1-(5-((1E,5E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexa-1,5-dien-1-yl)thiophen-2-yl)ethanone 14a

14a

The reaction was performed according to the general procedure as described above for $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}(521 \mu \mathrm{~g}, 2.01 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%), 2$-Acetyl-5-iodothiophene 11 (10.1 mg ,
$40.2 \mu \mathrm{~mol}, 1.0$ eq.) and stannane 3 a ($30.0 \mathrm{mg}, 60.3 \mu \mathrm{~mol}, 1.5 \mathrm{eq}$.$) in degassed, anhydrous$ DMF $(200 \mu \mathrm{~L})$ to afford the diene $14 \mathrm{a}(12.6 \mathrm{mg}, 37.8 \mu \mathrm{~mol}, 94 \%)$ as a yellow oil. $\mathrm{R}_{f}=0.19$ (petroleum ether/ethyl acetate, $10: 1$); ${ }^{1} \mathrm{H}$ NMR ($300.132 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.27$ (s, 12 H), 2.34 (m, 4 H), 2.51 (s, 3 H), 5.49 (d, $J=18.1 \mathrm{~Hz}, 1 \mathrm{H}$), 6.28 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$), $6.50(\mathrm{~m}, 1$ H), $6.64(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.48 MHz, CDCl_{3}): $\delta=24.8,26.5,31.5,34.8,83.1,123.2,125.1,133.0,134.2,141.5$, 151.2, 152.6, 190.3; HR-MS (ESI): $m / z=333.1691\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~B} 0_{3} \mathrm{~S}\right)$, calculated $m / z=333.1693$.

1-(5-((1E,7E)-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octa-1,7-dien-1-

 yl)thiophen-2-yl)ethanone 14b

14b

The reaction was performed according to the general procedure as described above for $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}(824 \mu \mathrm{~g}, 3.16 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$, 2-Acetyl-5-iodothiophene 11 (16.0 mg , $63.5 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) and stannane $\mathbf{3 b}$ ($50 \mathrm{mg}, 95.2 \mu \mathrm{~mol}$, 1.5 eq .) in degassed, anhydrous DMF $(500 \mu \mathrm{~L})$ to afford the diene $\mathbf{1 4 b}(16.4 \mathrm{mg}, 45.5 \mu \mathrm{~mol}, 72 \%)$ as an orange oil with little impurities of $\mathrm{Bu}_{3} \mathrm{SnI} . \quad \mathrm{R}_{f}=0.19$ (petroleum ether/ethyl acetate, 10:1); ${ }^{1} \mathrm{H}$ NMR ($600.130 \mathrm{MHz} . \mathrm{CDCl}_{3}$): $\delta=1.27$ ($\mathrm{s}, 12 \mathrm{H}$), $1.49(\mathrm{~m}, 4 \mathrm{H}), 2.20(\mathrm{~m}, 4 \mathrm{H}), 2.52(\mathrm{~s}, 3$ H), $5.45(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dt}, J=15.7 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1$ H), 6.63 (dt, $J=17.9 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), $6.88(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.6,17.5,24.8,26.5,26.8,27.7,27.8,28.3,29.7,32.8$, $35.5, ~ 83.0,122.9,124.9,133.1,135.2,141.3,151.5,154.2,190.4 ;$ HR-MS (ESI): $m / z=361.2004\left(\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~B} 0_{3} \mathrm{~S}\right)$, calculated $m / z=361.2007$.

1-(5-((1E,9E)-10-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)deca-1,9-dien-1-

 yl)thiophen-2-yl)ethanone 14 c
$14 c$

The reaction was performed according to the general procedure as described above for $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}(825 \mathrm{mg}, 3.18 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$, 2-Acetyl-5-iodothiophene $\mathbf{1 1}$ (16.0 mg , $63.5 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) and stannane 3 \mathrm{c}(53.0 \mathrm{mg}, 95.2 \mu \mathrm{~mol}, 1.5 \mathrm{eq}$.$) in degassed, anhydrous$ DMF $(250 \mu \mathrm{~L})$ to afford the diene $14 \mathrm{c}(20.1 \mathrm{mg}, 51.8 \mu \mathrm{~mol}, 82 \%)$ as an orange oil with little impurities of $\mathrm{Bu}_{3} \mathrm{SnI} . \mathrm{R}_{f}=0.21$ (petroleum ether/ethyl acetate, $10: 1$); ${ }^{1} \mathrm{H}$ NMR (300.132 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.27(\mathrm{~s}, 12 \mathrm{H}), 1.54(\mathrm{~m}, 8 \mathrm{H}), 2.18(\mathrm{dq}, J=13.0 \mathrm{~Hz}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.52(\mathrm{~s}, 3$ H), 5.43 (d, $J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dt}, J=15.7 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1$ H), 6.63 (dt, $J=17.9 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.6,17.5,24.8,26.5,26.8,27.8,28.1,28.8,29.0,29.0$, $32.9,35.7,83.0,122.8,124.9,133.1,135.6$ (2 C), 141.3, 151.6, 154.6, 190.4; HR-MS (ESI): $m / z=389.2318\left(\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~B} 0_{3} \mathrm{~S}\right)$, calculated $m / z=389.2320$.

General procedure for the Suzuki-Miyaura coupling reactions of pinacolboranes 12 and 14

The reaction was conducted in an amber glass septum vial in absence of light. (E)-1-iodohex-1-ene 16 ($21.0 \mathrm{mg}, 100 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) and the pinacol borane (29.5 \mathrm{mg}$, $140 \mu \mathrm{~mol}, 1.4$ eq.) were diluted in anhydrous DMF $(600 \mu \mathrm{~L}) . \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(11.0 \mathrm{mg}$, $15.0 \mu \mathrm{~mol}, 15 \mathrm{~mol} \%)$ and $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(94.6 \mathrm{mg}, 300 \mu \mathrm{~mol}, 3.0$ eq.) were added to the vigorous stirring solution sequently. After stirring over night the reaction mixture was quenched with diethyl ether (3 mL) and pH 7 buffer solution (6 mL) and extracted with diethyl ether ($3 \times 8 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. After purification by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, 10:1) the corresponding polyene was yielded.

1-(5-((1E,3E,5E)-deca-1,3,5-trien-1-yl)thiophen-2-yl)ethanone 13a

13a

The reaction was performed according to the general procedure as described above for (E)-1-iodohex-1-ene 16 ($8.80 \mathrm{mg}, 41.8 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$), pinacol borane $\mathbf{1 2 a}$ (17.8 mg , $58.5 \mu \mathrm{~mol}$, 1.4 eq.), anhydrous DMF ($250 \mu \mathrm{~L}$), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(4.60 \mathrm{mg}, 6.27 \mu \mathrm{~mol}, 15 \mathrm{~mol} \%)$ and $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(39.6 \mathrm{mg}, 125 \mu \mathrm{~mol}, 3.0$ eq.) to obtain triene $13 \mathrm{a}(9.80 \mathrm{mg}, 37.6 \mu \mathrm{~mol}$, 90%) as a yellow oil. $\mathrm{R}_{f}=0.33$ (petroleum ether/ethyl acetate, 10:1); ${ }^{1} \mathrm{H}$ NMR (300.132 MHz , CDCl_{3}): $\delta=0.91(\mathrm{~m}, 3 \mathrm{H}), 1.38(\mathrm{~m}, 4 \mathrm{H}), 2.15(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 5.85(\mathrm{dt}$, $J=14.8 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~m}, 2 \mathrm{H}), 6.40(\mathrm{dd}, J=14.9 \mathrm{~Hz}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}$, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=15.3 \mathrm{~Hz}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}$, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9,22.2,26.5,31.3,32.6,123.4$, $125.8,129.4,130.2,132.9,133.2,136.4,138.1,141.8,151.5,190.2 ; \operatorname{HR}-M S(F A B):$ $m / z=261.1345\left(\mathrm{C}_{16} \mathrm{H}_{21} 0 \mathrm{~S}\right)$, calculated $m / z=261.1308$.

1-(5-((1E,3E,5E,7-E)-dodeca-1,3,5,7-tetraen-1-yl)thiophen-2-yl)ethanone 13b

13b

The reaction was performed according to the general procedure as described above for (E)-1-iodohex-1-ene $16(6.09 \mathrm{mg}, 29.0 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) , pinacol borane \mathbf{1 2 b}(13.4 \mathrm{mg}$, $40.6 \mu \mathrm{~mol}, 1.4 \mathrm{eq}$.$) , anhydrous DMF (200 \mu \mathrm{~L}$), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(3.55 \mathrm{mg}, 4.35 \mu \mathrm{~mol}, 15 \mathrm{~mol} \%)$ and $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(27.4 \mathrm{mg}, 87.0 \mu \mathrm{~mol}, 3.0$ eq. $)$ to obtain tetraene $\mathbf{1 3 b}(6.50 \mathrm{mg}, 22.7 \mu \mathrm{~mol}$, 78%) as a dark orange oil. $\mathrm{R}_{f}=0.31$ (petroleum ether/ethyl acetate, $10: 1$); ${ }^{1} \mathrm{H}$ NMR ($600.130 \mathrm{MHz} . \mathrm{CDCl}_{3}$): $\delta=0.91$ (m, 3 H), 1.35 (m, 4 H), 2.14 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.53 ($\mathrm{s}, 3$ H), 5.81 (dt, $J=14.9 \mathrm{~Hz}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=14.9 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}$, $J=14.7 \mathrm{~Hz}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dt}, J=14.8 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{dd}, J=14.6 \mathrm{~Hz}$,
$J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=15.3 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95$ (d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.55 (d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($150.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9$, $22.2,26.50,31.3,32.7,123.7,126.0,130.2,130.4,130.9,132.8,133.3,135.4,136.2,137.4$, 141.8, 151.4, 190.3; HR-MS (FAB): $m / z=286.1389\left(\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{OS}\right)$, calculated $m / z=286.1391$.

1-(5-((1E,5E,7E)-dodeca-1,5,7-trien-1-yl)thiophen-2-yl)ethanone 15a

15a

The reaction was performed according to the general procedure as described above for (E)-1-iodohex-1-ene $16(5.67 \mathrm{mg}, 27.0 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$), pinacol borane $\mathbf{1 4 a}(12.6 \mathrm{mg}$, $37.8 \mu \mathrm{~mol}, 1.4$ eq.), anhydrous DMF ($300 \mu \mathrm{~L}$), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(3.31 \mathrm{mg}, 4.05 \mu \mathrm{~mol}, 15 \mathrm{~mol} \%$) and $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(25.6 \mathrm{mg}, 81.0 \mu \mathrm{~mol}, 3.0$ eq. $)$ to obtain polyene $15 \mathrm{a}(7.10 \mathrm{mg}, 24.6 \mu \mathrm{~mol}$, 91\%) a light yellow oil. $\mathrm{R}_{f}=0.34$ (petroleum ether/ethyl acetate, $10: 1$); ${ }^{1} \mathrm{H}$ NMR (399.892 MHz, CDCl_{3}): $\delta=(\mathrm{m}, 3 \mathrm{H}), 1.34(\mathrm{~m}, 4 \mathrm{H}), 2.07(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~m}, 4 \mathrm{H})$, $5.59(\mathrm{tt}, J=13.9 \mathrm{~Hz}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.03(\mathrm{~m}, 2 \mathrm{H}), 6.29(\mathrm{dt}, J=15.6 \mathrm{~Hz}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.50(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.56 MHz, CDCl_{3}): $\delta=13.9,22.2,26.5,31.5,31.9,32.3,32.9,125.1,130.0,130.3,131.3$, 133.1, 133.3, 134.5 (2 C), 141.5, 151.3, 190.4; HR-MS (FAB): $m / z=289.1622\left(\mathrm{C}_{18} \mathrm{H}_{25} 0 \mathrm{~S}\right)$, calculated $m / z=289.1621$.

1-(5-((1E,7E,9E)-tetradeca-1,7,9-trien-1-yl)thiophen-2-yl)ethanone 15b

15b

The reaction was performed according to the general procedure as described above for (E)-1-iodohex-1-ene $16(3.70 \mathrm{mg}, 17.6 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) , pinacol borane \mathbf{1 4 b}(8.90 \mathrm{mg}$,
$24.7 \mu \mathrm{~mol}$, 1.4 eq.), anhydrous DMF ($100 \mu \mathrm{~L}$), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(1.94 \mathrm{mg}, 2.65 \mu \mathrm{~mol}, 15 \mathrm{~mol} \%)$ and $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(16.7 \mathrm{mg}, 52.8 \mu \mathrm{~mol}, 3.0$ eq. $)$ to obtain product $\mathbf{1 5 b}(3.60 \mathrm{mg}, 10.7 \mu \mathrm{~mol}$, 61%) as a light yellow oil. $\mathrm{R}_{f}=0.36$ (petroleum ether/ethyl acetate, $10: 1$); ${ }^{1} \mathrm{H}$ NMR ($399.892 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.90(\mathrm{~m}, 3 \mathrm{H}), 1.40(\mathrm{~m}, 8 \mathrm{H}), 2.08(\mathrm{~m}, 4 \mathrm{H}), 2.21(\mathrm{~m}, 2 \mathrm{H}), 2.52$ (s, 3 H), 5.57 (m, 2 H$), 6.01(\mathrm{~m}, 2 \mathrm{H}), 6.28(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}$, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.54(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.56 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9,22.2$, $26.5,28.4,31.6,32.3,32.3,32.8,122.9,124.9,130.2,130.7,131.7,132.7,133.1,135.4$ (2 C), 141.4, 151.5, 190.4; HR-MS (FAB): $m / z=317.1937\left(\mathrm{C}_{20} \mathrm{H}_{29} 0 \mathrm{~S}\right)$, calculated $m / z=317.1934$.

1-(5-((1E,9E,11E)-hexadeca-1,9,11-trien-1-yl)thiophen-2-yl)ethanone 15c

15c

The reaction was performed according to the general procedure as described above for (E)-1-iodohex-1-ene 16 ($7.50 \mathrm{mg}, 35.5 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$), pinacol borane 14 c (19.3 mg , $49.7 \mu \mathrm{~mol}, 1.4$ eq.), anhydrous DMF ($200 \mu \mathrm{~L}$), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(3.89 \mathrm{mg}, 5.32 \mu \mathrm{~mol}, 15 \mathrm{~mol} \%)$ and $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(33.8 \mathrm{mg}, 107 \mu \mathrm{~mol}, 3.0$ eq.) to obtain product $15 \mathrm{c}(7.80 \mathrm{mg}, 22.7 \mu \mathrm{~mol}$, 64%) as a light yellow oil. $\mathrm{R}_{f}=0.34$ (petroleum ether/ethyl acetate, 10:1); H NMR ($399.892 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.90(\mathrm{~m}, 3 \mathrm{H}), 1.40(\mathrm{~m}, 12 \mathrm{H}), 2.07(\mathrm{~m}, 4 \mathrm{H}), 2.20(\mathrm{q}, J=7.1 \mathrm{~Hz}$, 2 H), 2.52 (s, 3 H), 5.57 (dtd, $J=14.2 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}$), 5.99 (m, 2 H), $6.29(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.56 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9,26.5,28.8,29.0,29.0,29.3,31.6,32.3,32.5$, $32.9,122.8,124.9,130.3,130.4,132.2,132.5,133.1,135.6$ (2 C), 141.3, 151.6, 190.4; HRMS (FAB): $m / z=345.2255\left(\mathrm{C}_{22} \mathrm{H}_{33} 0 \mathrm{~S}\right)$, calculated $m / z=345.2247$.

(S)-methyl 3-(4-methoxybenzyloxy)-2-methylpropanoate 25

25

To the solution of (S)-Roche ester ($526 \mathrm{mg}, 4.45 \mathrm{mmol}$, 1.0 eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (6 mL) $\mathrm{PMB}(\mathrm{HNC}) \mathrm{CCl}_{3}(1.20 \mathrm{~g}, 4.45 \mathrm{mmol}, 1.0 \mathrm{eq})$ and CSA ($62.0 \mathrm{mg}, 267 \mu \mathrm{~mol}, 0.06 \mathrm{eq}$) were added and the solution was stirred for 16 h . Then saturated NaHCO_{3} solution (6 mL) was added and the aqueous layer extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The combined organic phases were washed with saturated NaHCO_{3} solution $(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried over MgSO_{4}, filtered and the organic solvent was removed under reduced pressure. After purification by chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate, $4: 1$) ester 25 was obtained as a colourless, oily liquid ($1.05 \mathrm{~g}, 4.41 \mathrm{mmol}, 99 \%$). $\mathrm{R}_{f}=0.78$ (petroleum ether/ethyl acetate, $3: 1) ;[\alpha]^{22}{ }_{\mathrm{D}}=+9.26\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500.130 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.18(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.78(\mathrm{sxt}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=9.2 \mathrm{~Hz}, J=5.9 \mathrm{~Hz}, 1$ H), 3.64 (dd, $J=9.2 \mathrm{~Hz}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.70 (s, 3 H), 3.81 (s, 3 H), 4.46 (m, 2 H), 6.88 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.25 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.7,39.9$, 51.4, 55.0, 71.4, 72.5, 113.4, 128.9, 129.9, 158.9, 175.1; HR-MS (ESI): $m / z=261.1097$ $\left(\mathrm{C}_{13} \mathrm{H}_{18} 0_{4} \mathrm{Na}\right)$, calculated $m / z=261.1103$.

(R)-3-(4-methoxybenzyloxy)-2-methylpropan-1-ol 26

26

A Solution of (S)-methyl 3-(4-methoxybenzyloxy)-2-methylpropanoate 25 (1.00 g , $4.20 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL})$ under argon atmosphere was cooled down to $-78{ }^{\circ} \mathrm{C}$ and treated with DIBAL-H ($12.6 \mathrm{~mL}, 1 \mathrm{M}$ in hexane, $12.6 \mathrm{mmol}, 3.0 \mathrm{eq}$) over a period of 45 min . After stirring for 2 h at $-78^{\circ} \mathrm{C}$, the reaction mixture was diluted by adding $\mathrm{Et}_{2} \mathrm{O}$ $(15 \mathrm{~mL})$, warmed to room temperature an treated with $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$ carefully. The resulting mixture was stirred until a gel was formed. Then $\mathrm{NaOH}(2 \mathrm{~N}, 8 \mathrm{~mL})$ was added and stirred
until the gel dissolved. The organic layer was separated, the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$ and the combined organic phases were dried over MgSO_{4}, filtrated and concentrated under reduced pressure. After purification by chromatography $\left(\mathrm{SiO}_{2}, n-\right.$ hexane/ethyl acetate $3: 1$), the desired alcohol 26 was obtained as colourless liquid (799 mg , $3.80 \mathrm{mmol}, 90 \%) . \mathrm{R}_{f}=0.22$ (n-hexane /ethyl acetate, $3: 1$); $[\alpha]^{22}{ }_{\mathrm{D}}=+15.9\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($300.132 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.92$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 2.10 (m, 1 H), 2.46 (br. s, 1 H), $3.44(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=9.1 \mathrm{~Hz}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.49(\mathrm{~s}$, $2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.0, ~ 35.1, ~ 54.8, ~ 67.5, ~ 72.6, ~ 74.7, ~ 113.4, ~ 128.8, ~ 129.7, ~ 158.8 ; ~ H R-M S ~(E S I): ~$ $m / z=233.1147\left(\mathrm{C}_{12} \mathrm{H}_{18} 0_{3} \mathrm{Na}\right)$, calculated $m / z=233.1148$.

(S)-3-(4-methoxybenzyloxy)-2-methylpropanal 27

27

At $0^{\circ} \mathrm{C}$ Dess-Martin periodinane ($565 \mathrm{mg}, 1.33 \mathrm{mmol}, 1.4 \mathrm{eq}$) was added to a solution of alcohol $26(200 \mathrm{mg}, 951 \mu \mathrm{~mol}, 1.0 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The solution was allowed to warm to room temperature within 3 h . After evaporation of the solvent in vacuo purification by flash chromatography (SiO_{2}, petroleum ether/ethyl acetate $10: 1$) provided the desired aldehyde 27 as a colourless liquid ($190 \mathrm{mg}, 904 \mu \mathrm{~mol}, 95 \%$). $\mathrm{R}_{f}=0.23$ (petroleum ether/ethyl acetate, $10: 1) ;[\alpha]^{22}{ }_{\mathrm{D}}=+30.5\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300.132 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.17(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.70(\mathrm{sxt}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.51$ (s, 2H), 6.93 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.29 , (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 9.76 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.48 MHz, CDCl_{3}): $\delta=10.7,46.8,55.2,69.8,72.9,113.8,129.2,129.9,159.2,204.0$; HR-MS (EI $)$: found $m / z=208.1091\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}\right)$, calculated $m / z=208.1099$.
(3S,4S)-5-(4-methoxybenzyloxy)-4-methyl-1-(trimethylsilyl)pent-1-yn-3-ol 17

17

TMS acetylene ($421 \mu \mathrm{~L}, 3.04 \mathrm{mmol}, 4.0 \mathrm{eq}$) was added to $\mathrm{Et}_{2} \mathrm{Zn}(2.76 \mathrm{~mL}, 1.1 \mathrm{M}$ in toluene, $2.76 \mathrm{mmol}, 4.0 \mathrm{eq}$.) carefully. The mixture was heated to reflux for 1 h , during which time a large amount of grey precipitate formed in the reaction flask. The mixture was cooled to room temperature, and (R)-BINOL ($87.0 \mathrm{mg}, 304 \mu \mathrm{~mol}, 0.4 \mathrm{eq}.), \mathrm{Et}_{2} \mathrm{O}(14 \mathrm{~mL})$ and $\mathrm{Ti}(\mathrm{O} \nrightarrow \mathrm{Pr})_{4}$ ($226 \mu \mathrm{~L}, 759 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) were added. After 1 h , aldehyde $27(158 \mathrm{mg}, 759 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$. was added, and the mixture was stirred overnight. The reaction was quenched with 1 M tartaric acid $(6 \mathrm{~mL})$ and the mixture was stirred for 30 min . The mixture was partitioned in a separatory funnel, and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 7 \mathrm{~mL})$. The combined organic extracts were washed with brine and dried over MgSO_{4}, filtrated and concentrated under reduced pressure. The residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate, 100:2.5 to 100:5) to afford 17 as a light yellow oil ($185 \mathrm{mg}, 604 \mu \mathrm{~mol}$, 80%). $\mathrm{R}_{f}=0.47$ (petroleum ether/ethyl acetate, $5: 1$); $[\alpha]^{22} \mathrm{D}=+7.13\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($300.132 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.17$ (s, 9 H), 1.05 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 2.06 (sxtd, $J=6.8 \mathrm{~Hz}, ~ J=6.8 \mathrm{~Hz}, ~ J=6.8 \mathrm{~Hz}, ~ J=6.8 \mathrm{~Hz}, ~ J=6.8 \mathrm{~Hz}, ~ J=4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.44 (dd, $J=9.3 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=9.3 \mathrm{~Hz}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.40(\mathrm{~d}$, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75.48 MHz, CDCl_{3}): $\delta=-0.1,13.2,39.2,55.2,66.8,73.1,73.3,89.9,105.5,113.8$, 129.2, 129.9, 159.2; HR-MS (ESI): found $m / z=329.1547\left(\mathrm{C}_{17} \mathrm{H}_{26} 0_{3} \mathrm{SiNa}\right)$, calculated $m / z=329.1543$.
tert-butyl(((3S,4S)-5-((4-methoxybenzyl)oxy)-4-methyl-1-(trimethylsilyl)pent-1-yn-3yl)oxy)dimethylsilane 28

28

2,6-Lutidine $\quad(587 \mathrm{mg}, \quad 5.48 \mathrm{mmol}, \quad 4.2 \mathrm{eq}$.$) and tert-butyldimethylsilyl$ trifluromethanesulfonate $(1.10 \mathrm{~g}, 4.18 \mathrm{mmol}, 3.2 \mathrm{eq}$.) were added slowly to a solution of alcohol 17 ($400 \mathrm{mg}, 1.31 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 1 h , the reaction was quenched by addition of aqueous saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 7 \mathrm{~mL})$. The combined organic phases were dried with MgSO_{4}, concentrated under reduced pressure and purified by flash chromatography $\left(\mathrm{SiO}_{2}, n\right.$-hexane/ethyl acetate, $50: 1$) to afford the protected alcohol 28 as a colourless liquid ($528 \mathrm{mg}, 1.25 \mathrm{mmol}, 96 \%$). $\mathrm{R}_{f}=0.33$ (petroleum ether/ethyl acetate, 50:1); $[\alpha]^{22} \mathrm{D}=-13.3\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300.132 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.10$ (s, 3 H) 0.14 ($\mathrm{s}, 3 \mathrm{H}$) 0.16 (s, 9 H$) 0.90$ (s, 9 H) 1.01 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) 2.02(\mathrm{spt}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}) 3.39(\mathrm{dd}, J=9.3 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}) 3.50(\mathrm{dd}$, $J=9.3 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}) 3.81(\mathrm{~s}, 3 \mathrm{H}) 4.44(\mathrm{~m}, 3 \mathrm{H}) 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) 7.26(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.1,-4.5,-0.2,12.7,18.2,25.8,40.5$, 55.2, 65.2, 71.1, 72.7, 89.7, 106.1, 113.7, 129.1, 130.8, 159.0; HR-MS (ESI): found $m / z=443.2410\left(\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{Si}_{2} \mathrm{Na}\right)$, calculated $m / z=443.2408$.

tert-butyl(((3S,4S)-5-((4-methoxybenzyl)oxy)-4-methylpent-1-yn-3-

yl)oxy)dimethylsilane 29

29

Potassium carbonate ($63.3 \mathrm{mg}, 458 \mu \mathrm{~mol}, 1.1 \mathrm{eq}$.) was added to a solution of the TMSprotected alkyne $28(175 \mathrm{mg}, 416 \mu \mathrm{~mol}, 1.0 \mathrm{eq})$ in $\mathrm{MeOH}(1.5 \mathrm{~mL})$. The reaction mixture was stirred vigorously at room temperature for 1 h . The reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the volatiles were removed in vacuo. The residue was extracted with diethyl ether ($3 \times 1 \mathrm{~mL}$), the combined organic phases were washes with water (1 mL), brine (1 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. Purification by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate $\left.50: 1\right)$ provided the desired terminal alkyne 29 ($141 \mathrm{mg}, 404 \mu \mathrm{~mol}, 97 \%$). $\mathrm{R}_{f}=0.17$ (petroleum ether/ethyl acetate, $50: 1) ;[\alpha]^{22}{ }_{\mathrm{D}}=-10.7\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300.132 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.11(\mathrm{~s}$, 3 H), 0.15 ($\mathrm{s}, 3 \mathrm{H}$), 0.91 ($\mathrm{s}, 9 \mathrm{H}$), 1.03 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 2.06 ($\mathrm{spt}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.37 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=9.3 \mathrm{~Hz}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=9.3 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$,
3.82 (s, 3 H), 4.44 (s, 2 H), 6.89 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.26 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75.48 MHz, CDCl_{3}): $\delta=-5.2,-4.6,12.3,18.2,25.8,40.5,55.3,64.5,71.6,72.7,73.1,83.8$, 113.7, 129.1, 130.7, 159.1; HR-MS (ESI): found $m / z=371.2022\left(\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SNa}\right)$, calculated $m / z=371.2013$.

tert-butyl(((3S,4S,E)-1-iodo-5-((4-methoxybenzyl)oxy)-4-methylpent-1-en-3-

 yl)oxy)dimethylsilane 18

18

To $\mathrm{ZrCp}_{2} \mathrm{Cl}_{2}$ ($45.0 \mathrm{mg}, 157 \mu \mathrm{mmol}$, 1.1 eq.) in THF ($250 \mu \mathrm{~L}$) cooled to $0^{\circ} \mathrm{C}$ was added slowly a solution DIBAL-H ($156 \mu \mathrm{~L}, 1 \mathrm{M}$ in THF, $156 \mu \mathrm{~mol}$, 1.0 eq.) under argon. The resultant suspension was stirred for 30 min at $0^{\circ} \mathrm{C}$, followed by addition of alkyne 29 ($50.0 \mathrm{mg}, 143 \mu \mathrm{~mol}, 1.0$ eq.) in THF ($150 \mu \mathrm{~L}$). The mixture was warmed to room temperature and stirred until a homogenous solution resulted and then cooled to $-78^{\circ} \mathrm{C}$, followed by addition of $\mathrm{I}_{2}\left(47.2 \mathrm{mg}, 186 \mu \mathrm{~mol}, 1.30 \mathrm{eq}\right.$.) in THF ($200 \mu \mathrm{~L}$). After 1 h at $-78^{\circ} \mathrm{C}$ the reaction mixture was quenched with 1 N HCl , extracted with diethyl ether, washed successively with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, \mathrm{NaHCO}_{3}$ and brine, dried over MgSO_{4}, filtered and concentrated. Flash chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether) afforded vinyl iodide $\mathbf{1 8}$ as colourless liquid ($46.5 \mathrm{mg}, 97.6 \mu \mathrm{~mol}, 62 \%$). $\mathrm{R}_{f}=0.19$ (petroleum ether/ethyl acetate, $50: 1$); $[\alpha]^{22}{ }_{\mathrm{D}}=+1.39$ ($\mathrm{c}=1.00, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($300.132 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.02(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~m}$, 12 H), 1.92 (dquin, $J=12.8 \mathrm{~Hz}, J=6.5 \mathrm{~Hz}, J=6.5 \mathrm{~Hz}, J=6.5 \mathrm{~Hz}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.34(\mathrm{~m}$, $2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~m}, 2 \mathrm{H}), 6.14(\mathrm{dd}, J=14.4 \mathrm{~Hz}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48$ (dd, $J=14.4 \mathrm{~Hz}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.89 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.25(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75.48 MHz, CDCl_{3}): $\delta=-5.0,-4.5,12.5,18.2,25.8,39.9,55.3,71.5,72.7,76.4$, 76.5, 113.8, 129.2, 130.6, 147.1, 159.1; HR-MS (ESI): found $m / z=499.1132$ $\left(\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{IO}_{3} \mathrm{SiNa}\right)$, calculated $m / z=499.1136$.

Methyl-pent-4-enoate 30

30

A solution of Pent-4-enoic acid $24\left(10.0 \mathrm{~g}, 100 \mathrm{mmol}, 1.0\right.$ eq.) in dried $\mathrm{CH}_{3} \mathrm{OH}(170 \mathrm{~mL}$, $420 \mathrm{~mol}, 42 \mathrm{eq}$.$) was treated with concentrated \mathrm{H}_{2} \mathrm{SO}_{4}(1.00 \mathrm{~mL})$. After refluxing for 3 h , the reaction mixture was washed with water $(2 \times 140 \mathrm{~mL})$ and the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 200 \mathrm{~mL}\right.$), dried with MgSO_{4} and concentrated. The residue was purified by vigreux destillation to afford the pure ester 30 as a colourless liquid ($8.24 \mathrm{~g}, 72.2 \mathrm{mmol}$, 72%). $\mathrm{R}_{f}=0.63$ (n-hexane/ethyl acetate, $8: 1$) ; ${ }^{1} \mathrm{H}$ NMR ($300.132 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta=2.39$ (m, $4 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 5.03(\mathrm{~m}, 2 \mathrm{H}), 5.82(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=28.4$, 33.9, 51.1, 115.1, 136.2, 173.1; EI MS (70 eV, m/z (\%)): 114 ([M] ${ }^{+}, 27.5$), 55 (100).

(E)-Methyl 6-oxohex-4-enoate 31

31

Crotonaldehyde ($6.14 \mathrm{~g}, 87.6 \mathrm{mmol}, 10 \mathrm{eq}$.$) dissolved in dried \mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added to a solution of olefin $30\left(1.00 \mathrm{~g}, 8.76 \mathrm{mmol}, 1.0 \mathrm{eq}\right.$.) in deaeterated $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. Hoveyda-Grubbs catalyst second generation ($165 \mathrm{mg}, 3.0 \mathrm{~mol} \%$) was added and the reaction mixture was heated to $40^{\circ} \mathrm{C}$ under an argon atmosphere for 2 h . After stirring, the mixture was concentrated under reduced pressure and purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, n-hexane/ethyl acetate, $4: 1$) to afford aldehyde 31 as a brown liquid $(1.16 \mathrm{~g}, 8.16 \mathrm{mmol}$, 93%). $\mathrm{R}_{f}=0.24$ (n-hexane/ethyl acetate, $4: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300.132 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=2.53(\mathrm{~m}, 2$ H), $2.65(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 6.12(\mathrm{dd}, J=15.3 \mathrm{~Hz}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dt}, J=15.7 \mathrm{~Hz}$, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.49(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=27.1,31.4$, 51.4, 132.9, 155.3, 172.0, 193.3; HR-MS (EI) found $m / z=142.0654\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{3}\right)$, calculated $m / z=142.0630$.

(S, E)-Methyl 6-hydroxynona-4,8-dienoate 32

32

Allylmagnesium bromide ($5.63 \mathrm{~mL}, 1.00 \mathrm{M}$ in diethyl ether, $5.63 \mathrm{mmol}, 4.0$ eq.) was added dropwise to a well-stirred solution of (-)-(Ipc) $)_{2} \mathrm{BOMe}(1.78 \mathrm{~g}, 5.63 \mathrm{mmol}, 4.0 \mathrm{eq}$.$) in diethyl$ ether $(6 \mathrm{~mL})$ at 0 C . Following addition, stirring was continued for 1 h at room temperature and ether was removed under vacuum. The residue was carefully extracted with pentane $(2 \times 25 \mathrm{~mL})$ under argon while the reaction mixture was stirred. Next, stirring was discontinued to permit the Mg^{2+} salts to settle, and the clear supernatant pentane extract was transferred into another flask with a double-ended needle through a filter. The combined organic phases were concentrated under vacuum. The residue was solved in diethyl ether $(5 \mathrm{~mL})$ and cooled to $-98^{\circ} \mathrm{C}$. To the resulting mixture a solution of aldehyde 31 (200 mg , $1.41 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in diethyl ether (2.5 \mathrm{~mL}$) was added slowly and stirred at $-98^{\circ} \mathrm{C}$. After 3 h the reaction mixture was allowed to warm to room temperature, treated with NaOH $(550 \mu \mathrm{~L}, 3 \mathrm{~N})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(1.5 \mathrm{~mL}, 30 \%)$ and then heat to reflux for 1 h . The reaction was quenched with saturated aqueous NaHCO_{3} solution and the organic phase separated. The aqueous layer was extracted with diethyl ether ($2 \times 3.5 \mathrm{~mL}$), MTBE ($2 \times 2.5 \mathrm{~mL}$) and ethyl acetate ($2 \times 1.5 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and evaporated under vacuum. The residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}, n\right.$-hexane/ethyl acetate, $3: 1$) to afford 32 as an orange liquid ($233 \mathrm{mg}, 1.26 \mathrm{mmol}, 90 \%$). $\mathrm{R}_{f}=0.21$ (nhexane/ethyl acetate; 5:1); $[\alpha]^{22}{ }_{\mathrm{D}}=-7.40\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300.132 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=2.29(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~m}, 4 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{t}, J=1.3 \mathrm{~Hz}, 1$ H), $5.15(\mathrm{~m}, 1 \mathrm{H}), 5.54(\mathrm{~m}, 1 \mathrm{H}), 5.75(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=27.4$, 33.6, 41.9, 51.5, 71.4, 118.2, 129.5, 133.3, 134.2, 173.4; HR-MS (ESI): found $m / z=207.0994$ $\left(\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}\right)$, calculated $m / z=207.0992$.

(S,E)-Methyl 6-(tert-butyldimethylsilyloxy)nona-4,8-dienoate 33

33

2,6-Lutidine $\quad(609 \mathrm{mg}, \quad 5.69 \mathrm{mmol}, \quad 2.1 \mathrm{eq}$.$) \quad and \quad t e r t$-butyldimethylsilyl trifluromethanesulfonate ($1.15 \mathrm{~g}, 4.34 \mathrm{mmol}, 1.6 \mathrm{eq}$.) were added slowly to a solution of alcohol $32\left(500 \mathrm{mg}, 2.71 \mathrm{mmol}, 1.0 \mathrm{eq}\right.$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 1 h , the reaction was quenched by addition of aqueous saturated NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 10 \mathrm{~mL}$). The combined organic phases were dried with MgSO_{4}, concentrated under reduced pressure and purified by flash chromatography $\left(\mathrm{SiO}_{2}, n\right.$-hexane/ethyl acetate, $\left.30: 1\right)$ to afford the protected alcohol 33 as a colourless liquid ($803 \mathrm{mg}, 2.69 \mathrm{mmol}, 99 \%$). $\mathrm{R}_{f}=0.29$ (n-hexane/ethyl acetate; 30:1); $[\alpha]^{22}{ }^{\mathrm{D}}=-2.30\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300.132 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=0.01(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 2.22(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~m}, 4 \mathrm{H}), 3.67(\mathrm{~s}, 3$ H), $4.08(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~m}, 1 \mathrm{H}), 5.57(\mathrm{~m}, 1 \mathrm{H}), 5.76$ (m, 1 H); ${ }^{13} \mathrm{C}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-4.8,-4.4,18.2,25.8,27.4,33.8,43.1,51.5$, 73.0, 116.7, 128.0, 134.3, 135.1, 173.4; HR-MS (ESI): found $m / z=321.1860$ $\left(\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{SiNa}\right)$, calculated $m / z=321.1856$.

(S,4E,8E)-Methyl 6-(tert-butyldimethylsilyloxy)-10-oxodeca-4,8-dienoate 34

34

The protected Alcohol 33 ($1.00 \mathrm{~g}, 3.35 \mathrm{mmol}, 1.0$ eq.) solved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added to a well stirred solution of crotonaldehyde ($0.70 \mathrm{~g}, 10.0 \mathrm{mmol}, 3.0 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$. After Grubbs-Catalyst second generation ($142 \mathrm{mg}, 5.0 \mathrm{~mol} \%$) was added, the reaction mixture was heated to $40^{\circ} \mathrm{C}$ for 2 h , concentrated under reduced pressure and purified by flash chromatography (SiO_{2}, n-hexane/ethyl acetate, 10:1) to afford aldehyde 34 as a yellow-brown liquid ($940 \mathrm{mg}, 2.88 \mathrm{mmol}, 86 \%$). $\mathrm{R}_{f}=0.28$ (n-hexane/ethyl acetate; $10: 1$); $[\alpha]^{22}{ }^{\mathrm{D}}=+0.65$ $\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300.132 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.02(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9$
H), 2.37 (m, 4 H), 2.50 (ddd, $J=7.2 \mathrm{~Hz}, J=5.9 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 4.24(\mathrm{~m}, 1$ H), $5.47(\mathrm{~m}, 1 \mathrm{H}), 5.63(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{ddt}, J=15.7 \mathrm{~Hz}, J=7.9 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1$ H), 6.82 (dt, $J=15.7 \mathrm{~Hz}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $9.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.48 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=-5.3,-4.7,17.7,25.3,26.8,33.2,41.2,51.1,71.5,128.8,133.0,134.4,154.4$, 172.8, 193.5; HR-MS (ESI): found $m / z=349.1807\left(\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{SiNa}\right)$, calculated $m / z=349.1811$.
(S,4E, $8 E, 10 E$)-Methyl
6-(tert-butyldimethylsilyloxy)-11-iodoundeca-4,8,10-trieno-ate 19

19

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ suspension of $\mathrm{CrCl}_{2}(2.11 \mathrm{~g}, 17.2 \mathrm{mmol}, 14 \mathrm{eq}$.$) in mixed solvent$ (THF/dioxane, $1: 6,15 \mathrm{~mL}$) was added dropwise a solution of aldehyde 34 (400 mg , $1.23 \mathrm{mmol}, \quad 1.00 \mathrm{eq}$.$) and iodoform (4.25 \mathrm{~g}, 10.8 \mathrm{mmol}, 8.8 \mathrm{eq}$.) in mixed solvent (THF/dioxane, 1:6, 15 mL and 6 mL washing). The resulted brown mixture was stirred at room temperature for 4 h in the absence of light, quenched by sequential additions of aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(70 \mathrm{~mL})$, saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(35 \mathrm{~mL})$ and water $(70 \mathrm{~mL})$. The resulted mixture was extracted with diethyl ether $(3 \times 100 \mathrm{~mL})$ and the combined organic phases were washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(70 \mathrm{~mL})$ and brine (70 mL), dried over MgSO_{4} and concentrated under vacuum. Flash chromatography $\left(\mathrm{SiO}_{2}, n\right.$-hexane/ethyl acetate, $40: 1$ to 20:1) provided vinyl iodide 19 as a yellow oil ($480 \mathrm{mg}, 1.07 \mathrm{mmol}, 87 \%, E / Z=7: 1$ based on ${ }^{1} \mathrm{H}$ NMR integrations). $\mathrm{R}_{f}=0.48$ (n-hexane/ethyl acetate; 10:1); $[\alpha]^{22}{ }_{\mathrm{D}}=+3.50$ ($\mathrm{c}=1.00$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($300.132 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.00(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 2.20$ $(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~m}, 4 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{~m}, 1 \mathrm{H}), 5.62(\mathrm{~m}, 2 \mathrm{H})$, $5.97(\mathrm{dd}, J=15.2 \mathrm{~Hz}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=14.3 \mathrm{~Hz}$, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-4.4,-3.9,18.6,26.3,27.8,34.2,42.1$, 52.0, 73.2, 128.8, 132.5, 132.7, 134.6, 145.8, 173.8; HR-MS (ESI): found $m / z=473.0979$ $\left(\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{IO}_{3} \mathrm{SiNa}\right)$, calculated $m / z=473.0985$.
($S, 4 E, 8 E, 10 E, 12 E, 14 E$)-methyl-6-(tert-butyldimethylsilyloxy)-15-(4,4,5,5-tetra-methyl-1,3,2-dioxaborolan-2-yl)pentadeca-4,8,10,12,14-pentaenoate 20

20

The following process was executed in the dark. $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}(6.25 \mathrm{mg}, 24.1 \mu \mathrm{~mol}$, $5.0 \mathrm{~mol} \%)$ was added to a solution of the iodide $19(217.0 \mathrm{mg}, 482 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) and the$ stannane 2a ($325 \mathrm{mg}, 963 \mu \mathrm{~mol}, 2.0 \mathrm{eq}$.) in degassed, anhydrous DMF (1.7 mL). After stirring for 4 h the reaction mixture was diluted with diethyl ether $(10 \mathrm{~mL})$ and washed with a concentrated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The organic phase was separated and the aqueous phase was extracted with diethyl ether ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4}, filtered and concentrated under reduced pressure. Purification by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, 40:1-20:1) afforded the product $20(194 \mathrm{mg}, 385 \mu \mathrm{~mol}, 80 \%)$ as a yellow oil with little impurities of $\mathrm{Bu}_{3} \mathrm{SnI}^{2} \mathrm{R}_{f}=0.21$ (petroleum ether/ethyl acetate, 20:1); [$\alpha]^{22} \mathrm{D}=+2.00 \quad\left(\mathrm{c}=1.00, \quad \mathrm{CHCl}_{3}\right) ; \quad{ }^{1} \mathrm{H}$ NMR ($600.130 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.00(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~m}, 9 \mathrm{H}), 1.28(\mathrm{~s}, 12 \mathrm{H}), 2.27$ (m, 2 H), 2.36 (m, 4 H), $3.66(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 5.47(\mathrm{dd}, J=15.3 \mathrm{~Hz}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, 5.57 (m, 2 H), $5.72(\mathrm{dt}, J=15.1, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=15.1 \mathrm{~Hz}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.17(\mathrm{dd}, J=14.8 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J=14.7 \mathrm{~Hz}, J=10.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{~m}, 1$ H), 7.04 (dd, $J=17.7 \mathrm{~Hz}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.8,-4.4$, $13.6,17.5,24.6,24.8,25.8,26.8,27.8,33.8,42.1,51.5,73.1,83.2,128.2,130.7,132.6,132.6$, 133.8, 134.3, 135.3, 136.7, 149.7, 173.4; HR-MS (ESI): found $m / z=525.3187$ $\left(\mathrm{C}_{28} \mathrm{H}_{47} 0_{5} \mathrm{SiNa}\right)$, calculated $\mathrm{m} / z=525.3183$.
(S,4E, $8 E, 10 E, 12 E, 16 E)$-methyl

dioxaborolan-2-yl)heptadeca-4,8,10,12,16-pentaenoate 21

21

The following process was executed in the dark. $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}(1.44 \mathrm{mg}, 5.55 \mu \mathrm{~mol}$, $5.0 \mathrm{~mol} \%$) was added to a solution of the iodide $19(50.0 \mathrm{mg}, 111 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) and the$ stannane 3a (55.2 mg , $111 \mu \mathrm{~mol}$, 1.0 eq.) in degassed, anhydrous DMF ($400 \mu \mathrm{~L}$) in an amber glass septum vial. After stirring for 4 h the reaction mixture was diluted with 6 mL of diethyl ether and washed with saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(6 \mathrm{~mL})$. The organic phase was separated and the aqueous phase was extracted with diethyl ether ($3 \times 5 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate, 40:1-20:1) afforded the product $21(40.1 \mathrm{mg}, 75.6 \mu \mathrm{~mol}, 68 \%)$ as a slightly yellow liquid. $\mathrm{R}_{f}=0.21$ (petroleum ether/ethyl acetate, 20:1); $[\alpha]^{22}{ }^{\mathrm{D}}=+7.60 \quad\left(\mathrm{c}=1.00, \quad \mathrm{CHCl}_{3}\right) ; \quad{ }^{1} \mathrm{H}$ NMR ($300.132 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.00(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{~s}, 12 \mathrm{H}), 2.24(\mathrm{~m}$, 6 H), 2.36 (m, 4 H), 3.67 (s, 3 H), 4.07 (q, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.57 (m, 5 H$), 6.09$ (m, 4 H), 6.63 (dt, $J=18.0 \mathrm{~Hz}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75.57 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.8,-4.4,18.2,24.8$, $25.9,27.4,31.4,33.8,35.5,42.1,51.5,73.3,83.0,128.0,130.2,130.8,131.0,131.2,132.6$, 133.4, 153.4, 173.4; HR-MS (ESI): $\quad m / z=553.3504 \quad\left(\mathrm{C}_{30} \mathrm{H}_{51} \mathrm{~B}_{5} \mathrm{SiNa}\right)$, calculated $m / z=553.3497$.
(4E,6S,8E, 10E, 12E, 14E, 16E, 18R,19S)-Methyl-6,18-bis((tert-butyldimethylsilyl)oxy)-20-((4-methoxybenzyl)oxy)-19-methylicosa-4,8,10,12,14,16-hexaenoate 22

22

The following process was executed in the absence of light and conducted in an amber glass septum vial. The iodide $18(6.77 \mathrm{mg}, 14.2 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) and the borane 20(10.0 \mathrm{mg}$, $19.9 \mu \mathrm{~mol}, 1.4 \mathrm{eq}$.) were diluted in anhydrous DMF ($100 \mu \mathrm{~L}$). $\operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ (3.12 mg , $4.26 \mu \mathrm{~mol}, 30 \mathrm{~mol} \%)$ and $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(13.4 \mathrm{mg}, 42.6 \mu \mathrm{~mol}, 3.0$ eq.) were added to the vigorous stirring solution sequently and the reaction mixture was stirred for 4 h . For purification diethyl ether (6 mL) and water (10 mL) was added. After separation of the organic phase the aqueous phase was extracted with diethyl ether ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. After purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate, 40:1) the product $22(7.90 \mathrm{mg}, 10.9 \mu \mathrm{~mol}, 77 \%)$ was obtained as a clear, yellow liquid. $\mathrm{R}_{\mathrm{f}}=0.17$ (petroleum ether/ethyl acetate, 20:1); $[\alpha]^{22}{ }_{\mathrm{D}}=+12.03 \quad\left(\mathrm{c}=1.00, \quad \mathrm{CHCl}_{3}\right) ; \quad{ }^{1} \mathrm{H}$ NMR ($500.132 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.00(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~m}$, 21 H), 1.93 (dt, $J=12.3 \mathrm{~Hz}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.34 (m, 2 H), 2.26 (m, 2 H), 3.32 (dd, $J=8.8 \mathrm{~Hz}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=8.8 \mathrm{~Hz}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, 4.16 (m, 2 H), 4.37 (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.45$ (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.48$ (dd, $J=15.4 \mathrm{~Hz}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~m}, 1 \mathrm{H}), 5.62(\mathrm{~m}, 1 \mathrm{H}), 5.68(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{~m}, 8 \mathrm{H}), 6.88(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.26(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.9,-4.8$, $-4.4,-4.2,12.9,14.2,18.2,18.2,25.8,25.9,27.4,33.8,40.5,42.2,51.5,55.2,60.4,72.0,72.6$, $73.2,74.6,113.7,128.1,129.2,130.8,130.9,131.3,131.4,132.3,132.4,132.5,132.8,133.1$, 133.2, 134.3, 135.1, 159.0, 173.4; HR-MS (ESI): found $m / z=747.4452\left(\mathrm{C}_{42} \mathrm{H}_{68} 0_{6} \mathrm{Si}_{2} \mathrm{Na}\right)$, calculated $m / z=747.4447$.

(4E,6S,8E, 10E, 12E, $16 E, 18 E, 20 R, 21 S)$-Methyl-6,20-bis((tert-butyldimethylsilyl)oxy)-

 22-((4-methoxybenzyl)oxy)-21-methyldocosa-4,8,10,12,16,18-hexaenoate 23

23

The following process was executed in the dark and conducted in an amber glass septum vial. The iodide 18 ($6.43 \mathrm{mg}, 13.5 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.$) and the pinacol borane 21(10.0 \mathrm{mg}, 18.9 \mu \mathrm{~mol}$, 1.4 eq.) were diluted in anhydrous DMF ($50 \mu \mathrm{~L}$). $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(2.96 \mathrm{mg}, 1.60 \mu \mathrm{~mol}, 30 \mathrm{~mol} \%)$ and $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(12.7 \mathrm{mg}, 40.5 \mu \mathrm{~mol}, 3.0$ eq.) were added to the vigorous stirring solution sequently. The reaction mixture was stirred for 4 h . For purification diethyl ether (6 mL) and
water (10 mL) was added to the reaction mixture. After separation of the organic phase the aqueous phase was extracted with diethyl ether ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. After purification by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, $40: 1$) the product $23(8.40 \mathrm{mg}$, $11.2 \mu \mathrm{~mol}, 83 \%$) was obtain as a clear, slightly yellow liquid. $\mathrm{R}_{f}=0.33$ (petroleum ether/ethyl acetate, $40: 1) ;[\alpha]^{22}{ }_{\mathrm{D}}=+76.1\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600.130 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.00(\mathrm{~s}$, $3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 21 \mathrm{H}), 1.91$ (dquin, $J=12.8 \mathrm{~Hz}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.22 (m, 6 H$), 2.35(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{dd}, J=9.1 \mathrm{~Hz}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.43 (dd, $J=9.0 \mathrm{~Hz}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67 ($\mathrm{s}, 3 \mathrm{H}$), 3.81 ($\mathrm{s}, 3 \mathrm{H}$), 4.08 (m, 1 H), 4.12 (t, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~m}, 2 \mathrm{H}), 5.62(\mathrm{~m}$, $4 \mathrm{H}), 6.06(\mathrm{~m}, 6 \mathrm{H}), 6.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150.90 MHz, CDCl_{3}): $\delta=-4.9,-4.8,-4.4,-4.1,13.0,18.2,18.2,25.9,25.9,27.4,32.5,32.5$, $33.8,40.4,42.1,51.5,55.2,72.1,72.6,73.3,74.7,113.7,128.0,129.1,130.2,130.2,130.8$, $130.9,130.9,131.0,131.1,132.6,132.6,133.1,133.5,134.3,159.0,173.5 ;$ HR-MS (ESI): $m / z=775.4757\left(\mathrm{C}_{44} \mathrm{H}_{72} 0_{6} \mathrm{Si}_{2} \mathrm{Na}\right)$, calculated $\mathrm{m} / \mathrm{z}=775.4759$.

Electronic Supplementary Material (ESI) for Chemical Communications

5b \quad| solvent: CDCl_{3} |
| :--- |
| nucleus: ${ }^{1} \mathrm{H}$ |
| frequency: 300.132 MHz |

5b
solvent: CDCl_{3}
nucleus: ${ }^{13} \mathrm{C}$
frequency: 75.48 MHz

solvent: CDCl_{3}
n- $\mathrm{Bu}_{3} \mathrm{Sn}$ OH $\begin{aligned} & \text { nucleus: }{ }^{1} \mathrm{H} \\ & \text { frequency: } 500.130 \mathrm{MHz}\end{aligned}$
9a

Electronic Supplementary Material (ESI) for Chemical Communications
$\mathrm{n}-\mathrm{Bu}_{3} \mathrm{Sn} \gg \mathrm{OH}$
solvent: CDCl
nucleus: ${ }^{13} \mathrm{C}$
9a

solvent: CDCl_{3}

nucleus: ${ }^{1} \mathrm{H}$
frequency: 300.132 MHz

nucleus: ${ }^{13} \mathrm{C}$
frequency: 75.48 MHz
9c

Electronic Supplementary Material (ESI) for Chemical Communications

$\mathrm{n}-\mathrm{Bu}_{3} \mathrm{Sn}$	solvent: CDCl_{3} nucleus: ${ }^{13} \mathrm{C}$ frequency: 75.48 MHz
$\mathbf{6 a}$	$\left.\begin{array}{l}\text { (}\end{array}\right]$

6b
solvent: CDCl_{3}
nucleus: ${ }^{1} \mathrm{H}$
frequency: 300.132 MHz

6b

10a | solvent: CDCl_{3} |
| :--- |
| nucleus: ${ }^{1} \mathrm{H}$ |
| frequency: 300.132 MHz |

Electronic Supplementary Material (ESI) for Chemical Communications

10a
solvent: CDCl_{3}
nucleus: ${ }^{13} \mathrm{C}$
frequency: 75.48 MHz

n- $-\mathrm{Bu}_{3} \mathrm{Sn}$ solvent: CDCl_{3}

nucleus: ${ }^{1} \mathrm{H}$
frequency: 300.132 MHz

n- $\mathrm{Bu}_{3} \mathrm{Sn}$ solvent: CDCl_{3}
nucleus:
frequency: 75.48 MHz

 Chemical Shift (ppm)

2a

solvent: CDCl_{3}
nucleus: ${ }^{1} \mathrm{H}$
frequency: 300.132 MHz

2a

solvent: CDCl_{3}
nucleus: ${ }^{13} \mathrm{C}$
frequency: 75.48 MHz

${ }^{88}{ }_{\text {Chemical Shift (ppm) }}{ }^{80}$

solvent: CDCl_{3}
nucleus: ${ }^{1} \mathrm{H}$
frequency: 300.132 MHz
2b

3a
solvent: CDCl_{3}
nucleus: ${ }^{1} \mathrm{H}$
frequency: 300.132 MHz

3a
solvent: CDCl_{3}
nucleus: ${ }^{13} \mathrm{C}$
frequency: 75.48 MHz

solvent: CDCl_{3} nucleus: ${ }^{1} \mathrm{H}$ frequency: 300.132 MHz

3b

Electronic Supplementary Material (ESI) for Chemical Communications

3b
solvent: CDCl_{3}
nucleus: ${ }^{13} \mathrm{C}$
frequency: 75.48 MHz

3c
solvent: CDCl_{3}
nucleus: ${ }^{1} \mathrm{H}$
frequency: 300.132 MHz

3c
solvent: CDCl_{3}
nucleus: ${ }^{13} \mathrm{C}$ frequency: 75.48 MHz

solvent: CDCl_{3}
nucleus: ${ }^{13} \mathrm{C}$
frequency: 75.48 MHz
12a

12b

solvent: CDCl_{3}
nucleus: ${ }^{13} \mathrm{C}$
frequency: 150.90 MHz
14b

14c
solvent: CDCl_{3}
nucleus: ${ }^{1} \mathrm{H}$
frequency: 300.132 MHz

solvent: CDCl_{3}
nucleus: ${ }^{1} \mathrm{H}$
frequency: 300.132 MHz
13a

13b
solvent: CDCl_{3}
nucleus: ${ }^{1} \mathrm{H}$
frequency: 600.130 MHz

13b
solvent: CDCl_{3}
nucleus: ${ }^{13} \mathrm{C}$
frequency: 150.90 MHz

solvent: CDCl_{3}

15b

(2) | solvent: CDCl_{3} |
| :--- |
| nucleus: ${ }^{13} \mathrm{C}$ |
| frequency: 100.56 MHz |

Electronic Supplementary Material (ESI) for Chemical Communications

25
solvent: CDCl_{3}
nucleus: ${ }^{13} \mathrm{C}$
frequency: 125.76 MHz

solvent: CDCl_{3}
nucleus: ${ }^{1} \mathrm{H}$
frequency: 300.132 MHz

26

$\int m$
(1.96

26
solvent: CDCl_{3}
nucleus: ${ }^{13} \mathrm{C}$
frequency: 75.48 MHz

solvent: CDCl_{3}
nucleus: ${ }^{1} \mathrm{H}$
frequency: 300.132 MHz

27

solvent: CDCl_{3} nucleus: ${ }^{13} \mathrm{C}$ frequency: 75.48 MHz

27

solvent: CDCl_{3}
nucleus: ${ }^{1} \mathrm{H}$

18
solvent: CDCl_{3}
nucleus: ${ }^{13} \mathrm{C}$
frequency: 75.48 MHz

30
solvent: CDCl_{3}
nucleus: ${ }^{13} \mathrm{C}$
frequency: 75.48 MHz

solvent: CDCl_{3}
nucleus: ${ }^{13} \mathrm{C}$

Electronic Supplementary Material (ESI) for Chemical Communications

32
solvent: CDCl_{3}
nucleus: ${ }^{13} \mathrm{C}$
frequency: 75.48 MHz

33
solvent: CDCl_{3}
nucleus: ${ }^{13} \mathrm{C}$
frequency: 75.48 MHz

solvent: CDCl_{3}
nucleus: ${ }^{13} \mathrm{C}$
frequency: 75.48 MHz
34

(

solvent: CDCl_{3}
nucleus: ${ }^{1} \mathrm{H}$
frequency: 600.130 MHz

solvent: CDCl_{3}
nucleus: ${ }^{13} \mathrm{C}$
frequency: 75.48 MHz

