# Electronic supporting information for 

"'One-Pot' Hammett Plots: A General Method for the Rapid Acquisition of Relative Rate Data"Hon Man Yau, ${ }^{a}$ Anna K. Croft ${ }^{\text {b }}$ and Jason B. Harper ${ }^{a}$,*${ }^{a}$ School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia.${ }^{b}$ School of Chemistry, University of Wales Bangor, Bangor, Gwynedd, LL57 2UW, United Kingdom.
Table of Contents
General synthetic procedures ..... S2
General procedure for kinetic analysis ..... S4
Competition experiments for the Menschutkin reaction between benzyl bromides and pyridine ..... S5
NMR Spectra for the competition experiments between benzyl bromide 1a-g and pyridine ..... S9
Binary competition experiments for the sodium borohydride reduction of acetophenones ..... S15
Competition experiments for the sodium borohydride reduction of acetophenones - ${ }^{1} \mathrm{H}$ NMR spectroscopy case ..... S17
Competition experiments for the sodium borohydride reduction of acetophenones - ${ }^{13} \mathrm{C}$ NMR spectroscopy case ..... S20
NMR Spectra for the competitive sodium borohydride reduction of acetophenones 3a-d ..... S23
Competition experiments for the sodium borohydride reduction of acetophenones - reverse-phase HPLC case ..... S39
References ..... S47
Appendix S1. Derivation of the equation used for calculating relative rate information ..... S48
Appendix S2. Details for the calculations of relative rate information using data obtainedfrom NMR spectroscopyS49
Appendix S3. Details for the calculation of relative rate information using data obtained from reverse-phase HPLC ..... S51

## General synthetic procedures

Reagents for syntheses of the ionic liquid precursor, 1-butyl-3-methylimidazolium chloride, were purchased from Sigma-Aldrich and distilled immediately before use. Lithium bis(trifluoromethylsulfonyl)imide used in metathesis reactions to give the desired ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, was purchased from IoLiTec Ionic Liquids Technologies GmbH.

All other reagents used in synthesis were commercially available, purchased from either Sigma Aldrich or Alfa Aesar and used without further purifications. Literature methods were used to synthesise kinetic precursors using starting materials sourced from the mentioned manufacturers.

Organic solvents used in syntheses were either used as received from Ajax Finechem or collected from a Pure Solv MD Solvent Purification System. All organic solvents used in kinetics experiments were either collected from the aforementioned solvent purification system or purified using methods available in the literature. ${ }^{1}$ Milli-Q ${ }^{\text {TM }}$ water, where mentioned, was collected from a Millipore Milli-Q ${ }^{\text {TM }}$ Academic System with a resistivity of $18.2 \Omega \cdot \mathrm{~cm}$.

Unless stated otherwise in the text, reduced pressure used in all operations was ca. 210 Torr.

Where dry NMR tubes or volumetric equipment were required, drying was achieved by cycling between reduced pressure ( $<0.5 \mathrm{Torr}$ ) and dry nitrogen three times before the glassware was left under reduced pressure for at least two hours before use. It should be noted that neither the NMR tubes nor the volumetric equipment were subjected to heating.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR characterisation was performed on a Bruker DPX 300 MHz spectrometer $\left({ }^{1} \mathrm{H}\right.$, $300 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 75.5 \mathrm{MHz}$ ) equipped with an auto-sampler, a Bruker Avance III 400 MHz spectrometer ( ${ }^{1} \mathrm{H}, 400 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 101 \mathrm{MHz}$ ) or a Bruker Avance III 500 MHz spectrometer ( ${ }^{1} \mathrm{H}, 500$ $\mathrm{MHz} ;{ }^{13} \mathrm{C}, 126 \mathrm{MHz}$ ). All chemical shifts are reported relative to tetramethylsilane. Multiplicities are reported as either singlet (s), doublet (d), triplet (t) or multiplet (m).

1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide was synthesised from the corresponding chloride ${ }^{2}$ according to a modified literature procedure, ${ }^{3}$ in which Milli-Q water was used as the medium for salt metathesis instead of dichloromethane. ${ }^{4}$ The methoxy benzyl bromide 1a was prepared from the corresponding alchol, while the bromo derivative $\mathbf{1 e}$ was pre-
pared in a fashion similar to that reported in the literature, ${ }^{5}$ where bromination was carried out in acetonitrile by irradiation under sunlight for two days. The carboxymethyl derivative $\mathbf{1 f}$ was prepared from toluic acid via methyl toluate through modification of literature procedures, ${ }^{6,7}$ with bromination carried out as described for $\mathbf{1 e}$. The remaining benzyl bromides $\mathbf{1 b}-\mathbf{d}, \mathbf{g}$ were commercially available as were the acetophenones 3a-d. Samples of the alcohols 4a-d were prepared through reduction of the corresponding acetophenones 3a-d using sodium borohydride (Scheme 2). tris(2,4-Pentanedionato)chromium(III) was prepared using a literature method. ${ }^{8}$ All compounds prepared had physical and spectral characteristics consistent with those previously reported.

## General procedure for kinetic analysis

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR competition experiments were carried out on a Bruker Avance III 500 spectrometer and a Bruker Avance III 600 MHz spectrometer, respectively. Inversion recover experiments were carried out to determine the longitudinal relaxation times $\left(T_{1}\right)$ for the signals of interest and all analyses of competition experiments used delays such that signal recovery was greater than $99 \%$ as determined by inversion recovery experiments.

High-performance liquid chromatography was performed on a Shimadzu Prominence HPLC system using a Restek Pinnacle DB C ${ }_{18}$ column ( $150 \mathrm{~mm} \times 4.6 \mathrm{~mm}$ ). All experiments were carried out using an isocratic mobile phase (2:5 acetonitrile:water) at a total flow rate of $0.7 \mathrm{~mL} \cdot \mathrm{~s}^{-1}$ with an injection volume of $20 \mu \mathrm{~L}$.

Water baths used in the competition experiments were calibrated to $\pm 0.1 \mathrm{~K}$ using a thermocouple fixed in a 5 mm NMR tube containing ethanol.

## Competition experiments for the Menschutkin reaction between benzyl bromides and pyridine

Signal resolution in ${ }^{1} \mathrm{H}$ NMR spectroscopy of the signals due to the benzylic protons on either the starting materials 1a-g or the products 2a-g was initially tested by stepwise addition of each of the benzyl bromides 1a-g to acetonitrile- $d_{3}$ to determine the feasibility of using ${ }^{1} \mathrm{H}$ NMR spectroscopy ( 500 MHz ) in these experiments. Similarly, signal resolution was determined for the products 2a-g in the presence of excess pyridine. Considerable signal overlap between benzyl bromides 1a and 1d and between benzyl bromides 1c and 1e was observed. Substantial signal overlap was also observed between products $\mathbf{2 b}$ and $2 \mathbf{2}$ as well as between products $\mathbf{2 d}$ and $\mathbf{2 e}$. No substantial signal overlap was observed between all other signals such that confident data deconvolution could be carried out.

Benzyl bromides 1b and 1d-g (ca. $140 \mu \mathrm{~mol}$ ) were initially added to a 10 mL volumetric flask followed by the addition of either the ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide or acetonitrile. A portion of the solution ( 1 mL ) containing the benzyl bromides 1b and 1d-g was set aside. Similarly, benzyl bromide 1c (ca. $130 \mu \mathrm{~mol}$ ) was then added to the solution containing benzyl bromides $\mathbf{1 b}$ and $\mathbf{1 d - g}$ and a portion of that solution ( 1 mL ) was set aside. Finally, benzyl bromide 1a (ca. $110 \mu \mathrm{~mol}$ ) was added to the mixtures containing benzyl bromides $\mathbf{1 b} \mathbf{- g}$ and, once again, a portion of the solution ( 1 mL ) was set aside. To a portion of each of the standard solutions $(250 \mu \mathrm{~L})$, acetonitrile- $d_{3}(250 \mu \mathrm{~L})$ was added for the determination of the relative ratios of the starting materials using ${ }^{1} \mathrm{H}$ NMR spectroscopy.

The solutions for initiating the competition experiments were prepared by mixing pyridine (ca. $190 \mu \mathrm{~mol})$ with either acetonitrile or the ionic liquid. Each competition experiment was carried out inside a 5 mL NMR tube by mixing an equal volume ( $250 \mu \mathrm{~L}$ ) of the solution containing all seven benzyl bromides 1a-g and the solution of pyridine ( $250 \mu \mathrm{~L}$ ), in either acetonitrile or [bmim] $\left[\mathrm{NCF}_{3} \mathrm{SO}_{2}\right]$, prepared as described above and incubated in a water bath calibrated to 300.7 K for 12 hours. ${ }^{1} \mathrm{H}$ NMR spectroscopy was used to determine the distribution of starting materials 1 and products 2 in the reaction mixtures. Integrations for signals where substantial overlapping with other signals exists were calculated from algebraic expressions detailed in Appendix S2 and relative rate constants were calculated as described in the main text and in Appendix S1.

Table S1. Relative ${ }^{1} \mathrm{H}$ NMR integrals determined for the competitive Menschutkin reactions between the benzyl bromides 1a-g and pyridine carried out in acetonitrile at 300.7 K . Values that are italicised indicate that they were evaluated using algebraic expressions detailed in Appendix S1.

| Species | Relative integration <br> Iteration 1 |  |  |
| :---: | :---: | :---: | :---: |
| Iteration 2 | Iteration 3 |  |  |
| Benzyl bromide 1a | 48.9 | 47.7 | 54.1 |
| Benzyl bromide 1b | 110.2 | 100.5 | 107.9 |
| Benzyl bromide 1c | 128.3 | 129.8 | 130.9 |
| Benzyl bromide 1d | 135.4 | 130.6 | 128.9 |
| Benzyl bromide 1e | 154.7 | 147.0 | 148.7 |
| Benzyl bromide 1f | 159.2 | 153.5 | 156.7 |
| Benzyl bromide 1g | 166.6 | 162.3 | 165.0 |
|  |  |  |  |
| Pyridinium bromide 2a | 152.6 | 158.6 | 150.8 |
| Pyridinium bromide 2b | 88.7 | 101.7 | 92.5 |
| Pyridinium bromide 2c | 72.9 | 66.5 | 68.3 |
| Pyridinium bromide 2d | 59.6 | 65.3 | 66.5 |
| Pyridinium bromide 2e | 44.9 | 52.9 | 49.7 |
| Pyridinium bromide 2f | 42.7 | 45.6 | 43.7 |
| Pyridinium bromide 2g | 35.3 | 38.0 | 36.3 |

Table S2. Relative rate constants determine from the relative integrations shown in Table S1 for the competitive Menschutkin reactions between the benzyl bromides 1a-g and pyridine carried out in acetonitrile at 300.7 K .

| Substituent | Iteration 1 | $\boldsymbol{k} / \mathbf{k}_{\mathbf{H}}$ <br> Iteration 2 | Iteration 3 |
| :---: | :---: | :---: | :---: |
| $p-\mathrm{OCH}_{3}(\mathbf{1 a})$ | 3.88 | 3.61 | 3.20 |
| $p-\mathrm{CH}_{3}(\mathbf{1 b})$ | 1.62 | 1.72 | 1.49 |
| $m-\mathrm{CH}_{3}(\mathbf{1 c})$ | 1.23 | 1.02 | 1.01 |
| $\mathrm{H} \mathrm{(1d)}$ | 1.00 | 1.00 | 1.00 |
| $p-\mathrm{Br}(\mathbf{1 e})$ | 0.70 | 0.76 | 0.69 |
| $p-\mathrm{CO}_{2} \mathrm{CH}_{3}(\mathbf{1 f})$ | 0.65 | 0.64 | 0.59 |
| $p-\mathrm{NO}_{2}(\mathbf{1 g})$ | 0.53 | 0.52 | 0.48 |

Table S3. Relative ${ }^{1} \mathrm{H}$ NMR integrals determined for the competitive Menschutkin reactions between the benzyl bromides 1a-g and pyridine carried out in [bmim] $\mathrm{NCF}_{3} \mathrm{SO}_{2}$ ] at 300.7 K . Values that are italicised indicate that they were evaluated using algebraic expressions detailed in Appendix S1.

| Species | Relative integration <br> Iteration 2 |  |  |
| :---: | :---: | :---: | :---: |
| Iteration 1 3 |  |  |  |
| Benzyl bromide 1a | 14.3 | 20.7 | 22.5 |
| Benzyl bromide 1b | 84.7 | 83.7 | 83.7 |
| Benzyl bromide 1c | 140.7 | 135.4 | 142.4 |
| Benzyl bromide 1d | 138.3 | 133.0 | 130.4 |
| Benzyl bromide 1e | 155.0 | 166.2 | 153.8 |
| Benzyl bromide 1f | 155.0 | 156.3 | 156.6 |
| Benzyl bromide 1g | 169.0 | 170.8 | 170.0 |
|  |  |  |  |
| Pyridinium bromide 2a | 175.9 | 173.8 | 171.2 |
| Pyridinium bromide 2b | 105.0 | 101.6 | 106.8 |
| Pyridinium bromide 2c | 75.4 | 77.6 | 74.2 |
| Pyridinium bromide 2d | 51.4 | 57.0 | 59.1 |
| Pyridinium bromide 2e | 52.2 | 40.8 | 52.1 |
| Pyridinium bromide 2f | 44.1 | 42.9 | 44.6 |
| Pyridinium bromide 2g | 30.1 | 27.7 | 30.0 |

Table S4. Relative rate constants determine from the relative integrations shown in Table S3 for the competitive Menschutkin reactions between the benzyl bromides 1a-g and pyridine carried out in [bmim] $\left[\mathrm{NCF}_{3} \mathrm{SO}_{2}\right]$ at 300.7 K .


Figure S1. Hammett plots for the reaction between pyridine and benzyl bromides 1a-g carried out in acetonitrile at 300.7 K constructed from the data described in this work (blue) and previously published results obtained from individual kinetic experiments (green). ${ }^{9}$

NMR Spectra for the competition experiments between benzyl bromide $\mathbf{1 a - g}$ and pyridine


Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of the competition experiment corresponding to iteration 1 of the reaction between benzyl bromide 1a-g and pyridine in acetonitrile at 300.7 K .


Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of the competition experiment corresponding to iteration 2 of the reaction between benzyl bromide 1a-g and pyridine in acetonitrile at 300.7 K .


Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of the competition experiment corresponding to iteration 3 of the reaction between benzyl bromide 1a-g and pyridine in acetonitrile at 300.7 K .


Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of the competition experiment corresponding to iteration 1 of the reaction between benzyl bromide 1a-g and pyridine in [bmim] $\left[\mathrm{NCF}_{3} \mathrm{SO}_{2}\right.$ ] at 300.7 K .


Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum of the competition experiment corresponding to iteration 2 of the reaction between benzyl bromide 1a-g and pyridine in [bmim] $\left[\mathrm{NCF}_{3} \mathrm{SO}_{2}\right.$ ] at 300.7 K .


Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of the competition experiment corresponding to iteration 3 of the reaction between benzyl bromide 1a-g and pyridine in [bmim] $\left[\mathrm{NCF}_{3} \mathrm{SO}_{2}\right.$ ] at 300.7 K .

## Binary competition experiments for the sodium borohydride reduction of acetophenones

For each of the binary competition experiments, a pair of acetophenones (either $\mathbf{3 a}$ and $\mathbf{3 b}$, $\mathbf{3 b}$ and 3c or 3c and 3d; ca. $110 \mu \mathrm{~mol}$ each) was dissolved in ethanol ( 1 mL ) followed by the addition of finely crushed sodium borohydride ( $c a .31 \mu \mathrm{~mol}$ ). The reaction mixture was subjected to sonication at 295 K until complete dissolution of sodium borohydride and a portion of the solution $(250 \mu \mathrm{~L})$ was added to a 5 mm NMR tube containing hydrochloric acid ( $32 \%$, ca. $5 \mathrm{mg}, 45$ $\mu \mathrm{mol})$ and followed by the addition of chloroform- $d$.
${ }^{1} \mathrm{H}$ NMR spectroscopy was used to analyse each of the competition experiments and the signals due to the methyl protons of the starting materials or the protons at the 2-ethyl position of the products were used to calculate the extent of reaction for each of the pair of acetophenones as described above. Due to partial signal overlap of the doublets of the product pair $\mathbf{3 b}$ and $\mathbf{3 c}$ as well as the pair 3c and 3d, only the non-overlapping half of those doublets were used for analysis and scaled accordingly.

Table S5. Relative ${ }^{1} \mathrm{H}$ NMR integrals determined for the binary competition experiments between the acetophenones $\mathbf{3 a}$ and $\mathbf{3 b}$ in ethanol at 295 K .

| Species | Iteration 1 | Relative integration <br> Iteration 2 | Iteration 3 |
| :---: | :---: | :---: | :---: |
| Acetophenone 3a | 414.6 | 391.1 | 363.6 |
| Acetophenone 3b | 267.8 | 238.2 | 241.0 |
| Alcohol 4a | 119.8 |  |  |
| Alcohol 4b | 197.8 | 140.9 | 146.6 |

Table S6. Relative ${ }^{1} \mathrm{H}$ NMR integrals determined for the binary competition experiments between the acetophenones $\mathbf{3 b}$ and $\mathbf{3 c}$ in ethanol at 295 K .

| Species | Iteration 1 | Relative integration <br> Iteration 2 | Iteration 3 |
| :---: | :---: | :---: | :---: |
| Acetophenone 3b | 337.6 | 336.5 | 384.0 |
| Acetophenone 3c | 194.8 | 176.9 | 226.2 |
|  |  |  |  |
| Alcohol 4b | 144.7 | 157.6 | 122.7 |
| Alcohol 4c | 322.9 | 329.0 | 267.1 |

Table S7. Relative ${ }^{1} \mathrm{H}$ NMR integrals determined for the binary competition experiments between the acetophenones 3c and 3d in ethanol at 295 K .

| Species | Iteration 1 | Relative integration <br> Iteration 2 | Iteration 3 |
| :---: | :---: | :---: | :---: |
| Acetophenone 3c | 378.0 | 352.8 | 382.5 |
| Acetophenone 3d | 138.2 | 166.9 | 157.3 |
|  |  |  |  |
| Alcohol 4c | 137.9 | 126.3 | 143.6 |
| Alcohol 4d | 345.8 | 353.9 | 316.6 |

Table S8. Relative rate constants determined for the binary competitive sodium borohydride reduction of the acetophenones 3a-d in ethanol.

|  | Iteration 1 | Iteration 2 | Iteration 3 |
| :---: | :---: | :---: | :---: |
| $k_{\mathbf{3 b}} / k_{\mathbf{3 a}}$ | 2.17 | 2.19 | 2.09 |
| $k_{\mathbf{3 c}} / k_{\mathbf{3 b}}$ | 2.74 | 2.73 | 2.81 |
| $k_{\mathbf{3 d}} / k_{\mathbf{3 c}}$ | 4.03 | 3.72 | 3.46 |

Competition experiments for the sodium borohydride reduction of acetophenones - ${ }^{1} \mathrm{H}$ NMR spectroscopy case

Signal resolution of the common signal due to the protons on the methyl group of either the starting materials 3a-d and products 4a-d were determined by the stepwise addition of the starting materials 64 to a solution containing equal amounts of ethanol and chloroform-d. Partial overlap was observed between the signal due to acetophenones 3d and 3c but integration could be carried out confidently with the aid of deconvolution.

For each of the competition experiments, a solution of absolute ethanol ( 2.5 mL ) containing the acetophenones 3a-d (ca. $270 \mu \mathrm{~mol}$ each) was prepared and a portion of the solution ( $250 \mu \mathrm{~L}$ ) was placed in a 5 mm NMR tube containing chloroform-d $(250 \mu \mathrm{~L})$ for determining the ratios of the starting materials. Finely crushed sodium borohydride (ca. $80 \mu \mathrm{~mol}$ ) was added to the remaining reaction mixture, which was subjected to sonication at 295 K to facilitate the dissociation of sodium borohydride. After 1 hour, a portion of the solution $(250 \mu \mathrm{~L})$ was added to a 5 mm NMR tube containing excess hydrochloric acid ( $32 \% \mathrm{w} / \mathrm{w}, c a .5 \mathrm{mg}, 45 \mu \mathrm{~mol}$ ) followed by the addition of chloroform- $d(250 \mu \mathrm{~L})$.

Relative amounts of starting materials 3a-d and products 4a-d were determined using ${ }^{1} \mathrm{H}$ NMR spectroscopy analysing the signals due to the protons of the common methyl functionality. Relative rate constants were calculated using the known ratios between the starting materials 3a-d and the final distribution of starting materials 3a-d normalised against the combined integral of with products 4a-d.

Table S9. Relative ${ }^{1} \mathrm{H}$ NMR integrals based on the relative amounts of the starting materials 3a$\mathbf{d}$ before the addition of sodium borohydride.

|  | Relative integration |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Species | Iteration 1 | Iteration 2 | Iteration 3 | Iteration 4 |
| Acetophenone 3a | 254.0 | 254.7 | 265.1 | 258.3 |
| Acetophenone 3b | 236.0 | 236.5 | 232.7 | 261.0 |
| Acetophenone 3c | 245.9 | 245.7 | 247.4 | 238.3 |
| Acetophenone 3d | 264.1 | 263.1 | 254.7 | 242.4 |

Table S10. Relative ${ }^{1} \mathrm{H}$ NMR integrals determined for the competitive sodium borohydride reduction of the acetophenones 3a-d in ethanol at 295 K .

|  | Relative integration |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Species | Iteration 1 | Iteration 2 | Iteration 3 | Iteration 4 |
| Acetophenone 3a | 244.3 | 245.2 | 252.9 | 234.5 |
| Acetophenone 3b | 214.8 | 214.7 | 218.2 | 189.7 |
| Acetophenone 3c | 192.6 | 195.2 | 204.1 | 143.2 |
| Acetophenone 3d | 113.7 | 119.6 | 122.4 | 35.0 |
| Sum of alcohol 4a-d | 234.7 | 225.4 | 202.3 | 397.5 |

Table S11. Relative rate constants determined using ${ }^{1} \mathrm{H}$ NMR spectroscopy for the competitive sodium borohydride reduction of the acetophenones 3a-d in ethanol at 295 K .

|  | $\boldsymbol{k} / \mathbf{k}_{\mathbf{H}}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Substituent | Iteration 1 | Iteration 2 | Iteration 3 | Iteration 4 |
| $p-\mathrm{OCH} 3$ (3a) | 0.16 | 0.17 | 0.24 | 0.19 |
| $p-\mathrm{CH}_{3}$ (3b) | 0.39 | 0.42 | 0.34 | 0.63 |
| $\mathrm{H}(\mathbf{3 c})$ | 1 | 1 | 1 | 1 |
| $p-\mathrm{Br}(\mathbf{3 d})$ | 3.45 | 3.43 | 3.81 | 3.80 |



Figure S8. Hammett plots for the competitive sodium borohydride reduction of binary combinations of acetophenones 3a-d (blue) or all acetophenone 3a-d simultaneously (green), carried out in ethanol at 295 K and analysed using ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Competition experiments for the sodium borohydride reduction of acetophenones $-{ }^{13} \mathrm{C}$ NMR spectroscopy case

Individual ${ }^{13} \mathrm{C}$ NMR experiments was carried out for each of the starting materials 3a-d and products 4a-d in solution containing an equal volume of ethanol and chloroform- $d$ and the relaxation reagent, tris(2,4-pentanedionate) chromium (ca. 14 mg ), to aid the identification of signals in subsequent experiments

For each of the competition experiments, a solution of absolute ethanol ( 2.5 mL ) containing the acetophenones 3a-d (ca. $400 \mu \mathrm{~mol}$ each) was prepared and a portion of the solution ( $250 \mu \mathrm{~L}$ ) was placed in a 5 mm NMR tube containing chloroform-d $(250 \mu \mathrm{~L})$ for determining the ratios of the starting materials. Finely crushed sodium borohydride (ca. $130 \mu \mathrm{~mol}$ ) was added to the remaining reaction mixture, which was subjected to sonication at 295 K to facilitate the dissociation of sodium borohydride. After 1 hour, a portion of the solution $(250 \mu \mathrm{~L})$ was added to a 5 mm NMR tube containing excess hydrochloric acid ( $32 \% \mathrm{w} / \mathrm{w}, \mathrm{ca} .8 \mathrm{mg}, 72 \mu \mathrm{~mol}$ ) followed by the addition of chloroform- $d(250 \mu \mathrm{~L})$ and the chromium relaxation reagent (ca. $14 \mathrm{mg}, 40$ $\mu \mathrm{mol}$ ).

Distribution of signals due to starting materials 3a-d and products 4a-d, from which relative rate constants were evaluated, were analysed using the well-resolved ${ }^{13} \mathrm{C}$ NMR signals of either one of the two quaternary carbons in the starting materials.

Table S12. Relative ${ }^{13} \mathrm{C}$ NMR integrals determined for the competitive sodium borohydride reduction of the acetophenones 3a-d in ethanol at 295 K .

| Species | Iteration 1 | Relative integration <br> Iteration 2 | Iteration 3 |
| :---: | :---: | :---: | :---: |
| Acetophenone 3a | 220.8 | 233.6 | 234.5 |
| Acetophenone 3b | 196.5 | 193.3 | 184.9 |
| Acetophenone 3c | 148.0 | 139.7 | 132.0 |
| Acetophenone 3d | 45.9 | 34.3 | 23.1 |
|  |  |  |  |
| Alcohol 4a | 14.5 | 27.6 | 30.6 |
| Alcohol 4b | 54.1 | 55.2 | 54.8 |
| Alcohol 4c | 103.8 | 106.8 | 120.7 |
| Alcohol 4d | 206.3 | 209.5 | 219.2 |

Table S13. Relative rate constants determined by means of ${ }^{13} \mathrm{C}$ NMR spectroscopy for the competitive sodium borohydride reduction of the acetophenones 3a-d in ethanol at 295 K .

|  | $\boldsymbol{k} / \boldsymbol{k}_{\mathbf{H}}$ |  |  |
| :---: | :---: | :---: | :---: |
| Substituent | Iteration 1 | Iteration 2 | Iteration 3 |
| $p-\mathrm{OCH}_{3}$ (3a) | 0.12 | 0.20 | 0.19 |
| $p-\mathrm{CH}_{3}$ (3b) | 1 | 1 | 1 |
| H (3c) | 0.46 | 0.44 | 0.40 |
| $p-\mathrm{Br}(\mathbf{3 d})$ | 3.20 | 3.45 | 3.62 |



Figure S9. Hammett plots for the competitive sodium borohydride reduction of all acetophenone 3a-d simultaneously, carried out in ethanol at 295 K , analysed using either ${ }^{1} \mathrm{H}$ NMR spectroscopy (green) or ${ }^{13} \mathrm{C}$ NMR spectroscopy (blue).

NMR Spectra for the competitive sodium borohydride reduction of acetophenones 3a-d


Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum of the binary competition experiment corresponding to iteration 1 of the sodium borohydride reduction of acetophenones $\mathbf{3 a}$ and $\mathbf{3 b}$.


Figure S11. ${ }^{1}$ H NMR spectrum of the binary competition experiment corresponding to iteration 2 of the sodium borohydride reduction of acetophenones $\mathbf{3 a}$ and $\mathbf{3 b}$.


Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum of the binary competition experiment corresponding to iteration 3 of the sodium borohydride reduction of acetophenones $\mathbf{3 a}$ and $\mathbf{3 b}$.


Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of the binary competition experiment corresponding to iteration 1 of the sodium borohydride reduction of acetophenones $\mathbf{3 b}$ and $\mathbf{3 c}$.


Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of the binary competition experiment corresponding to iteration 2 of the sodium borohydride reduction of acetophenones $\mathbf{3 b}$ and $\mathbf{3 c}$.


Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum of the binary competition experiment corresponding to iteration 3 of the sodium borohydride reduction of acetophenones $\mathbf{3 b}$ and $\mathbf{3 c}$.


Figure S16. ${ }^{1}$ H NMR spectrum of the binary competition experiment corresponding to iteration 1 of the sodium borohydride reduction of acetophenones $\mathbf{3 c}$ and $3 \mathbf{d}$.


Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of the binary competition experiment corresponding to iteration 2 of the sodium borohydride reduction of acetophenones $3 \mathbf{c}$ and $3 \mathbf{d}$.


Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of the binary competition experiment corresponding to iteration 3 of the sodium borohydride reduction of acetophenones $\mathbf{3 c}$ and $3 \mathbf{d}$.


Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of the experiment corresponding to iteration 1 of the competitive sodium borohydride reduction of acetophenones 3a-d.


Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum of the experiment corresponding to iteration 2 of the competitive sodium borohydride reduction of acetophenones 3a-d.


Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum of the experiment corresponding to iteration 3 of the competitive sodium borohydride reduction of acetophenones 3a-d.


Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum of the experiment corresponding to iteration 4 of the competitive sodium borohydride reduction of acetophenones 3a-d.


Figure S23. ${ }^{13} \mathrm{C}$ NMR spectrum of the experiment corresponding to iteration 1 of the competitive sodium borohydride reduction of acetophenones 3a-d.


Figure S24. ${ }^{13} \mathrm{C}$ NMR spectrum of the experiment corresponding to iteration 2 of the competitive sodium borohydride reduction of acetophenones 3a-d.


Figure S25. ${ }^{13} \mathrm{C}$ NMR spectrum of the experiment corresponding to iteration 3 of the competitive sodium borohydride reduction of acetophenones 3a-d.

Competition experiments for the sodium borohydride reduction of acetophenones - reversephase HPLC case

For each competition experiment, the reaction mixture was prepared by firstly dissolving the acetophenones 3a-d (ca. $300 \mu \mathrm{~mol}$ each) in absolutely ethanol ( 2.0 mL ) followed by the addition of sodium borohydride ( $c a .110 \mu \mathrm{~mol}$ ), which was then subjected to sonication at 295 K to facilitate the dissociation of sodium borohydride. After 1 hour, hydrochloric acid (32\% w/w, ca. 60 $\mathrm{mg}, 526 \mu \mathrm{~mol}$ ) was added, followed by the addition of a solution of sodium bicarbonate (ca. 18 $\mathrm{mg}, 214 \mu \mathrm{~mol})$ in Milli-Q ${ }^{\mathrm{TM}}$ water $(200 \mu \mathrm{~L})$ to neutralise excess hydrochloric acid. The mixture, which contains suspended sodium chloride and sodium bicarbonate, was filtered with additional absolutely ethanol and made up to the desired volume with additional absolute ethanol ( 10 mL ). A drop of the solution was mixed a few drops of water and tested neutral using indicator paper.

Each of the ethanolic solutions was further diluted by a factor of 10 into acetonitrile-water (2:5) before reverse-phase HPLC analysis. Optimal elution conditions were determined as reported in the general procedures. Standards for the construction of calibration curves as well as mixed standards for assessing matrix effects were prepared by serial dilution of an ethanolic stock solution (ca. $10 \mathrm{mg} \cdot \mathrm{mL}^{-1}$ ) to give the desired concentrations shown in Table S14 to Table S30. Note that deviation from linearity was observed in the calibration curves related to alcohol 4a-c such that a second-order polynomial fitting procedure was required. The final concentrations of each species in each competition experiment, calculated as detailed in Appendix S3, are presented in Table S31.

Table S14. Reverse-phase HPLC data for the construction of calibration curve for 4methoxyacetophenone (3a) at 271 nm .

| Concentration $/ \mathbf{1 0}^{\mathbf{- 5}} \mathbf{~ m o l} \cdot \mathbf{L}^{\mathbf{- 1}}$ | Absorbance $/ \mathbf{L} \cdot \mathbf{m o l}^{\mathbf{- 1}}$ |
| :---: | :---: |
| 133 | 31137197 |
| 93.1 | 23585786 |
| 66.5 | 17396873 |
| 26.6 | 7192506 |
| 13.3 | 3512730 |
| 2.66 | 710722 |

Table S15. Reverse-phase HPLC data for the construction of calibration curve for 4methoxyacetophenone (3a) at 235 nm .

| Concentration / 10 |  |
| :---: | :---: |
| $\mathbf{- 5} \mathbf{~ m o l} \cdot \mathbf{L}^{\mathbf{- 1}}$ | Absorbance $/ \mathbf{L} \cdot \mathbf{m o l}^{\mathbf{- 1}}$ |
| 133 | 3131975 |
| 93.1 | 2211294 |
| 66.5 | 1598700 |
| 26.6 | 659929 |
| 13.3 | 323753 |
| 2.66 | 66021 |

Table S16. Reverse-phase HPLC data for the construction of calibration curve for 4methoxyacetophenone (3a) at 220 nm .

| Concentration / 10 |  |
| :---: | :---: |
| $\mathbf{- 5} \mathbf{~ m o l} \cdot \mathbf{L}^{\mathbf{- 1}}$ | Absorbance $/ \mathbf{L} \cdot \mathbf{m o l}^{\mathbf{- 1}}$ |
| 133 | 18383812 |
| 93.1 | 14313938 |
| 66.5 | 10857904 |
| 26.6 | 4646804 |
| 13.3 | 2287173 |
| 2.66 | 465138 |

Table S17. Reverse-phase HPLC data for the construction of calibration curve for 4methylacetophenone (3b) at 251 nm .

| Concentration $/ \mathbf{1 0}^{\mathbf{- 5}} \mathbf{~ m o l} \cdot \mathbf{L}^{\mathbf{- 1}}$ | Absorbance $/ \mathbf{L} \cdot \mathbf{m o l}^{\mathbf{- 1}}$ |
| :---: | :---: |
| 148 | 33593354 |
| 104 | 24246259 |
| 74.0 | 17234966 |
| 29.6 | 7133485 |
| 14.8 | 3455340 |
| 2.96 | 692275 |

Table S18. Reverse-phase HPLC data for the construction of calibration curve for acetophenone (3c) at 235 nm .

| Concentration $/ \mathbf{1 0}^{-\mathbf{5}} \mathbf{~ m o l} \cdot \mathbf{L}^{\mathbf{- 1}}$ | Absorbance $/ \mathbf{L} \cdot \mathbf{m o l}^{\mathbf{- 1}}$ |
| :---: | :---: |
| 166 | 26685361 |
| 116 | 18978812 |
| 83.2 | 13587535 |
| 33.3 | 5505478 |
| 16.6 | 2711041 |
| 3.33 | 541861 |

Table S19. Reverse-phase HPLC data for the construction of calibration curve for acetophenone (3c) at 220 nm .

| Concentration $/ \mathbf{1 0}^{\mathbf{- 5}} \mathbf{~ m o l} \cdot \mathbf{L}^{\mathbf{- 1}}$ | Absorbance $/ \mathbf{L} \cdot \mathbf{m o l}^{\mathbf{- 1}}$ |
| :---: | :---: |
| 166 | 6269543 |
| 116 | 4481947 |
| 83.2 | 3229166 |
| 33.3 | 1338614 |
| 16.6 | 668441 |
| 3.33 | 135352 |

Table S20. Reverse-phase HPLC data for the construction of calibration curve for 4bromoacetophenone (3d) at 207 nm .

| Concentration $/ \mathbf{1 0}^{\mathbf{- 5}} \mathbf{~ m o l} \cdot \mathbf{L}^{\mathbf{- 1}}$ | Absorbance $/ \mathbf{L} \cdot \mathbf{m o l}^{\mathbf{- 1}}$ |
| :---: | :---: |
| 100 | 21247416 |
| 70.2 | 15236201 |
| 50.2 | 10971056 |
| 20.1 | 4447163 |
| 10.0 | 2313168 |
| 2.01 | 441967 |

Table S21. Reverse-phase HPLC data for the construction of calibration curve for 1-(4-methoxyphenyl)-ethanol (4a) at 197 nm .

| Concentration / 10 |  |
| :---: | :---: |
| $\mathbf{- 5} \mathbf{~ m o l} \cdot \mathbf{L}^{\mathbf{- 1}}$ | Absorbance $/ \mathbf{L} \cdot \mathbf{m o l}^{\mathbf{- 1}}$ |
| 132 | 46470237 |
| 92.2 | 36825047 |
| 65.9 | 28416935 |
| 26.4 | 12321197 |
| 13.2 | 6265088 |
| 2.64 | 1257686 |

Table S22. Reverse-phase HPLC data for the construction of calibration curve for 1-(4-methylphenyl)-ethanol (4b) at 220 nm .

| Concentration $/ \mathbf{1 0}^{\mathbf{- 5}} \mathbf{~ m o l} \cdot \mathbf{L}^{\mathbf{- 1}}$ | Absorbance $/ \mathbf{L} \cdot \mathbf{m o l}^{\mathbf{- 1}}$ |
| :---: | :---: |
| 147 | 12408893 |
| 103 | 9791710 |
| 73.6 | 7271535 |
| 29.5 | 3089577 |
| 14.7 | 1544508 |
| 2.95 | 308949 |

Table S23. Reverse-phase HPLC data for the construction of calibration curve for 1phenylethanol (4c) at 198 nm .

| Concentration $/ \mathbf{1 0}^{\mathbf{- 5}} \mathbf{~ m o l} \cdot \mathbf{L}^{\mathbf{- 1}}$ | Absorbance $/ \mathbf{L} \cdot \mathbf{m o l}^{\mathbf{1}}$ |
| :---: | :---: |
| 140 | 18261622 |
| 98.3 | 14448237 |
| 70.2 | 11109072 |
| 28.1 | 4783958 |
| 14.0 | 2441598 |
| 2.81 | 495077 |

Table S24. Reverse-phase HPLC data for the construction of calibration curve for 1-(4-bromophenyl)-ethanol (4d) at 218 nm .

| Concentration / 10-5 $\mathbf{~ m o l} \cdot \mathbf{L}^{\mathbf{- 1}}$ | Absorbance $/ \mathbf{L} \cdot \mathbf{m o l}^{\mathbf{- 1}}$ |
| :---: | :---: |
| 98.6 | 15228608 |
| 69.0 | 10945513 |
| 49.3 | 7879877 |
| 19.7 | 3169096 |
| 9.86 | 1582123 |
| 1.97 | 314966 |

Table S25. Concentrations for each of the starting materials 3a-d and products 4a-d used in the low-concentration mixed standard in reverse-phase HPLC experiments for the assessment of matrix effects.

| Species | Concentration $/ \mathbf{1 0}^{\mathbf{- 5}} \mathbf{~ m o l} \cdot \mathbf{L}^{\mathbf{- 1}}$ |
| :---: | :---: |
| Acetophenone 3a | 13.3 |
| Acetophenone 3b | 14.8 |
| Acetophenone 3c | 16.6 |
| Acetophenone 3d | 10.0 |
|  |  |
| Alcohol 4a | 13.2 |
| Alcohol 4b | 14.7 |
| Alcohol 4c | 14.0 |
| Alcohol 4d | 9.86 |

Table S26. Data obtained for the low-concentration mixed standard in reverse-phase HPLC experiments for the assessment of matrix effects.

| Species | Wavelength / nm | Absorbance $/ \mathbf{L} \cdot \mathbf{m o l}^{\mathbf{- 1}}$ |
| :---: | :---: | :---: |
| Acetophenone 3a | 271 | 3919156 |
| Acetophenones 3a + 3c | 235 | 2802761 |
| Acetophenone 3b | 251 | 3572534 |
| Acetophenone 3d | 207 | 2250015 |
|  |  |  |
| Alcohol 4a | 197 | 6367062 |
| Alcohol 4b | 220 | 1545643 |
| Alcohol 4c | 198 | 2589073 |
| Alcohol 4d | 218 | 1594539 |

Table S27. Concentrations for each of the starting materials 3a-d and products 4a-d used in the medium-concentration mixed standard in reverse-phase HPLC experiments for the assessment of matrix effects.

| Species | Concentration $/ \mathbf{1 0}^{\mathbf{- 5}} \mathbf{~ m o l} \cdot \mathbf{L}^{\mathbf{- 1}}$ |
| :---: | :---: |
| Acetophenone 3a | 66.5 |
| Acetophenone 3b | 74.0 |
| Acetophenone 3c | 83.2 |
| Acetophenone 3d | 50.2 |
|  |  |
| Alcohol 4a | 65.9 |
| Alcohol 4b | 73.6 |
| Alcohol 4c | 70.2 |
| Alcohol 4d | 49.3 |

Table S28. Data obtained for the medium-concentration mixed standard in reverse-phase HPLC experiments for the assessment of matrix effects.

| Species | Wavelength / nm | Absorbance / L $\cdot \mathbf{m o l}^{\mathbf{1}}$ |
| :---: | :---: | :---: |
| Acetophenone 3a | 271 | 19281569 |
| Acetophenones 3a + 3c | 235 | 13884743 |
| Acetophenone 3b | 251 | 17651997 |
| Acetophenone 3d | 207 | 11111957 |
|  |  |  |
| Alcohol 4a | 197 | 28703437 |
| Alcohol 4b | 220 | 6673104 |
| Alcohol 4c | 198 | 11675428 |
| Alcohol 4d | 218 | 7927818 |

Table S29. Concentrations for each of the starting materials 3a-d and products 4a-d used in the high-concentration mixed standard in reverse-phase HPLC experiments for the assessment of matrix effects.

| Species | Concentration / $\mathbf{1 0}^{\mathbf{- 5}} \mathbf{~ m o l} \cdot \mathbf{L}^{\mathbf{- 1}}$ |
| :---: | :---: |
| Acetophenone 3a | 133 |
| Acetophenone 3b | 148 |
| Acetophenone 3c | 166 |
| Acetophenone 3d | 100 |
|  |  |
| Alcohol 4a | 132 |
| Alcohol 4b | 147 |
| Alcohol 4c | 140 |
| Alcohol 4d | 98.6 |

Table S30. Data obtained for the high-concentration mixed standard in reverse-phase HPLC experiments for the assessment of matrix effects.

| Species | Wavelength / nm | Absorbance / L $\cdot \mathbf{m o l}^{\mathbf{- 1}}$ |
| :---: | :---: | :---: |
| Acetophenone 3a | 271 | 34998514 |
| Acetophenones 3a + 3c | 235 | 27556691 |
| Acetophenone 3b | 251 | 33793977 |
| Acetophenone 3d | 207 | 21432646 |
| Alcohol 4a | 197 | 46770934 |
| Alcohol 4b | 220 | 30185657 |
| Alcohol 4c | 198 | 18974122 |
| Alcohol 4d | 218 | 15346562 |

Table S31. Concentrations obtained from reverse-phase HPLC experiments for the competitive sodium borohydride reduction of acetophenones 3a-d in ethanol at 295 K .

|  |  | $c$ | Concentration / 10 $\mathbf{- 5}^{\mathbf{5}} \mathbf{~ m o l} \cdot \mathbf{L}^{\mathbf{- 1}}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| Species | Iteration 1 | Iteration 2 | Iteration 3 | Iteration 4 |
| Acetophenone 3a | 58.1 | 49.5 | 50.5 | 50.4 |
| Acetophenone 3b | 58.7 | 43.9 | 50.9 | 51.3 |
| Acetophenone 3c | 50.4 | 28.2 | 34.3 | 36.2 |
| Acetophenone 3d | 18.6 | 7.51 | 13.7 | 18.9 |
|  |  |  |  |  |
| Alcohol 4a | 4.63 | 6.59 | 4.84 | 3.86 |
| Alcohol 4b | 3.83 | 7.38 | 4.87 | 2.88 |
| Alcohol 4c | 24.7 | 23.3 | 17.3 | 12.1 |
| Alcohol 4d | 47.9 | 51.1 | 45.5 | 41.4 |

## References

1. W. L. F. Armarego and C. L. L. Chai, Purification of Laboratory Chemicals; 6th ed.; Butter-worth-Heinemann: Oxford, United Kingdom, 2009.
2. S. Steines, P. Wasserscheid and B. Drießen-Hölscher, J. Prakt. Chem., 2000, 342, 348.
3. L. Cammarata, S. G. Kazarian, P. A. Salter and T. Welton, Phys. Chem. Chem. Phys., 2001, 3, 5192.
4. K. K. Mayer, S. Prior and W. Wiegrebe, Monatsh. Chem., 1986, 117, 511.
5. X.-K. Jiang, G.-Z. Ji and D. Z.-R. Wang, J. Fluor. Chem., 1996, 79, 173.
6. W. Franek, Monatsh. Chem., 1996, 127, 895.
7. S. H. Reich, M. A. M. Fuhry, D. Nguyen, M. J. Pino, K. M. Welsh, S. Webber, C. A. Janson, S. R. Jordan and D. A. Matthews, J. Med. Chem., 1992, 35, 847.
8. W. C. Fernelius, J. E. Blanch, B. E. Bryant, K. Terada, R. S. Drago and J. K. Stille, Inorg. Synth., 1957, 5, 130.
9. H. M. Yau, A. G. Howe, J. M. Hook, A. K. Croft and J. B. Harper, Org. Biomol. Chem., 2009, 7, 3572.

## Appendix S1. Derivation of the equation used for calculating relative rate information

For the reaction between $n$ and $i$ competing reactants $s_{1}, s_{2}, \ldots s_{\mathrm{i}}$, the rate equation related to a given species $i$ is:

$$
\frac{\mathrm{d} s_{i}}{\mathrm{dt}}=k_{i} s_{i}\left[n_{\mathrm{t}=0}-\left(s_{1, \mathrm{t}=0}-s_{1}\right)-\left(s_{2, \mathrm{t}=0}-s_{2}\right) \ldots+\left(s_{i, \mathrm{t}=0}-s_{i}\right)\right]
$$

And its partially integrated form can be expressed as:

$$
\ln \left(\frac{s_{i}}{s_{i, \mathrm{t}=0}}\right)=k_{i} \int\left[n_{\mathrm{t}=0}-\left(s_{1, \mathrm{t}=0}-s_{1}\right)-\left(s_{2, \mathrm{t}=0}-s_{2}\right) \ldots+\left(s_{i, \mathrm{t}=0}-s_{i}\right)\right] \mathrm{dt}
$$

Solving the equation simultaneously for two competing species $x$ and $y$, the following expression can be obtained for the calculation of relative rate information based on the amount of starting materials left.

$$
\frac{\ln \left(\frac{s_{x}}{s_{x, \mathrm{t}=0}}\right)}{\ln \left(\frac{s_{y}}{s_{y, \mathrm{t}=0}}\right)}=\frac{k_{x}}{k_{y}}
$$

Appendix S2. Details for the calculations of relative rate information using data obtained from

## NMR spectroscopy

The following nomenclature will be used in the following derivations:

$$
\mathrm{X}^{(\prime)}{ }_{\sigma, \mathrm{n}}
$$

Where $\mathrm{X}=\mathrm{N}$ for the integration of a bromide before pyridine was added, S for an integration related to a bromide starting material after a competition experiment and P for an integration related to a pyridinium bromide product after a competition experiment; $\sigma$ is the relevant substituent; $n$ is the number of bromides initially present. An un-primed term corresponds to the absolute integration of a species where as a primed term correspond to a normalised integration. Additionally, the terms related to integrations that could not be experimentally separated form one another are always given together as:

$$
\left(\overline{\mathrm{X}}_{\sigma_{1}, \mathrm{n}}^{\prime}+\overline{\mathrm{X}}_{\sigma_{2}, \mathrm{n}}^{\prime}\right)
$$

For signals in the starting material mixture containing all seven starting materials that are unresolved due to overlap with the signal of another species, its normalised integration can be calculated as follows:

$$
\mathrm{N}_{\mathrm{R}, 7}^{\prime}=\frac{\mathrm{N}_{\mathrm{R}, 5}^{\prime}}{\mathrm{m}}\left(\sum_{\mathrm{m}} \frac{\mathrm{~N}_{\sigma_{\mathrm{m}}, 7}^{\prime}}{\mathrm{N}_{\sigma_{\mathrm{m}}, 5}^{\prime}}\right)
$$

Where $\mathrm{m}(\geq 1)$ is the number of pairs of starting material and product that are both wellresolved in the NMR spectrum.

For the two starting materials that are not initially present in the mixture containing only five starting materials with well-resolved signals, their normalised integrations are given by:

$$
\mathrm{N}_{\mathrm{R}}^{\prime}=\left(\overline{\mathrm{N}}_{\mathrm{R}}^{\prime}+\overline{\mathrm{N}}_{\sigma}^{\prime}\right)-\mathrm{N}^{\prime}{ }_{\sigma}
$$

For any well-resolved signal the following expressions can be used to calculate its normalised integration:

$$
\begin{gathered}
\mathrm{N}_{\mathrm{R}, 7}^{\prime}=\frac{\mathrm{N}_{\mathrm{R}, 7}}{\sum \mathrm{~N}_{\sigma, 7}} \\
\mathrm{~S}_{\mathrm{R}, 7}^{\prime}=\frac{\mathrm{S}_{\mathrm{R}, 7}}{\sum \mathrm{~S}_{\sigma, 7}+\sum \mathrm{P}_{\sigma, 7}}
\end{gathered}
$$

And

$$
\mathrm{P}_{\mathrm{R}, 7}^{\prime}=\frac{\mathrm{P}_{\mathrm{R}, 7}}{\sum \mathrm{~S}_{\sigma, 7}+\sum \mathrm{P}_{\sigma, 7}}
$$

If the only one of the signals of a starting material and its related product is unresolved, the following expressions can be used to calculate the relevant normalised integration of interest:

$$
\mathrm{S}_{\mathrm{R}, 7}^{\prime}=\mathrm{N}_{\mathrm{R}, 7}^{\prime}-\mathrm{S}_{\mathrm{R}, 7}^{\prime}
$$

And

$$
\mathrm{P}_{\mathrm{R}, 7}^{\prime}=\mathrm{N}_{\mathrm{R}, 7}^{\prime}-\mathrm{S}_{\mathrm{R}, 7}^{\prime}
$$

The normalised integrations for all other species with both signals due to the starting material and its related product unresolved, the normalised integration of interest can be calculated as:

$$
\mathrm{S}_{\mathrm{R}_{1}}^{\prime}=\left(\overline{\mathrm{S}}_{\mathrm{R}_{1}}^{\prime}+\overline{\mathrm{S}}_{\mathrm{R}_{2}}^{\prime}\right)-\mathrm{S}_{\mathrm{R}_{2}}^{\prime}
$$

Or

$$
\mathrm{P}_{\mathrm{R}_{1}}^{\prime}=\left(\overline{\mathrm{P}}_{\mathrm{R}_{1}}^{\prime}+\overline{\mathrm{P}}_{\mathrm{R}_{2}}^{\prime}\right)-\mathrm{P}_{\mathrm{R}_{2}}^{\prime}
$$

Appendix S3. Details for the calculation of relative rate information using data obtained from reverse-phase HPLC

The nomenclature used in the following derivation is given by:

$$
\mathrm{X}^{(\circ)}{ }_{\sigma, \lambda}
$$

Where $\mathrm{X}=\mathrm{S}$ and s for the integration and concentration, respectively, of an acetophenone starting material, P and p for the integration and concentration, respectively, of an aryl ethyl alcohol product; $\sigma$ is the substituent in question; $\lambda$ is the operating wavelength. The superscript ${ }^{\circ}$ indicates whether or not matrix effect is accounted for using calibration curves obtained from mixed standards consisting of all starting materials and products. When two signals cannot be resolved due to overlap, the sum of their integrations are expressed as:

$$
\left(\overline{\mathrm{X}}_{\sigma_{1}, \lambda}^{\circ}+\overline{\mathrm{X}}_{\sigma_{2}, \lambda}\right)
$$

The concentration of a given well-resolved starting material or product is calculated using calibration curves obtained from mixed standards such that matrix effects are accounted for:

$$
\mathrm{s}_{\sigma, \lambda}=\frac{\mathrm{S}_{\sigma, \lambda}^{\circ}-\mathrm{b}^{\circ}{ }_{\sigma, \lambda}}{\varepsilon^{\circ}{ }_{\sigma, \lambda}}
$$

Or

$$
\mathrm{p}_{\sigma, \lambda}=\frac{\mathrm{P}_{\sigma, \lambda}^{\circ}-\mathrm{b}_{\sigma, \lambda}^{\circ}}{\varepsilon^{\circ}{ }_{\sigma, \lambda}}
$$

Where $\varepsilon^{\circ}$ and $b^{\circ}$ are the slope and intercept of the relevant calibration curve.
In cases where the signals due to two species, $\sigma_{1}$ and $\sigma_{2}$, overlap at one wavelength, $\lambda_{1}$, and one of them, say, $\sigma_{2}$, is only observable at another wavelength, $\lambda_{2}$; the integration of $\sigma_{1}$ can be calculated by the following expression:

$$
\mathrm{X}_{\sigma_{1}, \lambda_{1}}=\left(\overline{\mathrm{X}}_{\sigma_{1}, \lambda_{1}}^{\circ}+\overline{\mathrm{X}}_{\sigma_{2}, \lambda_{1}}^{\circ}\right)-\mathrm{X}_{\sigma_{2}, \lambda_{1}}\left(\frac{\left.\mathrm{X}_{\sigma_{\sigma_{2}, \lambda_{2}}}^{\mathrm{X}_{\sigma_{2}, \lambda_{2}}}\right)}{}\right)
$$

Which can be used to construct a calibration curve that takes into account matrix effect for the overlapping species, $\sigma_{1}$, and subsequently used in concentration analyses:

$$
\mathrm{x}_{\sigma_{1}, \lambda_{1}}=\frac{\left[\left(\overline{\mathrm{X}}^{\circ}{ }_{\sigma_{1}, \lambda_{1}}+\overline{\mathrm{X}}_{{ }_{\sigma_{2}, \lambda_{1}}^{\circ}}^{\circ}\right)-\mathrm{X}_{\sigma_{2}, \lambda_{1}}\left(\frac{\mathrm{X}_{\sigma_{\sigma_{2}, \lambda_{2}}}^{\circ}}{\mathrm{X}_{\sigma_{2}, \lambda_{2}}}\right)\right]-\mathrm{b}_{\sigma_{1}, \lambda_{1}}^{\circ}}{\varepsilon_{\sigma_{1}, \lambda_{1}}^{\circ}}
$$

