Supporting information

for

Cu(I)-Catalyzed Atom Transfer Radical Cyclization of Trichloroacetamides Tethered to Electron-deficient, -neutral, and -rich Alkenes: Synthesis of 2-Azabicyclo[3.3.1]nonanes

Faïza Diaba, Agustín Martínez-Laporta, Josep Bonjoch*

Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028-Barcelona, Spain

Ana Pereira, José-María Muñoz-Molina, Pedro J. Pérez, Tomás R. Belderrain*

Laboratorio de Catálisis Homogénea, Departamento de Química y Ciencia de los Materiales, Unidad Asociada al CSIC, Centro de Investigación en Química Sostenible (CIQSO), Universidad de Huelva,Campus de El Carmen s/n, 21007-Huelva, Spain

Table of contents

* Table of ¹³ C NMR data of compounds 6-14	S2
* Experimental and NMR data of compounds 6, 7, 9-11, 14 S3	
* Kinetic monitoring and ¹ H spectra reaction monitoring of 1 in C ₆ D ₆ with Tp ^{tBu} CuCl and Tp ^{tBu} Cu(NCMe), respectively.	S13
* Copies of ¹ H NMR and ¹³ C NMR spectra of compounds 6-14	S14

 Table 1. ¹³C NMR chemical shifts of 2-azabicyclo[3.3.1]nonanes 6,7, 9-11, 14^a

R = CN 6 CO ₂ Me 9 H 10	R = CN 7 CO ₂ Me 14	11

	6	7	9	10	11	14
C-1	49.6	48.6	50.3	51.5	51.1	49.3
C-3	163.3	162.9	163.7	164.2	163.9	162.9
C-4	83.0	83.6	84.4	85.4	81.2	85.0
C-5	53.4	45.8	53.0	51.8	63.0	43.1
C-6	59.5	113.4	69.8	57.6	203.5	137.0
C-7	29.7	144.7	26.1	24.4	35.0	131.2
C-8	23.6	31.7	24.2	22.5	30.2	31.2
C-9	26.0	25.9	26.7	24.5	31.1	26.3
Other	118.7	118.4	52.9	-	-	52.3
	(CN)	(CN)	(CH ₃)	-	-	(CH ₃)
	-	-	170.0	-	-	166.8
	-	-	(CO)	-	-	(CO)
CH₂Ar	49.6	49.7	49.5	49.3	49.7	49.6
Ar(C)	127.9	127.7	127.8	127.8	127.9	127.7
	128.2	128.1	128.0	127.9	128.2	127.9
	129.1	129.0	128.9	128.9	129.1	128.9
	135.6	135.7	136.0	136.1	135.9	136.1

^a Values were assigned on the basis of gCOSY and gHSQC spectra in CDCI₃ (100 MHz).

General. ¹H and ¹³C NMR spectra were recorded in CDCl₃ solution. Chemical shifts are reported as δ values (ppm) relative to internal Me₄Si. All NMR data assignments are supported by COSY and HSQC experiments. Infrared spectra were recorded on a Nicolet 320 FT-IR spectrophotometer. TLC was performed on SiO₂ (silica gel 60 F₂₅₄, Merck). The spots were located by UV light or a 1% KMnO₄ aqueous solution. Chromatography refers to flash chromatography and was carried out on SiO₂ (silica gel 60, SDS, 230–400 mesh). CuCl (99.99%) was purchased from Sigma-Aldrich and was used as received. All reactions were carried out under an argon atmosphere with dry, freshly distilled solvents and under anhydrous conditions. The reactions were heated using a dry-syn single position heating block and the temperature indicated refers to external temperature. Drying of the organic extracts during reaction work-up was performed over anhydrous Na₂SO₄. Compounds **1-5** were synthesized according to our previous published procedures.¹

General procedures for Atom Transfer Radical Cyclization of trichloroacetamides 1-5.

a) Representative procedure for the Tp^xCu complex radical cyclization. A solution of trichloroacetamide **2** (100 mg, 0.282 mmol), and the corresponding Tp^{tBu}Cu(NCMe) complex (1.25 mg from 0.5 mL of a stock solution,² 2.82x10⁻³ mmol from a stock solution, 0.01 equiv) and AIBN (4.2 mg, 0.1 equiv) were dissolved in toluene (0.75 mL, 1.25 mL as total volume of solvent). The flask was sealed with a Teflon screw cap and removed from the globe box. The reaction mixture was stirred at 60 °C for 14 h, worked up, and purified by chromatography (hexane/CH₂Cl₂) to give **9** (80 mg, 80%).

b) Representative procedure for the CuCl radical cyclization in DCE. To a suspension of CuCl (20 mg, 0.2 mmol) in 1,2-dichloroethane (6.5 mL) were successively added TPMA (58 mg, 0.2 mmol) and nitrile **1** (240 mg, 0.67 mmol), and the mixture was heated at 80 °C for 4 h in a sealed tube. The solution was then allowed to reach rt, concentrated and purified by chromatography (hexane/CH₂Cl₂ 1:9 to CH₂Cl₂) to yield morphan **6** as a white solid (200 mg, 83%).

c) Representative procedure for the CuCl radical cyclization in DCE and in the presence of AIBN. To a suspension of CuCl (13.3 mg, 0.13 mmol 10%) in 1,2-dichloroethane (8 mL) were successively added TPMA (38.7 mg, 0.13 mmol), nitrile 1

 ¹ a) Quirante, J.; Escolano, C.; Massot, M.; Bonjoch, J. *Tetrahedron* 1997, *53*, 1391-1402. (b) Quirante, J.; Escolano, C.; Diaba, F.; Bonjoch, J. *Heterocycles* 1999, *50*, 731-738. (c) Quirante, J.; Escolano, C.; Diaba, F.; Bonjoch, J. *J. Chem. Soc. Perkin Trans* 1 1999, 1157-1162.
 ² Stock solution was prepared from 5.0 mg of Tp^{tBu}Cu(NCMe) in 2 mL of toluene. (a) Muñoz-Molina, J.M.;

² Stock solution was prepared from 5.0 mg of Tp^{tBu}Cu(NCMe) in 2 mL of toluene. (a) Muñoz-Molina, J.M.; Caballero, A.; Díaz-Requejo, M.M.; Trofimenko, S.; Belderraín, T. R.; Pérez, P. J. *Inorg. Chem.* **2007**, *46*, 7725-7730. (b) Muñoz-Molina, J. M.; Belderrain, T. R.; Pérez, P. J. *Inorg. Chem.* **2010**, *49*, 642 –645.

(475 mg, 1.33 mmol), AIBN (109 mg, 0.66 mmol 50%) and the mixture was heated at 60 °C for 2 days in a sealed tube. The solution was then allowed to reach rt, concentrated and purified by chromatography (hexane/CH₂Cl₂ 1:9 to CH₂Cl₂) to yield morphan **6** (385 mg, 81%).

d) Representative procedure for the CuCl radical cyclization in DMF. A mixture of CuCl (84 mg, 0.85 mmol, 30%) and nitrile **1** (1 g, 2.80 mmol) in DMF (10 mL) was heated at 80 °C overnight in a sealed tube. The solution was then allowed to reach rt, and water (30 mL), 10 % HCl aqueous solution (10 mL) and AcOEt (50 mL) were successively added. The layers were separated and the aqueous layer was extracted with AcOEt. The combined organic layers were washed with brine, dried and concentrated. After chromatography (hexane/CH₂Cl₂ 1:9 to CH₂Cl₂) morphan **6** was isolated (705 mg, 71%).

e) Representative procedure for the CuCl radical cyclization in DMF and in the presence of TPMA. A mixture of CuCl (43 mg, 0.43 mmol, 30%), nitrile **1** (0.5 g, 1.40 mmol) and TPMA (119.3 mg, 0.41 mmol, 30%) in DMF (5 mL) was heated at 80 °C overnight in a sealed tube. The solution was then allowed to reach rt, and water (30 mL), 10 % HCl aqueous solution (10 mL) and AcOEt (50 mL) were successively added. The layers were separated and the aqueous layer was extracted with AcOEt. The combined organic layers were washed with brine dried and concentrated. After chromatography (hexane/CH₂Cl₂ 1:9 to CH₂Cl₂) morphan **7** was isolated (270 mg, 60%).

Вn Bn *_*0 ,0 CuCl CuCl "CI C ĊCI₃ Ligand Ligand CI ĊI Ēι CO₂Me **2**, R = CO₂Me **3**, R = H 10 9

Table 2. Cu(I)-Catalyzed Cyclization of 2 and 3

Entry Compd	Ligand (equiv)	Additive (equiv)	Solvent (time, Temp)	Products (%) ^a
<i>From </i> 2 1	Tp ^{tBu} CuCl (0.01)	AIBN (0.1)	Toluene (14 h, 60 °C)	9 (70)
2	[Tp ^{tBu} Cu(NCMe)] (0.01)	AIBN (0.1)	Toluene (14 h, 60 °C)	9 (80)
3	CuCl (0.3) TPMA (0.3)		DCE (4 h, 80 °C)	9 (74)
4	CuCl (0.1) TPMA (0.1)	AIBN (0.5)	DCE (16 h, 60ºC)	9 (81) 2 (15)
5	CuCl (0.3)		DMF (22 h, 80 °C)	9 (67)
6	CuCl (0.3) TPMA (0.3)		DMF (22 h, 80 °C)	9 (46) 14 ^b (21)
From 3 7	Tp ^{tBu} CuCl (0.01)	AIBN (0.1)	Toluene (14 h, 60 °C)	10 (60) ^c
8	[Tp ^{tBu} Cu(NCMe)] (0.1)	AIBN (0.2)	Toluene (24 h, 60 °C)	10 (66)
9	CuCl (0.003) TPMA (0.003)	AIBN (0.2)	Toluene (18 h, 60 °C)	10 (90) ^d
10	CuCl (0.3) TPMA (0.3)		DCE (4 h, 80 °C)	10 (70)
11	CuCl (0.1) TPMA (0.1)	AIBN (0.5)	DCE (48 h 60°C)	10 (85) ^e
12	CuCl (0.3)		DMF (16 h, 80 °C)	10 (57)

^aYields refer to pure isolated products. Unless noted otherwise, reactions were on a 100 mg scale.^b See S9 of this ESI for the structure of **14.**^c 200 mg scale.^c 33 mg scale.^e 1 g scale.

(1RS,5RS,6RS)-2-Benzyl-4,4,6-trichloro-3-oxo-2-

azabicyclo[3.3.1]nonane-6-carbonitrile (6): White solid, mp 139-141 °C; IR (NaCl, neat): 3055, 3034, 2996, 2975, 2949, 2248, 1682, 1492, 1450, 1427, 1366, 1249, 1202, 1188, 1095, 946, 827, 737, 702, 687, 626, 596, 575, 520 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 1.86 (dm, 1H, *J* = 14.8 Hz, H-8eq), 2.00 (dddd, 1H, *J* = 14.8, 12, 4.8, 2.4 Hz, H-8ax), 2.22 (ddd, 1H, *J* = 15.6, 11.2, 4.4 Hz, H-7ax), 2.29 (dm, 1H, *J* = 15.6 Hz, H-7eq), 2.60 (m, 2H, CH₂-9), 3.38 (m, 1H, H-5), 3.54 (m, 1H, H-1), 4.00 (d, 1H, *J* = 14.8 Hz, CH₂Ar), 5.26 (d, 1H, *J* = 14.8 Hz, CH₂Ar), 7.24-7.40 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz): δ 23.6 (C-8), 26.0 (C-9), 29.7 (C-7), 49.6 (C-1 and CH₂Ar), 53.4 (C-5), 59.5 (C-6), 83.0 (C-4), 118.7 (CN), 127.9, 128.2, 129.1 (Ar-CH), 135.6 (*ipso*-C), 163.3 (C-3). HRMS (ESI-TOF): Calcd for C₁₆H₁₆Cl₃N₂O 357.0323 (M⁺+1). Found 357.0330.

(1RS,5RS)-2-Benzyl-4,4-dichloro-3oxo-2-azabicyclo[3.3.1]non-6-ene-

6-carbonitrile (7): White solid, mp 168-170 °C; IR (NaCl, neat): 3036, 2978, 2953, 2928, 2219, 1658, 1493, 1452, 1435, 1415, 1365, 1323, 1261, 1226, 1203, 1066, 1029, 981, 953, 877, 841, 832, 747, 702, 690, 670, 614, 578 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 1.95 (ddd, 1H, *J* = 14, 4, 2 Hz, H-9), 2.41 (dddd, 1H, *J* = 20.4, 4.4, 2.8, 1.6 Hz, H-8ax), 2.57 (dd, 1H, *J* = 20.4, 4.4 Hz, H-8eq), 2.80 (dm, 1H, *J* = 14 Hz, H-9), 3.48 (m, 1H, H-5), 3.75 (m, 1H, H-1), 3.92 (d, 1H, *J* = 14.8 Hz, CH₂Ar), 5.35 (d, 1H, *J* = 14.8 Hz, CH₂Ar), 6.75 (ddd, 1H, *J* = 4.4, 2.8, 1.2 Hz, H-7), 7.22-7.39 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz): δ 25.9 (C-9), 31.7 (C-8), 45.8 (C-5), 48.6 (C-1), 49.7 (CH₂Ar), 83.6 (C-4), 113.4 (C-6), 118.4 (CN), 127.7, 128.1, 129.0 (Ar-CH), 135.7 (*ipso*-C), 144.7 (C-7), 162.9 (C-3). HRMS (ESI-TOF): Calcd for C₁₆H₁₅Cl₂N₂O 321.0556 (M⁺+1). Found 321.0552.

 \dot{CN} **4-(4,4-Dichloro-8-hydroxy-3-oxo-2-azaspiro[4.5]deca-6,9-dien-2-yl)** cyclohex-1-ene-1-carbonitrile (8): A mixture of CuCl (21 mg, 0.21 mmol, 30%) and nitrile **1** (250 mg, 0.7 mmol) in acetonitrile (5 mL) was heated at 80 °C overnight in a sealed tube. The solution was allowed to reach rt, and water (10 mL), 10 % HCl aqueous solution (3 mL) and AcOEt (30 mL) were successively added. The layers were separated and the aqueous layer was extracted with AcOEt. The combined organic layers were washed with brine, dried and concentrated. After chromatography (hexane/CH₂Cl₂ 1:9 to CH₂Cl₂), besides morphan **6** (121 mg, 48%) **8** was isolated as a mixture of two epimers (23 mg, 10%), which were separated by chromatography (CH₂Cl₂/AcOEt 8:2).

The less polar isomer: IR (NaCl, neat): 3458, 3044, 2930, 2854, 2215, 1722, 1670, 1634, 1477, 1433, 1421, 1307, 1245, 1189, 1027, 858, 735, 681 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 1.77 (m, 1H), 1.92 (m, 1H), 2.27 (m, 1H), 2.46 (m, 3H), 3.23 (d, 1H, *J* = 10 Hz), 3.27 (d, 1H, *J* = 10 Hz), 4.25 (m, 1H), 4.53 (brs, 1H), 5.94 (m, 2H), 6.26 (m, 2H), 6.58 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 25.0 (CH₂), 26.5 (CH₂), 28.1 (CH₂), 47.2 (CH), 49.4 (C), 50.9 (CH₂), 62.0 (CH), 88.4 (C), 112.6 (C), 118.4 (CN), 126.2 (2 CH), 132.9 (CH), 133.0 (CH), 141.6 (CH), 165.7 (CO). HRMS (ESI-TOF): Calcd for C₁₆H₁₇Cl₂N₂O₂ 339.0662 (M⁺+1). Found 339.0648.

The more polar isomer: IR (NaCl, neat): 3429, 3041, 2938, 2851, 2215, 1715, 1643, 1477, 1433, 1418, 1306, 1244, 1188, 1023, 887, 861, 826, 736, 796 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 1.78 (m, 1H), 1.93 (m, 1H), 2.28 (m, 1H), 2.46 (m, 3H), 3.28 (d, 1H, *J* = 10 Hz), 3.31 (d, 1H, *J* = 10 Hz), 4.26 (m, 1H), 4.67 (brs, 1H), 5.85 (m, 2H), 6.25 (m, 2H), 6.58 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 25.0 (CH₂), 26.5 (CH₂), 28.2 (CH₂), 47.2 (CH), 49.8 (C), 50.4 (CH₂), 62.3 (CH), 89.2 (C), 112.6 (C), 118.5 (CN), 125.3 (2 CH), 133.8 (2 CH), 141.7 (CH), 165.6 (CO). HRMS (ESI-TOF): Calcd for C₁₆H₁₇Cl₂N₂O₂ 339.0662 (M⁺+1). Found 339.0665.

 $CI CO_2Me$ (1*RS*,5*RS*,6*RS*) Methyl 2-Benzyl-4,4,6-trichloro-3-oxo-2-azabicyclo [3.3.1]nonane-6-carboxylate (9): To a suspension of CuCl (2.5 mg, 0.025 mmol 10%) in 1,2-dichloroethane (2.7 mL) were successively added TPMA (7.4 mg, 0.025 mmol), 2 (100 mg, 0.25 mmol), and AIBN (20.9 mg, 0.125 mmol 50%), and the mixture was heated at 60 °C for 16 h in a sealed tube. The solution was then allowed to reach rt, concentrated and purified by chromatography (CH₂Cl₂) yielding morphan **9** (81 mg, 81%) and **2** (15 mg, 15%).

White solid, mp 130-131 °C; IR (NaCl, neat): 3086, 3062, 3030, 2950, 2861, 1745, 1678, 1447, 1360, 1289, 1244, 1203, 1187, 1066, 915, 824, 731, 700, 683 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 1.72-2.24 (m, 3H, CH₂-8 and H-7ax), 2.17 (m, 1H, H-7eq), 2.44 (brd, 1H, *J* = 14.4 Hz, H-9), 2.57 (brd, 1H, *J* = 14.4 Hz, H-9), 3.46 (m, 1H, H-1), 3.59 (brs, 1H, H-5), 3.78 (s, 3H, CH₃), 3.92 (d, 1H, *J* = 14.8 Hz, CH₂Ar), 5.18 (d, 1H, *J* = 14.8 Hz, CH₂Ar), 7.18-7.32 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz): δ 24.2 (C-8), 26.1 (C-7), 26.7 (C-9), 49.5 (CH₂Ar), 50.3 (C-1), 52.9 (CH₃), 53.0 (C-5), 69.8 (C-6), 84.4 (C-4), 127.8, 128.0, 128.9 (Ar-CH), 136.0 (*ipso*-C), 163.7 (C-3), 170.0 (CO). HRMS (ESI-TOF): Calcd for C₁₇H₁₉Cl₃NO₃ 390.0425 (M⁺+1). Found 390.0426.

(1RS,5RS,6RS)-2-Benzyl-4,4,6-trichloro-2-azabicyclo[3.3.1]nonan-3-

one (10): To a suspension of CuCl (30 mg, 0.3 mmol 10%) in 1,2-dichloroethane (15 mL) were successively added TPMA (87.2 mg, 0.3 mmol), **3** (1 g, 3 mmol), and AIBN (246 mg, 1.50 mmol 50%), and the mixture was heated at 60 °C for 2 days in a sealed tube. The solution was then allowed to reach rt, concentrated and purified by chromatography (hexane/CH₂Cl₂ 1:9 to CH₂Cl₂) to yield morphan **10** (850 mg, 85%). White solid, mp 116-118 °C; IR (NaCl, neat): 3109, 3089, 3063, 3032, 2960, 2946, 2933, 2859 1659, 1496, 1452, 1423, 1348, 1306, 1241, 1213, 1185, 1149, 1078, 1045, 999, 948, 867, 825, 808, 741, 699, 671, 613, 565 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 1.70 (m, 1H, H-8eq), 1.84-1.97 (m, 3H,CH₂-7 and H-8ax), 2.41 (m, 2H, CH₂-9), 3.04 (brd, 1H, *J* = 3.2 Hz, H-5), 3.54 (brd, 1H, H-1), 3.91 (d, 1H, *J* = 15.2 Hz, CH₂Ar), 4.96 (brs, 1H, H-6), 5.31 (d, 1H, *J* = 15.2 Hz, CH₂Ar), 7.24-7.40 (m, 5H, ArH); ¹³C NMR

(CDCl₃, 100 MHz): δ 22.5 (C-8), 24.4 (C-7), 24.5 (C-9), 49.3 (CH₂Ar), 51.5 (C-1), 51.8 (C-5), 57.6 (C-6), 85.4 (C-4), 127.8, 127.9, 128.9 (Ar-CH), 136.1 (*ipso*-C), 164.2 (C-3). HRMS (ESI-TOF): Calcd for C₁₅H₁₇Cl₃NO 332.0370 (M⁺+1). Found 332.0371.

CO₂Me Methyl 2-Benzyl-4,4,6-trichloro-3-oxo-2-azabicyclo[3.3.1]non-6-ene-6carboxylate (14): A mixture of CuCl (6.7 mg, 0.07 mmol, 30%) and nitrile 2 (80 mg, 0.22 mmol) in DMF (0.8 mL) was heated at 80 °C overnight in a sealed tube. The solution was then allowed to reach rt, concentrated and purified by chromatography (hexane/CH₂Cl₂ 1:9 to CH₂Cl₂) to yield 9 (36.5 mg, 46%) and 14 (16.5 mg, 21%). IR (NaCl, neat): 3082, 3042, 2950, 2926, 2850, 1719, 1670, 1449, 1332, 1258, 1206, 1088, 1060, 759, 732, 698, 672 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 1.86 (ddd, 1H, *J* = 14, 4, 2.4 Hz, H-9), 2.37 (dddd, 1H, *J* = 20, 3.6, 2.8, 1.6 Hz, H-8ax), 2.55 (dd, 1H, *J* = 20, 4 Hz, H-8eq), 2.77 (dm, 1H, *J* = 14 Hz, H-9), 3.71 (brs, 1H, H-1), 3.81 (s, 3H, CH₃), 3.89 (d, 1H, *J* = 14.8 Hz, CH₂Ar), 4.04 (m, 1H, H-5), 5.84 (d, 1H, *J* = 14.8 Hz, CH₂Ar), 6.92 (t, 1H, *J* = 4, Hz, H-7), 7.24-7.39 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz): δ 26.3 (C-9), 31.2 (C-8), 43.1 (C-5), 49.3 (C-1), 49.6 (CH₂Ar), 52.3 (CH₃), 85.0 (C-4), 127.7, 127.9, 128.9 (Ar-CH), 131.2 (C-7), 136.1 (*ipso*-C), 137.0 (C-6), 162.9 (C-3), 166.8 (CO). HRMS (ESI-TOF): Calcd for C₁₇H₁₈Cl₂NO₃ 354.0658 (M⁺+1). Found 354.0655.

Scheme 1. Cu(I)-Catalyzed Cyclization of 4 and 5

^a 500 mg scale. ^b No AIBN, and 30 % catalyst and ligand loadings led to **11** in 42% yield from **4**. Using CuCl (30%) in DMF (80 °C, 16 h), **11** was isolated in 51% yield from **4**, these runs were carried out using 100 mg of starting material. ^c *N*-benzyl-2,2,2-trichloro-*N*-(4-oxocyclohexyl) acetamide (25%) was recovered.

O (1*RS*,5*RS*)-2-Benzyl-4,4-dichloro-2-azabicyclo[3.3.1]nonane-3,6-dione (11): To a suspension of CuCl (11 mg, 0.11 mmol 10%) in 1,2-dichloroethane (4 mL) were successively added TPMA (32 mg, 0.11 mmol), 4 (500 mg, 1.1 mmol), AIBN (89 mg, 0.55 mmol 50%) and the mixture was heated at 60 °C for 2 days in a sealed tube. The solution was then allowed to reach rt, concentrated and purified by chromatography (hexane/AcOEt 8:2) to yield morphan **11** (187 mg, 55%).

IR (NaCl, neat): 2924, 2853, 1732, 1668, 1450, 1423, 1275, 1243, 1202, 1108, 1033, 956, 860, 813, 733, 662, 565 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 1.70 (dddd, 1H, *J* = 16, 10.4, 6, 2.4 H-8ax), 2.07 (ddd, 1H, J = 14.4, 3.6. 2.8 Hz, H-9), 2.24 (m, 1H, H-8eq), 2.51 (m, 2H, CH₂-7), 2.77 (dq, 1H, *J* = 14.4, 3.2 Hz, H-9), 3.59 (m, 1H, H-5), 3.70 (brs, 1H, H-1), 4.10 (d, 1H, *J* = 15.4 Hz, CH₂Ar), 5.38 (d, 1H, *J* = 15.4 Hz, CH₂Ar), 7.29-7.41 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz): δ 30.2 (C-8), 31.1 (C-9), 35.0 (C-7), 49.7 (CH₂Ar), 51.1 (C-1), 63.0 (C-5), 81.2 (C-4), 127.9, 128.2, 129.1 (Ar-CH), 135.9 (*ipso*-C), 163.9 (C-3), 203.5 (C-6). HRMS (ESI-TOF): Calcd for C₁₅H₁₆Cl₂NO₂ 312.0553 (M⁺+1). Found 312.0555.

Reaction of 6 with DBU. To a solution of **6** (100 mg, 0.28 mmol) in benzene (4.5 mL) was added DBU (0.083 mL, 0.56 mmol) and the mixture was heated to reflux for 3 h. The mixture was then diluted in ether and washed with 1M HCl solution and brine, dried and concentrated to yield **12** (75 mg, 94%).

NČ (1*RS*,2*SR*,5*SR*,8*SR*)-4-benzyl-2-chloro-3-oxo-4-azatricyclo[3.3.1.0^{2,8}] non-6-ene-8-carbonitrile (12): Colorless oil; IR (NaCl, neat): 3059, 3033, 2966, 2930, 2243, 1667, 1495, 1450, 1428, 1357, 1333, 1268, 1180, 1106, 1075, 973, 936, 844, 790, 735, 702, 679, 614, 578, 526 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 1.50 (dt, 1H, *J* = 14, 2.8 Hz, H-9), 2.13 (ddd, 1H, *J* = 14, 3.6, 2.4 Hz, H-9), 2.92 (dt, 1H, *J* = 2.8, 1.6 Hz, H-1), 3.82 (m, 1H, H-5), 4.55 (d, 1H, *J* = 14.4 Hz, CH₂Ar), 4.71 (d, 1H, *J* = 14.4 Hz, CH₂Ar), 5.95 (dd, 1H, *J* = 9.2, 6.4 Hz, H-6), 6.11 (dd, 1H, *J* = 9.2, 1.2 Hz, H-7), 7.22-7.38 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz): δ 19.7 (C-9), 26.2 (C-8), 32.6 (C-1), 47.3 (C-5), 50.8 (CH₂Ar), 50.9 (C-2), 117.4 (CN), 122.9 (C-7), 128.2, 128.6, 128.9, 136.5 (*ipso*-C), 136.5 (C-6), 160.4 (C-3). HRMS (ESI-TOF): Calcd for C₁₆H₁₄ClN₂O 285.0789 (M⁺+1). Found 285.0788.

Allylation of 7

Method A: To a solution of **7** (74 mg, 0.23 mmol) and allylbromide (0.35 mL, 4.66 mmol) in THF (2 mL) was added a 2-methyltetrahydrofuran solution of *i*-PrMgBr (1.52, 1.5 mmol) dropwise at -78 °C. The mixture was then stirred at this temperature for 1 h and at rt for 3 h. The reaction was quenched with satd. aqueous NH_4CI solution, extracted with CH_2CI_2 and the organic layers were dried and concentrated. Flash chromatography (hexane/AcOEt 8:2 to 7:3) afforded **13** as a white solid (46 mg, 60%). *Method B*: A solution of **7** (75 mg, 0.23 mmol), allyl tributyltin (0.14 mL, 0.53 mmol) and AIBN (3.8 mg, 0.023 mmol) in benzene (2 mL) was heated to reflux for 4 h then 0.02 mL of allyl tributyltin and 3.8 mg of AIBN were added and the mixture was heated to reflux for 3 h. The reaction mixture was concentrated and the residue purified by chromatography (hexane/AcOEt 8:2 to 7:3) to yield **13** (49 mg, 63%).

(1RS,4SR,5RS)-4-AllyI-2-BenzyI-4-chloro-6-cyano-2-azabicyclo

[3.3.1]non-6-en-3-one (13): White solid, mp 136-138 °C; IR (NaCl, neat): 3062, 3031, 2928, 2217, 1652, 1494, 1450, 1415, 1204, 1069, 927, 760, 730, 696 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 1.83 (ddd, 1H, *J* = 14, 4, 2 Hz, H-9), 2.24 (dm, 1H, *J* = 14 Hz, H-9), 2.37 (dm, 1H, *J* = 20.4, H-8ax), 2.56 (dd, 1H, *J* = 20.4, 4.4 Hz, H-8eq), 2.74 (dd, 1H,

J = 14.8, 8.8 Hz, $CH_2C=$), 3.08 (brs, 1H, H-5), 3.11 (dd, 1H, J = 14.8, 4.8 Hz, $CH_2C=$), 3.70 (brs, 1H, H-1), 3.90 (d, 1H, J = 14.8 Hz, CH_2Ar), 5.28 (m, 2H, =CH₂), 5.35 (d, 1H, J = 14.8 Hz, CH_2Ar), 6.06 (m, 1H, =CH), 6.69 (t, 1H, J = 3.2 Hz, H-7), 7.20-7.39 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz): δ 25.7 (C-9), 31.4 (C-8), 38.1 (C-5), 45.2 (CH₂C=), 48.3 (C-1), 49.3 (CH₂Ar), 71.9 (C-4), 115.8 (C-6), 119.2 (CN), 120.6 (=CH₂), 127.8, 127.9, 128.9 (Ar-CH), 131.4 (=CH), 136.5 (*ipso*-C),142.9 (C-7), 168.0 (C-3). HRMS (ESI-TOF): Calcd for C₁₉H₂₀CIN₂O 327.1259 (M⁺+1). Found 327.12

Figure S-1. Kinetic monitoring of **1** consumption (¹H NMR, 60 °C, C₆D₆) in the reaction of the formation of **6**, using Tp^{*t*Bu}CuCl. [Cu]/[AIBN]/[**1**] = 1:2:10. Rate constant, $k_{obs} = 2.78 \times 10^{-4} \text{ s}^{-1}$.

Figure S-2. ¹H spectra reaction monitoring of $Tp^{fBu}Cu(NCMe)$:AIBN:**1** (ratio1:20:200) in C_6D_6 at 60°C. A proton spectrum was registered every 3.6 min.

Bn H N Cl Cl CN H 6

Bn N O Cl Cl Cl Cl Cl 7

Bn Н Ń 0 ID/m CI H || 0 11

