Electronic Supporting Information

Photocatalytic production of hydrogen peroxide by two-electron reduction of dioxygen with carbon-neutral oxalate using 2-phenyl-4-(1-naphthyl)quinolinium ion as a robust photocatalyst

Yusuke Yamada,^a Akifumi Nomura,^a Takamitsu Miyahigashi^a and Shunichi Fukuzumi*^{*a,b*}

^a Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan

^b Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea

* To whom correspondence should be addressed. E-mail: fukuzumi@chem.eng.osaka-u.ac.jp

Fig. S1 (a) Time courses of H_2O_2 production under photoirradiation of an oxygen-saturated mixed solution of an phosphate buffer (200 mM, pH 7.0 for 1.5-6.0 mM oxalate) or pure water (for 12 mM and 200 mM oxalate) and MeCN [1:1 (v/v)] containing QuPh⁺–NA (0.22 mM) and oxalate (1.5 mM, closed circle; 3.0 mM, closed triangle; 5.0 mM, open triangle; 6.0 mM, x; 12 mM, + and 200 mM, rectangle). (b) H_2O_2 production rate determined from the initial (90 min) slope of the time courses *vs.* concentration of oxalate in an oxygen-saturated mixed solution of an aqueous phosphate buffer (200 mM, pH 7.0) and MeCN.

Fig. S2 Cyclic voltammograms of oxalate in a deaerated mixed solution of a phosphate buffer (200 mM, pH 7.0) and MeCN [1:1 (v/v)]. The concentration of oxalic acid was 0 mM (black) or 2.5 mM (red) and the scan rate was 100 mV/sec.

Fig. S3 (a) Time courses of hydrogen peroxide production under photoirradiation ($\lambda = 334 \text{ nm}$) of an oxygen saturated mixed solution (2.0 mL) of pure water and MeCN [1:1 (v/v)] containing oxalate ions (200 mM) and QuPh⁺–NA (0.0596 mM). The total mole (einstein) number of incident photons was measured by a standard method using an actinometer (potassium ferrioxalate, K₃[Fe^{III}(C₂O₄)₃]) in an aqueous solution at room temperature where photon flux was determined to be 1.15 × 10⁻⁸ einstein s⁻¹. The absorbance of the solution at 334 nm was 1.028, indicating transmittance of 0.094.

 $\boldsymbol{\Phi} = \{1.42 \times 10^{-9} / (1.15 \times 10^{-8} \times 0.906)\} = 0.136 (0.14)$

Fig. S4 Transient absorption spectra of QuPh⁺–NA (0.056 mM) in a mixed solution of a deaerated phosphate buffer (pH 7.0) and MeCN [1:1 (v/v)] at 298 K taken at 8.0 μ s (red) and 24 μ s (blue) after nanosecond laser excitation at 355 nm in the presence of oxygen (0.024 mM).

Comment: The absorption ascribed to NA^{•+} moiety decayed depending on the time perhaps due to back electron transfer from $O_2^{\bullet-}$ to NA^{•+}.