Total Synthesis and Stereochemical Revision of Lagunamide A

Lu Dai, ${ }^{a}$ Bo Chen, ${ }^{a}$ Zhuo Wang, ${ }^{b}$ Yuqing Liu, ${ }^{b}$ ZhengshuangXu, ${ }^{a, b}$ Tao $Y \mathbf{e}^{* a, b}$
${ }^{a}$ Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, University Town of Shenzhen, Xili, Nanshan District, Shenzhen, China, 518055; E-mail: bctaoye@inet.polyu.edu.hk; xuzs@pkusz.edu.cn
${ }^{b}$ Department of Applied Biology \& Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China Tel: +852 34008722; E-mail: bctaoye@inet.polyu.edu.hk

Supporting Information

General Experimental

Unless otherwise stated, commercially available reagents were used without further purification. All solvents were distilled prior to use: Toluene, tetrahydrofuran (THF), diethyl ether and benzene were distilled from Na /benzophenone, dichloromethane, DMF, triethylamine (TEA), acetonitrile, collidine and diisopropylethylamine (DIPEA) were distilled from CaH_{2}. Methanol was distilled under N_{2} atmosphere from $\mathrm{Mg} / \mathrm{I}_{2}$. All reactions were conducted in oven-dried $\left(120{ }^{\circ} \mathrm{C}\right)$ or flame-dried glasswares under N_{2} atmosphere, and at ambient temperature (20 to $25^{\circ} \mathrm{C}$) unless otherwise stated. All non-aqueous reactions were performed by standard syringe in septa techniques. Evaporation and concentration under reduced pressure was performed at $50-500$ mbar. ${ }^{1} \mathrm{H}$ NMR $\left({ }^{13} \mathrm{C}\right.$ NMR $)$ spectra were recorded in CDCl_{3} (unless stated otherwise) on Bruker Avance AV500, or Bruker Avance AV400, or DPX-300 at $500 \mathrm{MHz}(125 \mathrm{MHz}$) or $400 \mathrm{MHz}(100 \mathrm{MHz}$) or $300 \mathrm{MHz}(75 \mathrm{MHz}$), respectively. Chemical shifts are reported as δ values (ppm) referenced to either a tetramethylsilane (TMS) internal standard or the signals due to the solvent residual. Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift (δ ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{br}=$ broad, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet), coupling constant (Hz), integration. Some peptide intermediates exist as rotational conformers, the chemical shift for the minor isomers were indicated using parentheses next to the peak for their major isomers. Mass spectra were measured on ABI Q-star Elite. Optical rotations were measured on a Perkin-Elmer 351 polarimeter at 589 nm with a 100 mm path length cell at $20{ }^{\circ} \mathrm{C}$ (reported as follows: concentration (c in $\mathrm{g} / 100 \mathrm{~mL}$, solvent). The reaction progress was checked on pre-coated thin layer chromatography (TLC) plates. TLC was carried out using pre-coated sheets (Qingdao silica gel 60-F250, 0.2 mm) which, after development, were visualized under UV light at 254nm. Flash column chromatography was performed using the indicated solvents on E. Qingdao silica gel 60 (230-400 mesh ASTM). Yields refer to chromatographically purified compounds, unless otherwise stated.

Experimental procedures:

Acid $8(104.0 \mathrm{mg}, 0.30 \mathrm{mmol})$ and amine $9(22.0 \mathrm{mg}, 0.10 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. DIPEA ($88 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$), HATU ($133.0 \mathrm{mg}, 0.35 \mathrm{mmol}$) and HOAt ($48.0 \mathrm{mg}, 0.35 \mathrm{mmol}$) were added. The reaction mixture was stirred at room temperature overnight and quenched by adding ice water (4 mL). The aqueous layer was extracted with ethyl acetate ($5 \mathrm{~mL} \times 3$). The combined organic layers were washed with saturated aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL}), \mathrm{NH}_{4} \mathrm{Cl}$ $(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$ successively, then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, ethyl acetate / hexanes, $1 / 1$) to afford 3 ($46.0 \mathrm{mg}, 84 \%$) as colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}=+42.3$ (c 1.5, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta 7.32-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.75-6.56(\mathrm{~m}, 1 \mathrm{H}), 5.82-5.51(\mathrm{~m}, 1 \mathrm{H}), 5.34-5.21(\mathrm{~m}, 1 \mathrm{H}), 4.72-4.58(\mathrm{~m}$, $1 \mathrm{H}), 4.51-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.15-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.21-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.01(\mathrm{~m}, 1 \mathrm{H}), 3.05$ $(\mathrm{s}, 3 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.32(\mathrm{~m}, 9 \mathrm{H}), 1.32-1.05(\mathrm{~m}, 2 \mathrm{H}), 1.02-0.68(\mathrm{~m}, 9 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.2,172.5,171.1,168.3,155.2,136.3,129.2,128.3,126.8$, $79.5,55.2,53.8,52.6,52.2,46.6,37.5,36.5,35.2,30.3,28.2,26.2,17.7,14.6,11.6 \mathrm{ppm}$; HRMS (ESI) m / z calculated for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{NaO}_{7}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 571.3102, found: 571.3090.

Compound 3 ($137.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) was dissolved in THF-MeOH- $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL}, 2 / 2 / 1)$ at $0^{\circ} \mathrm{C}$. $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(32.0 \mathrm{mg}, 0.75 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature for 2 h . Volatiles were evaporated in vacuo. The aqueous layer was washed with diethyl ether (5 mL), then acidified to pH 3 with 1 N HCl and extracted with ethyl acetate ($5 \mathrm{~mL} x 3$). The combined organic layers were washed with brine (10 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give acid 10 (129.7 mg, 97\%).

D-allo-Isoleucine 11 ($26.24 \mathrm{~g}, 200 \mathrm{mmol}$) was dissolved in dilute sulfuric acid ($500 \mathrm{~mL}, 400 \mathrm{mmol}$, $0.8 \mathrm{~N})$ at $0^{\circ} \mathrm{C}$. Sodium nitrite ($41.40 \mathrm{~g}, 600 \mathrm{mmol}$) was added slowly. The mixture was allowed to stir at $0^{\circ} \mathrm{C}$ for 6 h . The solution was transferred into a separating funnel and extracted with diethyl ether ($300 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine (100 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and recrystallized from hexane-ether to give hydroxyl acid 11.1 ($18.33 \mathrm{~g}, 69 \%$) as a white amorphous solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.28$ (d, $\mathrm{J}=2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.98-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.31(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88$ (d, J $=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.0,72.9,38.4,25.9,13.1,11.7 \mathrm{ppm}$.

The hydroxyl acid $11.1(2.00 \mathrm{~g}, 15.13 \mathrm{mmol})$ was dissolved in acetyl chloride (10 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was then refluxed at $60^{\circ} \mathrm{C}$ for 8 h . Excess acetyl chloride was removed under vacuum. Diethyl ether (300 mL) was added, and the solution was washed with water (200 mL). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue (without further purification) was dissolved in tert-butyl alcohol (80 mL). $\mathrm{Boc}_{2} \mathrm{O}(5.2 \mathrm{~mL}, 22.70 \mathrm{mmol})$ and DMAP ($486.0 \mathrm{mg}, 4.00 \mathrm{mmol}$) were added. The reaction mixture was stirred at room temperature for 24 h and the solvent was then removed under vacuum. Diethyl ether (300 mL) was added and the solution was washed with water (200 mL) and brine (200 mL). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, ethyl acetate / hexanes, $1 / 10$) to afford $12(2.98 \mathrm{~g}, 73 \%)$ as a colorless oil. $[\alpha]_{D}{ }^{20}=+$ 23.1 (c 8.5, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.86$ (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.10 (s, 3H), 1.99-1.86 (m, 1H), 1.44 (s, 9H), 1.45-1.36 (m, 1H), 1.29-1.18 (m, 1H), 0.93-0.87 (m, 6H) ppm; ${ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.7,169.0,81.8,75.0,36.4,27.9,25.8,20.6,14.1,11.6 \mathrm{ppm}$; HRMS (ESI) m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NaO}_{4}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 253.1410, found: 253.1410.

Compound 12 ($9.20 \mathrm{~g}, 40 \mathrm{mmol}$) was added to a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(16.56 \mathrm{~g}, 120 \mathrm{mmol})$ in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(110 \mathrm{~mL}, 1 / 10)$. The reaction solution was stirred vigorously at room temperature for 12 h . Methanol was removed under vacuum, and the aqueous residue was extracted with diethyl ether ($150 \mathrm{~mL} x$ 2). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo. The residue was purified by column chromatography (silica gel, ethyl acetate / hexanes, 1 / 10) to afford the corresponding alcohol 12.1 ($6.40 \mathrm{~g}, 85 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}=-3.1$ (c 0.7, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.05(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.83-1.68 (m, 1H), $1.51(\mathrm{~s}, 9 \mathrm{H})$, $1.60-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.23(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 174.7,82.3,73.0,38.5,28.0,26.0,12.9,11.9 \mathrm{ppm}$; HRMS (ESI) m/z calculated for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 211.1305, found: 211.1306.

2-(Diethoxyphosphoryl)-propanoic acid ($0.34 \mathrm{~g}, 1.60 \mathrm{mmol}$), DIPC ($0.25 \mathrm{~mL}, 1.60 \mathrm{mmol}$) and collidine ($1.1 \mathrm{~mL}, 1.06 \mathrm{mmol}$) were added to a solution of alcohol $12.1(0.20 \mathrm{~g}, 1.06 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The reaction mixture was stirred at room temperature overnight and quenched by brine (10 mL). The aqueous layer was extracted with ethyl acetate (10 mL x 3). The combined organic layers were washed with brine (20 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, ethyl acetate / hexanes, 1 / 1) to afford 5 ($0.39 \mathrm{~g}, 98 \%$) as colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}=+27.4$ (c 2.5, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 4.86(\mathrm{dd}, J=14.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.08(\mathrm{~m}, 4 \mathrm{H}), 3.11-2.98(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 1 \mathrm{H})$, 1.49-1.33 (m, 13H), 1.31-1.25 (m, 7H), 0.93-0.82 (m, 6H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 169.4, 169.4, 168.9, 168.8, 168.5, 168.3, 81.8, 75.7, 62.6, 62.5, 62.5, 62.4, 62.4, 40.2, 39.3, 39.2, 38.3, 36.6, 36.5, 27.9, 27.9, 27.8, 25.7, 25.7, 16.3, 16.2, 14.1, 11.7, 11.6 ppm; HRMS (ESI) m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{NaO}_{7} \mathrm{P}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 403.1856, found: 403.1853.

Di-n-butylborontriflate ($5.3 \mathrm{~mL}, 24.56 \mathrm{mmol}$) was added to a solution of Evans (R)-oxazolidinone $13(4.80 \mathrm{~g}, 20.60 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, followed by addition of DIPEA (4.7 mL , 26.96 mmol). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 0.5 h and then cooled to $-78{ }^{\circ} \mathrm{C}$. To the above enolate solution was added a solution of (S)-2-methylbutanal ($1.96 \mathrm{~g}, 22.79 \mathrm{mmol}$, dissolved in 50 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) slowly via a syringe. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 20 min , then was allowed to warm to $0^{\circ} \mathrm{C}$ and stirred for an additional 2 h . The reaction was quenched by pH 7.1 phosphate buffer (20 mL) and methanol (60 mL). Then a solution of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(20 \mathrm{~mL})$ and methanol (40 mL) was added slowly to keep the internal temperature below $5^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for an additional 1 h . Volatiles were removed on a rotary evaporator at a bath temperature of $25-30^{\circ} \mathrm{C}$. The resulting slurry was extracted with diethyl ether ($200 \mathrm{~mL} x \mathrm{3}$). The combined organic extracts were washed with aqueous $\mathrm{NaHCO}_{3}(400 \mathrm{~mL}, 5 \%)$ and brine (400 mL), dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, ethyl acetate / hexanes, $1 / 6$) to afford the desired product 13.1 ($5.45 \mathrm{~g}, 83 \%$) as a white amorphous solid. $[\alpha]_{\mathrm{D}}{ }^{20}=-53.6\left(c 2.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33-7.20(\mathrm{~m}, 5 \mathrm{H}), 4.73-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.17(\mathrm{~m}, 2 \mathrm{H}), 3.98-3.94(\mathrm{~m}, 1 \mathrm{H})$, 3.63 (dd, $J=2.1,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=3.3,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=9.4,13.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.82-1.77 (m, 1H), 1.54-1.50 (m, 1H), 1.28-1.23 (m, 3H), 1.21-1.18 (m, 1H), 0.97-0.86 (m, 6H) ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 178.0,152.8,135.1,129.4,128.9,127.4,74.8,66.1,55.1,39.5,37.8$, 37.0, 25.1, 14.7, 10.8, 9.7 ppm; HRMS (ESI) m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NNaO}_{4}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 342.1676, found: 342.1676.

To a solution of alcohol 13.1 ($3.33 \mathrm{~g}, 10.43 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}(55 \mathrm{~mL}, 10 / 1)$ at $0{ }^{\circ} \mathrm{C}$ was added sodium borohydride ($1.00 \mathrm{~g}, 26.08 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 12 h , then cooled to $0^{\circ} \mathrm{C}$ and quenched by addition of saturated aqueous ammonium
chloride solution (50 mL). Volatiles were evaporated under vacuum. Aqueous phase was extracted with diethyl ether ($100 \mathrm{~mL} x \mathrm{3}$). The combined organic layers were washed with brine (200 mL), dried over anhydrous sodium sulfate and concentrated in vacuo. The residue was purified by column chromatography (silica gel, ethyl acetate / hexanes, $1 / 1$) to afford the diol 13.2 (1.32 g , 87%) as a white amorphous solid. $[\alpha]_{\mathrm{D}}{ }^{20}=-12.3\left(c 1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 3.79-3.68 (m, 2H), 3.52 (dd, $J=2.1,9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.33-2.28 (m, 2H), 1.85-1.81 (m, 1H), 1.78-1.70 (m, 1H), 1.53-1.46 (m, 1H), 1.20-1.10 (m, 1H), 0.95-0.85 (m, 6H), 0.81 (d, J = 6.7 Hz, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 77.7,67.8,37.6,35.9,25.2,14.8,10.8,8.7 \mathrm{ppm}$; HRMS (ESI) m / z calculated for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 169.1199, found: 169.1197.

Anisaldehyde dimethyl acetal ($1.5 \mathrm{~mL}, 8.79 \mathrm{mmol}$) and PPTS ($150.6 \mathrm{mg}, 0.60 \mathrm{mmol}$) were added to a solution of the diol $13.2(0.88 \mathrm{~g}, 6.03 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$. The reaction mixture was stirred at room temperature overnight and quenched by triethylamine ($10 \mathrm{~mL}, 71.76 \mathrm{mmol}$). Ethyl acetate $(100 \mathrm{~mL})$ was added, the solution was washed with saturated aqueous solution of $\mathrm{NaHCO}_{3}(80 \mathrm{~mL})$ and brine (80 mL) successively. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, ethyl acetate / hexanes, $1 / 5$) to afford $14(1.38 \mathrm{~g}, 87 \%)$ as a pale yellow oil. $[\alpha]_{\mathrm{D}}{ }^{20}=-25.6$ (c 3.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{~s}$, $1 \mathrm{H}), 4.05(\mathrm{~d}, ~ J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{dd}, J=2.4,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.77(\mathrm{~m}, 1 \mathrm{H})$, $1.71-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.21-1.11(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.7,131.7,127.2,113.5,101.6,83.7,74.0,55.2$, 35.5, 30.0, 25.0, 13.4, 10.9, 10.6 ppm ; HRMS (ESI) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 287.1618, found: 287.1619.

To a solution of acetal $14(2.21 \mathrm{~g}, 8.37 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL})$ was added diisobutylaluminum hydride ($14.0 \mathrm{~mL}, 16.74 \mathrm{mmol}, 1.2 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $78^{\circ} \mathrm{C}$ and allowed to worm to $-10^{\circ} \mathrm{C}$ for 2 h , then quenched by saturated aqueous potassium sodium tartrate solution (100 mL) and diluted with ethyl acetate (100 mL). The solution was vigorously stirred for 3 h . Layers were separated, and the aqueous phase was extracted with ethyl acetate (50 $\mathrm{mL} \mathrm{x} \mathrm{3)} .\mathrm{The} \mathrm{combined} \mathrm{organic} \mathrm{layers} \mathrm{were} \mathrm{washed} \mathrm{with} \mathrm{brine} \mathrm{(} 200 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, ethyl acetate / hexanes, $1 / 4$) to afford alcohol $14.1(2.17 \mathrm{~g}, 97 \%)$ as a yellow oil. $[\alpha]_{\mathrm{D}}{ }^{20}=+1.2(\mathrm{c}$ 2.7, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), $6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.52$ (q, $J=10.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{dd}, J=3.0,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{dd}, J=2.7,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 1.98-1.89 (m, 2H), 1.77-1.65 (m, 2H), 1.26-1.10 (m, 1H), 1.02-0.95 (m, 9H) ppm; ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 159.0,131.0,129.2,113.7,83.8,73.9,66.6,55.2,37.4,37.2,25.4,15.6,11.6,10.8 \mathrm{ppm} ;$ HRMS (ESI) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}:$289.1774, found: 289.1780.

To a solution of alcohol 14.1 ($1.00 \mathrm{~g}, 3.76 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added sodium bicarbonate $(1.58 \mathrm{~g}, 18.81 \mathrm{mmol})$ and Dess-Martin periodinane $(4.00 \mathrm{~g}, 9.40 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After being stirred for 1 h , the reaction mixture was quenched by saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(30 \mathrm{~mL})$ and $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 $\mathrm{mL} \mathrm{x} 3)$. The combined organic layers were washed with brine (150 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue, without further purification, was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. After allyltributyltin ($1.75 \mathrm{~mL}, 5.64 \mathrm{mmol}$) was added, the reaction solution was cooled to $-78{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.70 \mathrm{~mL}, 5.64 \mathrm{mmol})$ was added dropwise at $-78^{\circ} \mathrm{C} .2 \mathrm{~h}$ later, the reaction was poured into saturated aqueous NaHCO_{3} solution (50 mL) and extracted with ethyl
acetate ($100 \mathrm{~mL} x$ 3). The combined organic layers were washed with brine (200 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo.The residue was purified by column chromatography (silica gel, ethyl acetate / hexanes, $1 / 4$) to afford 15 and $\mathbf{1 5 a}(1.09 \mathrm{~g}, 95 \%)$ as colorless oil. The ratio of $\mathbf{1 5}$ and 15a was $70: 30$.

Analytical data for 15: $[\alpha]_{\mathrm{D}}{ }^{20}=+22.9\left(c 3.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28(\mathrm{~d}, \mathrm{~J}=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}$), $6.87(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.92-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57$ (d, $J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{dd}, J=1.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.46-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.09(\mathrm{~m}, 1 \mathrm{H})$, $1.80-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.20-1.17(\mathrm{~m}, 1 \mathrm{H}), 0.95-0.85(\mathrm{~m}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.1$, 135.1, 131.3, 129.0, 118.0, 113.7, 82.8, 73.3, 72.7, 55.2, 39.9, 39.7, 37.3, 25.6, 15.7, 11.6, 11.0 ppm; HRMS (ESI) m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 329.2087$, found: 329.2089.

Analytical data for 15a: $[\alpha]_{\mathrm{D}}{ }^{20}=-6.7\left(c 1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.29(\mathrm{~d}, \mathrm{~J}=8.4$ Hz, 2H), 6.88 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $5.91-5.77$ (m, 1H), 5.15 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10$ (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.70 (q, $J=10.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.93-3.89 (m, 1H),3.80 (s, 3H), 3.60 (dd, $J=2.1,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.28(\mathrm{~m}$, $2 \mathrm{H}), 1.87-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.24(\mathrm{~m}, 1 \mathrm{H}), 0.99-0.85(\mathrm{~m}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 159.4,135.1,130.0,129.5,117.5,114.0,85.3,74.5,74.3,55.2,43.3,39.8,38.0$, 23.6, 13.6, 9.5, 6.3 ppm; HRMS (ESI) m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 329.2087$, found: 329.2090.

DDQ ($127.0 \mathrm{mg}, 0.56 \mathrm{mmol}$) was added to a solution of $\mathbf{1 5}(118.0 \mathrm{mg}, 0.28 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ aqueous solution of $\mathrm{Na}_{2} \mathrm{HPO}_{4} / \mathrm{NaH}_{2} \mathrm{PO}_{4}$ buffer (pH 7.1, 2 mL). The reaction mixture was stirred at room temperature for 10 min , then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and saturated aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. Layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL x 3). The combined organic layers were washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to afford diol 15.1. Diol 15.1 ($52.0 \mathrm{mg}, 0.28 \mathrm{mmol}$) was dissolved in 2,2-dimethoxypropane (2 mL). After $\mathrm{p}-\mathrm{TsOH}-\mathrm{H}_{2} \mathrm{O}$ (PTSA) ($1.9 \mathrm{mg}, 0.01 \mathrm{mmol}$) was added, the reaction mixture was stirred at room temperature for 5 h and then diluted with ethyl acetate (10 mL).

The organic solution was washed by saturated aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, ethyl acetate / hexanes, $1 / 20$) to afford 16 ($60.0 \mathrm{mg}, 95 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.86$ (ddt, $J=17.1,10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.15-4.99(\mathrm{~m}$, $2 H), 3.40(\mathrm{dd}, J=10.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.32$ (dd, $J=13.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.32-2.23 (m, 2H), 1.81-1.68 $(\mathrm{m}, 2 \mathrm{H}), 1.53-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.06-0.93(\mathrm{~m}, 1 \mathrm{H}), 0.93-0.83(\mathrm{~m}, 6 \mathrm{H}), 0.79$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 135.3,116.4,100.6,74.9,72.9,39.1,37.8$, 34.0, 25.4, 24.9, 23.9, 14.3, 11.8, 10.7 ppm ; HRMS (ESI) m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 227.2006, found: 227.2004.

To a solution of $\mathbf{1 5}(1.09 \mathrm{~g}, 3.56 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ were added 2,6-lutidine ($1.2 \mathrm{~mL}, 10.68$ mmol) and TESOTf ($1.6 \mathrm{~mL}, 7.12 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h and quenched by aqueous solution of $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$. Layers were separated and the aqueous phase was extracted with diethyl ether (50 mL x 3). Combined organic layers were washed with brine (150 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, ethyl acetate / hexanes, 1 / 30) to afford the corresponding silyl ether ($1.30 \mathrm{~g}, 87 \%$).

The silyl ether ($1.30 \mathrm{~g}, 3.10 \mathrm{mmol}$) was dissolved in dioxane-water ($24 \mathrm{~mL}, 3 / 1$). 2,6-Lutidine (0.8 $\mathrm{mL}, 4.00 \mathrm{mmol})$ was added, followed by the addition of $\mathrm{OsO}_{4}(0.6 \mathrm{~mL}, 0.05 \mathrm{mmol}, 0.02 \mathrm{M}$ in tert-butanol) and $\mathrm{NaIO}_{4}(1.53 \mathrm{~g}, 7.14 \mathrm{mmol})$. The reaction mixture was stirred at room temperature and monitored by TLC. When the starting material was consumed, the reaction was quenched by addition of saturated solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(20 \mathrm{~mL})$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. Layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL} x 3)$. The combined organic layers were washed with saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(100 \mathrm{~mL})$ and brine (100 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, ethyl acetate / hexanes, 1 / 10) to afford the corresponding aldehyde 6
$(1.24 \mathrm{~g}, 95 \%)$ as colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}=-3.3\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.80(\mathrm{~s}$, 1 H), 7.24 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.87 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 4.53 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.36 (d, $J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), ~ 4.25-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.21-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.46(\mathrm{~m}, 1 \mathrm{H})$, 1.95-1.93 (m, 1H), 1.72-1.68 (m, 1H), 1.60-1.55 (m, 1H), 1.27-1.19 (m, 1H), 0.98-0.93 (m, 18H), $0.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.4,159.1,131.1,128.8,113.7,83.7$, 72.9, 71.0, 55.2, 47.4, 41.3, 37.6, 25.0, 15.6, 11.9, 9.3, 6.8, 5.1 ppm; HRMS (ESI) m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{NaO}_{4} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 445.2745$, found: 445.2746.

A solution of $5(0.72 \mathrm{~g}, 1.90 \mathrm{mmol})$ in acetonitrile (4 mL) was added to pre-activated $\mathrm{LiCl}(0.16 \mathrm{~g}$, 3.80 mmol) in acetonitrile (4 mL), followed by DIPEA ($0.26 \mathrm{~mL}, 1.52 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 20 min . Aldehyde 6 ($0.32 \mathrm{~g}, 0.76 \mathrm{mmol}$) in acetonitrile (4 mL) was added. Then the reaction mixture was stirred at room temperature for 20 h and quenched by the addition of saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The aqueous layer was extracted with diethyl ether (20 mL x 3). The combined organic layers were washed with brine (60 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, ethyl acetate / hexanes, $1 / 10$) to afford $17(0.41 \mathrm{~g}, 84 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}=+5.0$ (c $0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.26(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.95(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{q}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.84-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $3.30(\mathrm{t}, \mathrm{J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.86$ (s, 3H), $1.88-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.51-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.29$ $(\mathrm{m}, 1 \mathrm{H}), 1.27-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.98-0.92(\mathrm{~m}, 21 \mathrm{H}), 0.65-0.55(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 169.2,167.4,159.0,140.3,131.6,128.7,128.5,113.8,83.7,81.6,75.2$, 74.2, 73.3, 55.3, 41.3, 38.0, 36.8, 33.0, 28.0, 26.2, 24.9, 15.8, 14.2, 12.7, 11.9, 11.6, 10.0, 6.9, 5.4 ppm; HRMS (ESI) m / z calculated for $\mathrm{C}_{37} \mathrm{H}_{64} \mathrm{NaO}_{7} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 671.4314, found: 671.4293.

Compound 17a was prepared from aldehyde $\mathbf{6 a}$ using procedures for 17. Analytical data for 17a: $[\alpha]_{\mathrm{D}}{ }^{20}=-21.5\left(c 0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.26(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{t}, \mathrm{J}=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.95(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{q}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.15-4.05(\mathrm{~m}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{t}, \mathrm{J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.97(\mathrm{~m}, 1 \mathrm{H})$, 1.85 (s, 3H), 1.88-1.69 (m, 1H), 1.68-1.45 (m, 12H), 1.35-1.28 (m, 1H), 1.28-1.15 (m, 1H), 1.10-0.89 ($\mathrm{m}, 24 \mathrm{H}$), $0.61(\mathrm{t}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.2,167.4,159.0,140.3$, 131.7, 128.7, 128.5, 113.7, 84.0, 81.6, 75.2, 74.6, 73.8, 55.3, 41.0, 38.0, 36.8, 33.1, 28.2, 26.2, 24.7, 15.9, 14.2, 12.7, 11.9, 11.6, 10.2, 6.9, 5.4 ppm; HRMS (ESI) m / z calculated for $\mathrm{C}_{37} \mathrm{H}_{64} \mathrm{NaO}_{7} \mathrm{Si}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 671.4314$, found: 671.4293.

DDQ ($153.0 \mathrm{mg}, 0.68 \mathrm{mmol}$) was added to a solution of $17(219.0 \mathrm{mg}, 0.34 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ mL) and aqueous solution of $\mathrm{Na}_{2} \mathrm{HPO}_{4} / \mathrm{NaH}_{2} \mathrm{PO}_{4}$ buffer ($\mathrm{pH} 7.1,2 \mathrm{~mL}$). The reaction mixture was stirred at room temperature for 10 min and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and saturated aqueous solution of $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. Layers were separated, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL x 3). The combined organic layers were washed with brine (50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, ethyl acetate / hexanes, $1 / 10$) to afford 19 ($89.0 \mathrm{mg}, 64 \%$) and 18 ($45.0 \mathrm{mg}, 32 \%$) as colorless oil.

Analytical data for compound 19: $[\alpha]_{\mathrm{D}}{ }^{20}=+3.5\left(c 2.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.74$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, 2.65-2.55 (m, 1H), 2.55-2.48 (m, 1H), 2.04-1.98(m, 1H), $1.91(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.79(\mathrm{~m}, 1 \mathrm{H})$, 1.66-1.63(m, 1H), 1.46 (s, 9H), 1.50-1.42 (m, 1H), 1.33-1.26 (m, 2H), 1.15-1.08 (m, 1H), 1.11-0.96 $(\mathrm{m}, 15 \mathrm{H}), 0.94-0.89(\mathrm{~m}, 6 \mathrm{H}), 0.70(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.64(\mathrm{q}, \mathrm{J}=8.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125
$\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.0,167.3,138.0,129.2,81.7,78.0,75.3,74.1,37.3,36.8,36.7,35.0,28.0,26.1$, 25.2, 14.6, 14.3, 12.8, 11.6, 10.9, 10.8, 6.8, 5.0 ppm ; HRMS (ESI) m / z calculated for $\mathrm{C}_{29} \mathrm{H}_{57} \mathrm{O}_{6} \mathrm{Si}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 529.3919$, found: 529.3918.

Analytical data for compound 18: $[\alpha]_{\mathrm{D}}{ }^{20}=-6.1\left(c 1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $6.88(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ $(\mathrm{s}, 2 \mathrm{H}), 2.55-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.73(\mathrm{~m}, 1 \mathrm{H})$, $1.73-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.46$ (s, 9H), 1.35-1.25 (m, 1H), 1.18-1.10 (m, 1H), 0.97 (t, J $=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.91(\mathrm{q}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.76(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 169.3,167.4,139.1,129.4,81.8,75.4,75.2,74.7,38.2,37.6,36.8,35.0,28.0,26.2,25.4,14.8$, 14.3, 12.7, 11.6, 10.8, 10.2 ppm ; HRMS (ESI) m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{NaO}_{6}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 415.3054$, found: 415.3054.

Compound 18 could be transformed into silyl ether 19: Thus, to a solution of 18 ($89.0 \mathrm{mg}, 0.21$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ were added 2,6-lutidine ($49 \mu \mathrm{~L}, 0.42 \mathrm{mmol}$) and TESOTf ($48 \mu \mathrm{~L}, 0.21$ mmol) at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h and quenched by aqueous solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. Layers were separated and the aqueous phase was extracted with diethyl ether ($5 \mathrm{~mL} x 3$). The combined organic layers were washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, ethyl acetate / hexanes, $1 / 10$) to afford $19(86.0 \mathrm{mg}, 78 \%)$. The analytical data of compound 19 produced in this procedure was identical to that of the product obtained from DDQ treatment of compound 17.

Analytical data for compound 19a: $[\alpha]_{\mathrm{D}}{ }^{20}=-18.1\left(c 3.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$): δ $6.96(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=7.9,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.65-2.54 (m, 1H), 2.54-2.43 (m, 1H), 2.03-1.98 (m, 1H), 1.89 (s, 3H), 1.81-1.62 (m, 3H), 1.58-1.41 $(\mathrm{m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.40-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.22-1.08(\mathrm{~m}, 1 \mathrm{H}), 1.08-0.85(\mathrm{~m}, 22 \mathrm{H}), 0.82(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}$, 3H), 0.68-0.62 (m, 6H) ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz, MeOD): $\delta 169.3,167.6,140.0,128.3,81.7,75.2$,
74.9, 74.4, 40.1, 37.8, 36.7, 33.7, 27.0, 25.9, 24.4, 14.6, 13.5, 11.6, 10.6, 10.1, 8.1, 6.0, 4.9 ppm ; HRMS (ESI) m / z calculated for $\mathrm{C}_{29} \mathrm{H}_{56} \mathrm{NaO}_{6} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 551.3738, found: 551.3739.

Collidine ($111 \mu \mathrm{~L}, 0.83 \mathrm{mmol}$) and DMAP ($2.3 \mathrm{mg}, 0.019 \mathrm{mmol}$) were added to a solution of 19 ($44.0 \mathrm{mg}, 0.083 \mathrm{mmol}$) in toluene (1 mL) at $0^{\circ} \mathrm{C}$, followed by slowly addition of freshly prepared Fmoc-N(Me)-Val-Cl (7) ($143.0 \mathrm{mg}, 0.42 \mathrm{mmol}$) in toluene (4 mL). The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 8 h , then cooled to room temperature and poured into saturated aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous layer was extracted with ethyl acetate ($10 \mathrm{~mL} x$ 3). The combined organic layers were washed with saturated aqueous solution of $\mathrm{NaHCO}_{3}(25 \mathrm{~mL}), \mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ and brine (25 mL) successively, then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, ethyl acetate / hexanes, $1 / 4$) to afford compound 4 ($45.0 \mathrm{mg}, 65 \%$) as colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}=-2.0\left(c 3.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); ${ }^{1} \mathrm{H}$ NMR (500 MHz , MeOD): $\delta 7.79$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.52$ (m, 2H), 7.39 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, 6.96 (t, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.93(\mathrm{~m}, 1 \mathrm{H}), 4.91-4.84(\mathrm{~m}, 1 \mathrm{H}), 4.75-4.65(\mathrm{~m}, 1 \mathrm{H}), 4.46-4.32(\mathrm{~m}, 2 \mathrm{H})$, 4.25-4.16 (m, 1H), 3.79-3.69 (m, 1H), 2.90-2.81 (m, 3H), 2.45-2.35 (m, 1H), 2.35-2.26 (m, 1H), 2.02-1.95 (m, 1H), 1.86 (s, 3H), 1.91-1.84 (m, 1H), 1.67-1.58 (m, 1H), 1.53-1.39 (m, 13H), 1.39-1.23 (m, 2H), 1.14-1.03 (m, 1H), 1.02-0.89 (m, 15H), 0.85-0.78 (m, 9H), 0.61 (q, $J=8.0,6 H) ~ p p m ; ~{ }^{13} \mathrm{C}$ NMR (125 MHz, MeOD): δ 171.7, 169.3, 167.4, 156.7, 143.9, 141.3, 139.5, 128.6, 127.5, 126.8, 124.6, 119.6, 81.7, 78.2, 75.2, 72.7, 67.6, 54.8, 40.2, 36.9, 36.9, 32.6, 30.0, 27.0, 25.9, 24.1, 24.0, 14.8, 13.8, 13.5, 11.6, 10.6, 10.3, 9.0, 6.1, 4.8 ppm ; HRMS (ESI) m / z calculated for $\mathrm{C}_{48} \mathrm{H}_{73} \mathrm{NNaO}_{9} \mathrm{Si}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 858.4947$, found: 858.4941.

Analytical data for compound 4a: $[\alpha]_{\mathrm{D}}{ }^{20}=-12.5\left(c 1.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$): δ
$7.80(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{dd}, J=9.6,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, 6.91-6.85 (m, 1H), 4.90-4.86 (m, 1H),4.75-4.62 (m, 1H), 4.62-4.53 (m, 1H), 4.48-4.31 (m, 2H), 4.31-4.15 (m, 1H), 3.78-3.69 (m, 1H), 2.89-2.81 (m, 3H), 2.62-2.43 (m, 1H), 2.36-2.25 (m, 1H), 2.03-1.91 (m, 1H), $1.88(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.36(\mathrm{~m}, 13 \mathrm{H})$, $1.36-1.27(\mathrm{~m}, 3 \mathrm{H}), 1.11-0.86(\mathrm{~m}, 15 \mathrm{H}), 0.83(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 9 \mathrm{H}), 0.65-0.54(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, MeOD): δ 171.8, 169.2, 167.4, 156.7, 143.8, 141.3, 139.2, 128.6, 127.5, 126.9, 124.6, 119.6, 81.7, 77.9, 75.1, 72.9, 67.9, 55.0, 39.5, 36.6, 36.5, 33.5, 30.1, 26.9, 25.9, 24.9, 24.0, 14.5, 13.8, 13.4, 11.6, 10.6, 10.1, 9.5, 6.0, 5.8, 4.7, 4.4 ppm ; HRMS (ESI) m / z calculated for $\mathrm{C}_{48} \mathrm{H}_{73} \mathrm{NNaO}_{9} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 858.4947$, found: 858.4949.

Diethylamine ($1.0 \mathrm{~mL}, 0.97 \mathrm{mmol}$) was added to a solution of $4(100.0 \mathrm{mg}, 0.12 \mathrm{mmol})$ in acetonitrile (3 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 1 h . Volatiles were removed in vacuo to give the corresponding amine.

The above amine ($73.6 \mathrm{mg}, 0.12 \mathrm{mmol}$), which was dried under high vacuum for 2 h , and acid $\mathbf{1 0}$ ($129.7 \mathrm{mg}, 0.24 \mathrm{mmol}$) were dissolved in DMF (4 mL) at $0{ }^{\circ} \mathrm{C}$. HATU ($137.0 \mathrm{mg}, 0.36 \mathrm{mmol}$), HOAt ($33.0 \mathrm{mg}, 0.24 \mathrm{mmol}$) and collidine ($80 \mu \mathrm{~L}, 0.60 \mathrm{mmol}$) were added. The reaction mixture was stirred at room temperature for 14 h and quenched by ice water (20 mL). The aqueous layer was extracted with ethyl acetate (20 mL x 3). The combined organic layers were washed with saturated aqueous solution of $\mathrm{NaHCO}_{3}(40 \mathrm{~mL}), \mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$ and brine (40 mL) successively, then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, ethyl acetate / hexanes, 1 / 2) to afford 2 ($112.0 \mathrm{mg}, 82 \%$) as a yellow oil. $[\alpha]_{\mathrm{D}}{ }^{20}=+19.2\left(c 1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$) existed as rotational conformers: δ 7.30-7.13 (m, 5H), 7.04-6.94 (m, 1H), 5.90-5.80 (m, 1H), 5.21 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-5.01(\mathrm{~m}, 1 \mathrm{H})$, 4.92-4.90 (m, 1H), 4.47-4.24 (m, 1H), 4.19-3.98 (m, 1H), 3.95-3.85 (m, 1H), 3.19-2.87 (m, 11H),
2.55-2.45 (m, 1H), 2.45-2.32 (m, 1H), 2.03-1.97 (m, 1H), 1.95-1.86 (m, 1H), 1.88 (s, 3H), 1.74-1.63 (m, 1H), 1.57-1.25 (m, 27H), 1.18-1.09 (m, 2H), 1.08-0.85 (m, 30H), 0.72-0.65 (m, 6H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{MeOD}$) existed as rotamers: δ 173.8, 172.2, 171.4, 171.1, 169.3, 167.4, 156.2, 140.0, 139.6, 139.5, 136.9, 129.3, 128.6, 128.1, 127.9, 127.5, 127.2, 126.8, 126.3, 124.7, 124.2, 119.9, 119.4, 81.8, 79.2, 79.0, 78.4, 75.2, 72.8, 67.9, 54.7, 52.8, 40.2, 37.0, 36.8, 36.7, 35.8, 34.7, 32.6, 31.0, 29.7, 27.3, 26.9, 26.2, 25.9, 24.0, 15.7, 14.7, 13.4, 13.2, 11.5, 10.8, 10.6, 10.2, 9.1, 6.0, 4.8 ppm; HRMS (ESI) m / z calculated for $\mathrm{C}_{60} \mathrm{H}_{107} \mathrm{~N}_{6} \mathrm{O}_{13} \mathrm{Si}^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 1147.7660$, found: 1147.7657.

Analytical data for compound 2a: $[\alpha]_{\mathrm{D}}{ }^{20}=+11.1\left(c 2.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); ${ }^{1} \mathrm{H}$ NMR (500 MHz , MeOD) existed as rotational conformers: $\delta 7.26-7.11(\mathrm{~m}, 5 \mathrm{H}), 6.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.81-5.66(\mathrm{~m}, 1 \mathrm{H})$, 5.21-5.17 (m, 1H), 4.99-4.85 (m, 3H), 4.40 (q, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.18-3.99 (m, 1H), 3.80 (dd, $J=$ 10.7, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-2.89(\mathrm{~m}, 11 \mathrm{H}), 2.61-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 1 \mathrm{H})$, 1.92-1.82 (m, 5H), 1.79-1.73 (m, 1H), 1.54-1.36 (m, 25H), 1.34-1.25 (m, 3H), 1.24-1.15 (m, 1H), 1.12-1.03 (m, 1H), 1.00-0.83 (m, 33H), 0.75-0.66 (m, 6H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{MeOD}$) existed as rotamers: $\delta 173.8,172.2,171.5,171.1,169.3,169.2,167.4,156.0,139.1,136.9,129.3$, 129.0, 128.8, 127.9, 127.2, 126.3, 119.6, 81.7, 79.0, 78.5, 75.2, 72.9, 54.7, 52.9, 52.6, 51.2, 39.5, $36.9,36.7,36.4,35.8,34.7,33.7,31.0,29.7,29.3,27.4,27.0,26.3,26.2,25.9,23.7,15.8,14.7,13.5$, 13.4, 13.3, 11.6, 10.9, 10.8, 10.6, 10.3, 9.4, 6.0, 5.9, 5.5, 4.8, 3.5 ppm; HRMS (ESI) m / z calculated for $\mathrm{C}_{60} \mathrm{H}_{103} \mathrm{~N}_{5} \mathrm{NaO}_{13} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 1152.7214$, found: 1152.7210.

Trifluoroacetic acid (2 mL) was added to compound $2(63.0 \mathrm{mg}, 0.056 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was then stirred at room temperature for 2 h . Volatiles were removed in vacuo. The residue was dried under high vacuum for 2 h and dissolved in DMF (60 mL). After HATU ($213.0 \mathrm{mg}, 0.56 \mathrm{mmol}$), HOAt ($38.0 \mathrm{mg}, 0.28 \mathrm{mmol}$) and collidine ($220 \mu \mathrm{~L}, 1.68 \mathrm{mmol}$) were added, the reaction mixture was stirred at room temperature for 48 h . Solvent was evaporated under high vacuum. The residue was dissolved in ethyl acetate (50 mL) and washed with saturated aqueous solution of $\mathrm{NaHCO}_{3}(40 \mathrm{~mL}), \mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$ and brine $(40 \mathrm{~mL})$ successively, then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification was performed with semi-preparative HPLC (Agilent 1200 system, using Agilent XB-C18 column (7 $\mu \mathrm{m}, 21.2 \times 250$ mm), eluting with a gradient consisting of water / MeOH from $20: 80$ to $0: 100$ within 10 min , flow rate was $10 \mathrm{~mL} \mathrm{~min}-1$, temperature was $25^{\circ} \mathrm{C}$ and the DAD detector was set at 230 nm wave length), to afford $\mathbf{1}$ ($23.0 \mathrm{mg}, 71 \%$, Retention time for HPLC: 10.125 min) after lyophilization as an amorphous powder. $[\alpha]_{\mathrm{D}}{ }^{20}=-31.0(c 0.5, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$): $\delta 8.27$ (d, $J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.46$ (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.14(\mathrm{~m}, 6 \mathrm{H}), 5.54(\mathrm{dd}, J=10.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, \mathrm{~J}=10.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.01-4.98(\mathrm{~m}, 1 \mathrm{H}), 4.91(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~d}, \mathrm{~J}=18.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.09-4.02 (m, 1H), 3.91 (q, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.36 (s, 3H), 3.05 (s, 3H), 3.10-3.02 (m, 1H), 3.02-2.96 (m, 1H), 2.84 (s, 3H), 2.48 (d, $J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.87(\mathrm{~m}, 2 \mathrm{H})$, $1.85-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~d}, J=6.5,3 H), 1.42-1.26(\mathrm{~m}, 3 \mathrm{H}), 1.16-1.10(\mathrm{~m}, 2 \mathrm{H})$, $1.06-0.87(\mathrm{~m}, 25 \mathrm{H}), 0.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{MeOD}$): $\delta 173.7,172.5$, 172.0, 171.2, 171.1, 169.1, 169.0, 144.8, 137.1, 129.3, 127.7, 127.2, 126.0, 78.7, 76.0, 71.2, 60.8, 53.8, 52.6, 51.5, 45.0, 40.8, 37.4, 37.3, 37.0, 35.2, 34.6, 34.4, 33.3, 29.2, 26.2, 26.0, 25.4, 14.4, 13.8, 13.4, 12.9, 12.9, 11.4, 10.7, 10.6, 9.5, 8.5 ppm ; HRMS (ESI) m / z calculated for $\mathrm{C}_{45} \mathrm{H}_{71} \mathrm{~N}_{5} \mathrm{NaO}_{10}{ }^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 864.5093$, found: 864.5018.

Analytical data for 1a: $[\alpha]_{\mathrm{D}}{ }^{20}=-4.6(c 0.2, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD): $\delta 7.24$ (d, $J=$ $12.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.20-7.07$ (m, 5H), 5.48 (dd, $J=10.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.93-4.89(\mathrm{~m}, 3 \mathrm{H}), 4.45$ (q, $J=7.0$ Hz, 1H), 4.21 (d, $J=18.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.90-3.76 (m, 2H), 3.29 (s, 3H), 3.19 (d, $J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ (s, 3H), 3.05-2.96 (m, 1H), 2.93 (dd, $J=14.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.16 (dd, $J=23.9,10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.91 (s, 3H), 1.89-1.83 (m, 1H), 1.80-1.71 (m, 3H), 1.49 (d, $J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.47-1.38$ (m, 2H), 1.38-1.25 (m, 2H), 1.25-1.15 (m, 2H), 1.08 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$), $1.02(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.98-0.83(\mathrm{~m}, 16 \mathrm{H}), 0.80(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (150 MHz , MeOD): $\delta 173.4,170.9,170.8,170.7,170.3,168.7,168.5,143.9,136.1,128.6,127.4,127.2,125.6$, 77.8, 75.2, 71.2, 59.7, 53.3, 52.3.50.8, 44.8, 39.9, 37.0, 36.8, 36.7, 35.4, 34.5, 33.8, 33.6, 28.8, 25.5, 24.9, 24.3, 13.5, 13.3, 13.0, 12.4, 12.3, 11.6, 10.8, 10.7, 9.4, 8.5 ppm; HRMS (ESI) m/z calculated for $\mathrm{C}_{45} \mathrm{H}_{71} \mathrm{~N}_{5} \mathrm{NaO}_{10}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 864.5093, found: 864.5118.

2,6-Lutidine ($7.7 \mathrm{~mL}, 66.11 \mathrm{mmol}$) and TESOTf ($11.4 \mathrm{~mL}, 49.60 \mathrm{mmol}$) were added to a solution of $20(4.72 \mathrm{~g}, 21.45 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h and then poured into saturated aqueous solution of NaHCO_{3} (200 mL). Layers were separated, the aqueous phase was extracted with diethyl ether ($150 \mathrm{~mL} \times 3$). The combined organic layers were washed with saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(400 \mathrm{~mL})$ and brine (400 mL), then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, ethyl acetate / hexanes, 1 / 30) to afford the silyl ether 20.1 ($6.83 \mathrm{~g}, 95 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}=-9.1\left(c 2.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.27(\mathrm{~m}, 5 \mathrm{H})$, 5.86-5.74 (m, 1H), $5.04(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.99(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{q}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.88-3.83$ (m, 1H), 3.58-3.53 (m, 2H), 2.36-2.28 (m, 1H), 1.80-1.65 (m, 2H), 1.04 (d, J = $6.9 \mathrm{~Hz}, 3 \mathrm{H}$), 0.98 (t, J
$=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.62(\mathrm{q}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.7,138.7,128.3$, 127.7, 127.5, 114.6, 73.0, 72.7, 67.5, 43.7, 33.5, 14.6, 7.0, 5.2 ppm ; HRMS (ESI) m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NaO}_{2} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 357.2220$, found: 357.2218.

Silyl ether 20.1 ($2.74 \mathrm{~g}, 8.20 \mathrm{mmol}$) was dissolved in dioxane-water ($40 \mathrm{~mL}, 3: 1$) at room temperature, after 2,6-lutidine ($1.9 \mathrm{~mL}, 16.31 \mathrm{mmol}$), OsO_{4} ($1.5 \mathrm{~mL}, 0.13 \mathrm{mmol}, 0.02 \mathrm{M}$ in tert-butanol) and NaIO_{4} ($3.50 \mathrm{~g}, 16.37 \mathrm{mmol}$). The reaction mixture was stirred at room temperature and monitored by TLC. After all the starting material was consumed, the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and quenched by saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(50 \mathrm{~mL})$. Layers were separated, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL} x 3)$. The combined organic layers were washed with saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(150 \mathrm{~mL})$ and brine (150 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to afford aldehyde 20.2.

A solution of potassium tert-butoxide ($1.14 \mathrm{~g}, 9.84 \mathrm{mmol}$, dried at 0.5 mmHg and $80^{\circ} \mathrm{C}$ for 8 h) in THF (50 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$, trans-2-Butene ($1.38 \mathrm{~g}, 24.64 \mathrm{mmol}$), followed by n -BuLi (4.9 $\mathrm{mL}, 9.84 \mathrm{mmol}$, 2.0 M in THF), was added to form an orange solution. This solution was stirred at $-50{ }^{\circ} \mathrm{C}$ for 1 h , then re-cooled to $-78^{\circ} \mathrm{C}$ before (+)- $\mathrm{Ipc}_{2} \mathrm{BOMe}(3.63 \mathrm{~g}, 11.48 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) was dropwise added. 30 min later, boron trifluoride etherate ($1.6 \mathrm{~mL}, 12.62 \mathrm{mmol}$) was dropwise added to the reaction mixture at $-78^{\circ} \mathrm{C}$, followed by aldehyde $\mathbf{2 0 . 2}$ dissolved in THF (25 mL). The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 h . Triethylamine (25 mL) and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \mathrm{~mL}, 30 \%$ aqueous solution) were added to quench the reaction at room temperature. The resulting solution was refluxed for 1 h . After being cooled to room temperature, volatiles were removed in vacuo. The residue was extracted with diethyl ether (150 mL x 3). The combined organic layers were washed with water (300 mL) and brine (300 mL), then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, ethyl acetate / hexanes, 1 / 5) to afford $21(2.09 \mathrm{~g}, 65 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}=-2.8\left(c 1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.92-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{t}, J=14.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.57-4.42(\mathrm{~m}, 2 \mathrm{H})$,
4.06-3.96 (m, 1H), $3.66(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.41(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.90(\mathrm{~m}, 2 \mathrm{H})$, $1.69-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.98-0.93(\mathrm{~m}, 9 \mathrm{H}), 0.82(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.62(\mathrm{q}, J=$ $7.9 \mathrm{~Hz}, 6 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.4,138.3,128.3,127.7,127.6,114.3,75.7,74.2$, 73.0, 66.8, 41.4, 36.8, 35.1, 16.4, 10.6, 6.8, 5.0 ppm ; HRMS (ESI) m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{NaO}_{3} \mathrm{Si}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 415.2639$, found: 415.2636.

Homoallylic alcohol $21(1.00 \mathrm{~g}, 2.55 \mathrm{mmol})$ was dissolved in $\mathrm{HCl}-\mathrm{MeOH}(25 \mathrm{~mL}, 2 \mathrm{~N})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and stirred for 20 min . Volatiles were evaporated in vacuo. The residue was purified by column chromatography (silica gel, ethyl acetate / hexanes, $1 / 5$) to afford the corresponding diol $21.1(0.61 \mathrm{~g}, 90 \%)$ as a viscous oil. $[\alpha]_{D}{ }^{20}=+4.1(c$ 1.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.82-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.04(\mathrm{~m}$, 2H), 4.54 (s, 2H), 3.93-3.80 (m, 1H), 3.80-3.60 (m, 3H), 2.78 (br, s, 2H), 2.32-2.24 (m, 1H), 2.02-1.86 (m, 1H), 1.86-1.74 (m, 1H), 1.71-1.67 (m, 1H), $1.00(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=8.3$ $\mathrm{Hz}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 142.0,138.0,128.5,127.8,127.7,115.9,75.3,73.8$, 73.4, 69.5, 42.1, 38.7, 35.0, 16.4, 10.1 ppm ; HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 301.1774, found: 301.1777.

PPTS ($25.0 \mathrm{mg}, 0.10 \mathrm{mmol}$) was added to a solution of diol $21.1(0.60 \mathrm{~g}, 2.16 \mathrm{mmol}$, dissolved in 25 ml of 2,2-dimethoxypropane), and the reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 4 h before it was quenched by saturated aqueous solution of $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ and concentrated in vacuo. The residue was extracted with ethyl acetate ($25 \mathrm{~mL} x \mathrm{3}$). The combined organic layers were washed with saturated aqueous solution of $\mathrm{NaHCO}_{3}(80 \mathrm{~mL})$ and brine (80 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, ethyl acetate / hexanes, $1 / 20$) to afford $22(0.68 \mathrm{~g}, 99 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}=-1.8$ (c 3.6, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.92-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.09-4.95(\mathrm{~m}, 2 \mathrm{H})$, 4.57-4.45 (m, 2H), 3.63-3.54 (m, 2H), $3.50(\mathrm{dd}, J=10.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.23$ (m, 1H), 1.94-1.85 (m, 1H), 1.83-1.66 (m, 2H), 1.32 (s, 3H), 1.30 (s, 3H), 0.95-0.89 (m, 6H) ppm;
${ }^{13}{ }^{2}$ NMR (100 MHz, CDCl_{3}): $\delta 142.2,138.6,128.4,127.6,127.5,113.4,100.8,77.4,77.1,76.7$, 73.1, 72.9, 72.0, 67.1, 38.6, 37.1, 35.0, 24.7, 23.8, 15.9, 11.5 ppm ; HRMS (ESI) m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 341.2087$, found: 341.2079.
Pd / C (cat.) was added to a solution of $22(0.68 \mathrm{~g}, 2.14 \mathrm{mmol})$ in methanol (20 mL) under N_{2} atmosphere. The reaction vessel was sealed and the mixture was stirred under H_{2} atmosphere (balloon) for 12 h . The catalyst was filtered off through a pad of celite. The filtrate was concentrated in vacuo to give 22.1 ($0.45 \mathrm{~g}, 92 \%$) as a colorless oil, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and treated with Dess-Martin Periodinane ($1.84 \mathrm{~g}, 4.35 \mathrm{mmol}$) in the presence of NaHCO_{3} $(0.58 \mathrm{~g}, 6.96 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 1 h and then quenched by a solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(20 \mathrm{~mL})$ and extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$). The combined organic layers were washed with saturated aqueous solution of $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and brine (50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to afford aldehyde 23. Under the HWE reaction condition for the synthesis of compound 17, compound 23 ($0.45 \mathrm{~g}, 1.96$ mmol) was transformed into ester $23.1(0.76 \mathrm{~g}, 85 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}=+13.0$ (c 1.5, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.92-6.82(\mathrm{~m}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=6.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.50-3.31 (m, 2H), 2.43-2.35 (m, 2H), 2.03-1.95 (m, 1H), 1.87 (s, 3H), 1.79-1.67 (m, 2H), 1.46 (s, $9 \mathrm{H}), 1.51-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.96-0.91(\mathrm{~m}, 3 \mathrm{H})$, $0.90-0.85(\mathrm{~m}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.2,167.3$, 139.6, 128.8, 100.8, 81.6, 75.1, 74.4, 73.0, 38.3, 36.8, 34.0, 34.0, 28.0, 26.3, 25.4, 24.8, 23.8, 14.3, 14.3, 12.6, 11.8, 11.6, 10.6 ppm ; HRMS (ESI) m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{NaO}_{6}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 477.3187$, found: 477.3185.

Acetonide 23.1 ($0.41 \mathrm{~g}, 0.90 \mathrm{mmol}$) was dissolved in methanol (10 mL). After PTSA ($3.8 \mathrm{mg}, 0.02$
mmol) was added, the reaction mixture was stirred at room temperature for 2 h and quenched by addition of saturated aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. Volatiles were evaporated in vacuum. The aqueous phase was extracted with ethyl acetate ($20 \mathrm{~mL} x \mathrm{3}$). The combined organic layers were washed with brine (50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, ethyl acetate / hexanes, $1 / 5$) to afford 18 (0.35 g, 95%) as a colorless oil. The analytical data of $\mathbf{1 8}$ was identical with the same compound obtained via the procedures ilustracted in scheme 4 of the manuscript.

Synthetic route and data for lagunamide A 1b:

The synthesis of lagunamide A 1b commenced with compound $\mathbf{2 0}$ according to procedures for the preparation of the corresponding intermediates and 1 (Schemes 4-6). Analytical data for key intermediates were listed below:

Analytical data for compound 23.1b: $[\alpha]_{\mathrm{D}}{ }^{20}=+5.2\left(c 0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$): δ 7.02 (t, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=10.2,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.57-2.51 (m, 1H), 2.46-2.34 (m, 1H), 2.03-1.98 (m, 1H), 1.87 (s, 3H), 1.67-1.55 (m, 1H), 1.53-1.42 (m, 3H), 1.43 (s, 9H), 1.41 (s, 3H), 1.41-1.32 (m, 2H), 1.31 (s, 3H), 1.01 (d, J = $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.98-0.89$ (m, 6H), 0.84 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$), 0.82-0.77 (m, 3H)ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{MeOD}$): $\delta 169.5$, $167.6,140.1,128.0,97.7,81.8,75.1,73.8,36.7,34.9,32.0,29.0,26.9,26.5,26.0,18.5,13.4,11.4$,
11.2, 10.9, 10.6, 10.4 ppm ; HRMS (ESI) m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{NaO}_{6}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 477.3187$, found: 477.3185.

Analytical data for compound 18b: $[\alpha]_{\mathrm{D}}{ }^{20}=-1.1\left(c 1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.00(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.51(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.46(\mathrm{~m}$, $1 \mathrm{H}), 2.46-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.50(\mathrm{~m}, 1 \mathrm{H})$, $1.51-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.42-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.96-0.90(\mathrm{~m}, 6 \mathrm{H}), 0.85(\mathrm{t}, J=5.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 169.3,167.4,139.5,129.3,81.8,78.9,75.7,75.2,40.9,36.9,36.8,34.4,28.0,27.0,26.2$, 14.3, 13.0, 12.7, 12.0, 11.7, 11.5 ppm ; HRMS (ESI) m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{NaO}_{6}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 437.2874, found: 437.2875.

Analytical data for compound 19b: $[\alpha]_{\mathrm{D}}{ }^{20}=+0.3\left(c 1.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$): δ $7.00(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=10.2,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.38-2.33 (m, 2H), 2.05-1.97 (m, 1H), 1.95-1.87 (m, 1H), 1.88 (s, 3H), 1.58-1.41 (m, 3H), 1.47 (s, $9 H), 1.41-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.11-0.90(\mathrm{~m}, 18 \mathrm{H}), 0.90-0.85(\mathrm{~m}, 6 \mathrm{H}), 0.75-0.58(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, MeOD): $\delta 169.4,167.7,142.1,127.9,81.7,75.1,74.6,72.0,42.5,36.7,36.7,30.5,26.9$, 25.9, 13.5, 11.4, 11.0, 10.7, 10.6, 9.0, 6.0, 4.7 ppm ; HRMS (ESI) m / z calculated for $\mathrm{C}_{29} \mathrm{H}_{56} \mathrm{NaO}_{6} \mathrm{Si}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 551.3738$, found: 551.3742.

Analytical data for compound 4b: $[\alpha]_{\mathrm{D}}{ }^{20}=-29.3\left(c\right.$ 1.4, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$): δ $7.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.71-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.89-6.81$ $(\mathrm{m}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.77-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.59-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.50-4.41(\mathrm{~m}, 1 \mathrm{H})$, 4.31-4.29 (m, 1H), 3.85-3.68 (m, 1H), 2.82 (s, 3H), 2.39-2.32 (m, 1H), 2.32-2.21 (m, 1H), 2.14-2.09 (m, 1H), 1.99-1.89 (m, 1H), 1.83 (s, 3H), 1.72-1.65 (m, 1H), 1.49-1.39 (m, 12H), 1.37-1.23 (m, 3H), 1.23-1.18 (m, 1H), 1.09-0.75 (m, 24H), 0.69-0.51 (m, 6H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{MeOD}$): δ 172.1, 169.3, 167.6, 156.7, 143.9,141.3,127.4, 126.8, 124.7, 119.6, 81.7, 77.9, 75.1, 71.2,71.1, 67.5, 54.6, 54.1, 53.4, 41.3, 36.7, 36.2, 30.5, 29.5, 26.9, 26.9, 25.9, 25.8, 14.1, 13.5, 11.6, 11.5, 10.8, 10.8, 10.5, 8.7, 5.9, 4.7 ppm ; HRMS (ESI) m / z calculated for $\mathrm{C}_{48} \mathrm{H}_{73} \mathrm{NNaO}_{9} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 858.4947$, found: 858.4940.

Analytical data for compound 2b: $[\alpha]_{\mathrm{D}}{ }^{20}=+24.3$ (c 1.9, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (500 MHz , MeOD) existed as rotational conformers: $\delta 7.29-7.09(\mathrm{~m}, 5 \mathrm{H}), 7.02(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.88-5.68(\mathrm{~m}, 1 \mathrm{H})$, 5.15 (dd, $J=14.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.03-4.87 (m, 2H), 4.44-4.25 (m, 1H), 4.21-4.05 (m, 1H), 4.05-3.92 (m, 1H), 3.18-2.92 (m, 10H), 2.92-2.84 (m, 1H), 2.31 (s, 2H), 2.18-2.04 (m, 1H), 2.03-1.95 (m, 1H), $1.91-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.76-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.15(\mathrm{~m}, 25 \mathrm{H}), 1.02-0.75(\mathrm{~m}, 30 \mathrm{H}), 0.63(\mathrm{q}, \mathrm{J}=8.0 \mathrm{~Hz}, 6 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{MeOD}$) existed as rotational conformers: $\delta 173.8,172.3,171.7,170.9$, 169.2, 169.0, 167.8, 156.0, 142.2, 136.9, 129.3, 129.0, 128.6, 127.9, 127.2, 126.2, 124.2, 119.4, 105.0, 81.6, 79.0, 78.0, 75.2, 75.1, 71.1, 67.9, 54.6, 52.8, 52.6, 51.2, 41.4, 38.0, 36.8, 36.7, 36.2, 35.8, 34.8, $34.7,30.6,30.5,30.2,29.7,29.3,27.3,27.0,26.7,26.4,26.3,25.9,25.1,15.8,13.8,13.6,13.5,11.5$,
11.5, 10.9, 10.8, 10.6, 8.8, 6.0, 4.7 ppm ; HRMS (ESI) m / z calculated for $\mathrm{C}_{60} \mathrm{H}_{103} \mathrm{~N}_{5} \mathrm{NaO}_{13} \mathrm{Si}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 1152.7214$, found: 1152.7215.

Analytical data for lagunamide A 1b: $[\alpha]_{\mathrm{D}}{ }^{20}=-17.8$ (c 0.1, MeOH); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$): δ 7.37 (d, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 5 \mathrm{H}), 5.47(\mathrm{dd}, J=10.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=9.5,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.92-4.89(\mathrm{~m}, 2 \mathrm{H}), 4.66-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=18.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.89-3.81 (m, 1H), 3.57 (d, J = $18.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.26 (s, 3H), 3.06 (s, 3H), 3.05-3.01 (m, 1H), 2.95 (dd, $J=14.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.90(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{dd}, J=25.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 2.08-2.03(\mathrm{~m}$, 1H), 1.91 (s, 3H), 1.91-1.87 (m, 1H),1.87-1.82 (m, 1H), 1.69 (d, J = $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.63-1.45 (m, 3H), 1.41 (d, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.41-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.14(\mathrm{dd}, J=14.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.00-0.86(\mathrm{~m}, 21 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{MeOD}$): $\delta 173.8,172.0,171.9,171.7,171.4,170.5$, 169.3, 145.8, 137.4, 129.6, 128.0, 127.5, 126.3, 77.9, 76.7, 70.3, 58.8, 54.0, 52.6, 51.7, 45.2, 40.4, 37.9, 37.5, 37.2, 35.6, 35.4, 34.8, 29.5, 29.5, 27.2, 26.7, 26.3, 14.7, 13.5, 13.2, 12.9, 11.7, 11.4, 11.3, 10.8, 10.3, 8.9 ppm; HRMS (ESI) m / z calculated for $\mathrm{C}_{45} \mathrm{H}_{71} \mathrm{~N}_{5} \mathrm{NaO}_{10}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 864.5093$, found: 864.5091.

Synthetic route and data for lagunamide A 1c:

Homoallylic alcohol 25 was prepared from the known intermediate 20. The corresponding crotylation reaction employed $(+)-\mathrm{Ipc}_{2} \mathrm{BOMe}$ and (E)-but-2-ene as reagents. The stereochemistry of 25 and its diastereomer 25.1 was confirmed by examining the spectral properties of the corresponding acetonides 22c and 22, respectively. Acetonide 22c was converted into 1c according to procedures for the preparation of the lagunamide A 1 as illustrated in Schemes 4-6. Analytical data for key intermediates were listed below:

Analytical data for above acetonide: $[\alpha]_{\mathrm{D}}{ }^{20}=+1.6\left(c 1.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $6.99(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=10.3,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.51-2.46 (m, 1H), 2.38-2.26 (m, 1H), 2.02-1.98 (m, 1H), 1.86 (s, 3H), 1.63-1.55 (m, 1H), 1.55-1.49 (m, 1H), 1.49-1.40 (m, 3H), 1.46 (s, 9H), 1.37(s, 3H), 1.32 (s, 3H), 1.21-1.14 (m, 1H), $0.99(\mathrm{t}, \mathrm{J}=5.9$ $\mathrm{Hz}, 3 \mathrm{H}), 0.96-0.90(\mathrm{~m}, 6 \mathrm{H}), 0.87(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.75(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.2,167.4,140.0,128.2,97.9,81.6,78.4,75.0,73.8,36.8,35.2,35.0,32.7,30.0$,
28.0, 26.3, 21.7, 19.4, 16.5, 14.2, 12.5, 12.3, 12.0, 11.7 ppm ; HRMS (ESI) m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{NaO}_{6}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 477.3187$, found: 477.3187.

Analytical data for compound 18c: $[\alpha]_{\mathrm{D}}{ }^{20}=-6.3\left(c 2.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $6.99(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.44(\mathrm{~m}$, $1 \mathrm{H}), 2.44-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.78(\mathrm{~m}, 1 \mathrm{H})$, 1.64-1.53 (m, 1H), 1.46 (s, 9H), 1.36-1.19 (m, 2H), 1.15-1.09 (m, 1H), 1.04-0.86 (m, 12H), 0.84-0.71 (m, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 169.3,167.4,139.6,129.3,81.8,81.5,75.5,75.2,40.7$, 37.2, 36.8, 34.4, 28.0, 26.2, 21.4, 16.6, 14.3, 13.4, 12.7, 12.1, 11.7 ppm ; HRMS (ESI) m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{NaO}_{6}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 437.2874$, found: 437.2874 .

Analytical data for compound 19c: $[\alpha]_{\mathrm{D}}{ }^{20}=-1.5\left(c 1.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$): δ $6.99(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=9.7,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.39-2.33 (m, 2H), 2.05-1.96 (m, 1H), 1.96-1.92 (m, 1H), $1.88(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}$, 9H), 1.42-1.27 (m, 2H), 1.20-1.06 (m, 1H), 1.06-0.90 (m, 21H), 0.90-0.80 (m, 3H), 0.71-0.56 (m, 6H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{MeOD}$): $\delta 169.4,167.7,142.1,127.9,81.7,77.5,75.1,72.0,42.3,37.0$, 36.7, $30.6,26.9,25.9,21.2,15.9,13.5,11.4,11.2,10.6,9.3,6.0,4.7 \mathrm{ppm}$; HRMS (ESI) m / z calculated for $\mathrm{C}_{29} \mathrm{H}_{56} \mathrm{NaO}_{6} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 551.3738$, found: 551.3732.

Analytical data for compound 4c: $[\alpha]_{\mathrm{D}}{ }^{20}=-31.3\left(c 0.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$): $\delta 7.80$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.89-6.81(\mathrm{~m}$, $1 \mathrm{H}), ~ 4.79-4.63(\mathrm{~m}, 1 \mathrm{H}), 4.49-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.31-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.73(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H})$, 2.38-2.22 (m, 2H), 2.15-2.08 (m, 1H), 1.97-1.90 (m, 1H), $1.81(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.48$ (m, 1H), 1.50-1.36 (m, 13H), 1.36-1.20 (m, 3H), 1.15-1.06 (m, 1H), 1.01-0.76 (m, 26H), 0.68-0.47 (m, 6 H) ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz, MeOD): $\delta 172.1,169.3,167.6,156.7,143.9,141.3,128.2,127.4$, 126.8, 124.7, 119.6, 81.6, 80.3, 75.1, 71.1, 67.6, 54.6, 41.0, 36.7, 36.2, 35.8, 30.6, 29.6, 25.8, 22.0, 15.4, 14.0, 13.5, 11.6, 11.5, 10.8, 10.7, 10.5, 6.0, 4.7 ppm ; HRMS (ESI) m / z calculated for $\mathrm{C}_{48} \mathrm{H}_{73} \mathrm{NNaO}_{9} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 858.4947$, found: 858.4946.

Preparation of compound 2c was conduced according to procedures described for 2. Due to the acidity of the silica gel employed for column chromatographic purification, the TES protecting group of 2c was cleaved to give De-TES 2c as the isolated product. Analytical data for compound De-TES 2c: $[\alpha]_{\mathrm{D}}{ }^{20}=+4.7\left(c \quad 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD) existed as rotational conformers: δ 7.27-7.10 (m, 5H), 7.09-6.90 (m, 1H), 5.88-5.66 (m, 1H), 5.07-4.98 (m, 1H), 4.79-4.68 $(\mathrm{m}, 1 \mathrm{H}), 4.43-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.07(\mathrm{~m}, 3 \mathrm{H}), 3.07-2.98(\mathrm{~m}$, $6 H), 2.98-2.92(m, 1 H), 2.87-2.72(m, 1 H), 2.46-2.35(m, 1 H), 2.30-2.18(m, 1 H), 2.18-2.09(m, 1 H)$, 2.04-1.93 (m, 1H), 1.92-1.85 (m, 1H),1.88 (s, 3H), 1.82-1.67 (m, 1H), 1.65-1.56 (m, 1H), 1.50-1.20 (m, 26H), 1.11 (t, J = 7.2 Hz, 3H), 1.03-0.84 (m, 20H), 0.84-0.69 (m, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz , MeOD) existed as rotational conformers: $\delta 173.8,172.2,171.7,170.9,169.4,167.8,156.0,141.7$,
136.8, 129.3, 128.5, 127.9, 126.8, 126.2, 120.6, 119.2, 106.8, 81.8, 80.2, 78.9, 75.1, 69.8, 54.6, 53.5, 52.5, 51.1, 46.4, 40.8, 36.8, 36.7, 35.7, 34.6, 31.5, 30.6, 29.6, 27.3, 26.9, 26.1, 25.8, 22.1, 15.7, 15.3, 13.4, 13.4, 11.4, 10.8, 10.6, 10.2, 9.2 ppm ; HRMS (ESI) m / z calculated for $\mathrm{C}_{54} \mathrm{H}_{89} \mathrm{~N}_{5} \mathrm{NaO}_{13}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 1038.6349, found: 1038.6301.

1c was prepared from De-TES 2c according to the procedure employed for the synthesis of $\mathbf{1}$ from intermediate 2. Analytical data for compound 1c: $[\alpha]_{\mathrm{D}}{ }^{20}=-7.1$ (c 0.1, MeOH); ${ }^{1} \mathrm{H}$ NMR (500 MHz , MeOD): $\delta 7.35$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.25-7.14$ (m, 5H), 5.47 (dd, $J=10.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.18 (d, $J=$ 4.0 Hz, 1H), 4.61-4.51 (m, 3H), 4.22 (d, $J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ (q, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ (d, $J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, \mathrm{~J}=18.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.05-3.02(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 3.02-2.92(\mathrm{~m}, 1 \mathrm{H})$, $2.88(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{brd}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~d}, \mathrm{~J}=10.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 1.81 (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.76$ (brs, 1H), 1.66-1.45 (m, 4H), 1.42 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.38-1.27 (m, 2H), 1.25-1.12 (m, 1H), $1.06(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-0.83(\mathrm{~m}, 21 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, MeOD): δ 173.5, 171.8, 171.6, 171.4, 171.1, 170.1, 169.0, 145.4, 137.1, 129.2, 127.7, 127.3, 126.0, 79.8, 76.4, 70.1, 58.7, 53.7, 52.2, 51.4.44.9, 40.0, 37.6, 37.2, 36.5, 35.4, 35.1, 34.5, 29.3, 29.2, 26.4, 26.0, 21.9, 15.6, 14.4, 13.2, 12.9, 12.6, 11.0, 11.0, 10.9, 10.5, 8.6 ppm; HRMS (ESI) m / z calculated for $\mathrm{C}_{45} \mathrm{H}_{71} \mathrm{~N}_{5} \mathrm{NaO}_{10}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 864.5093, found: 864.5023.

Synthetic routes and data for $\mathbf{1 d}$ and $\mathbf{1 e}$:

Tetrapeptide 3.1 was prepared by replacing L-allo-isoleucine with L-isoleucine, according to procedures for construction of 3. After saponification, the corresponding acid was coupled with intermediates $\mathbf{4 b}$ and $\mathbf{4 c}$ to afford linear precursors $\mathbf{2 d}$ and $\mathbf{2 e}$ e, respectively. Following procedures for the synthesis of $\mathbf{1}$, the linear precursors $\mathbf{2 d}$ and $\mathbf{2 e}$ were converted into the corresponding final products $\mathbf{1 d}$ and $\mathbf{1 e}$, respectively.

Analytical data for compound 3.1: $[\alpha]_{\mathrm{D}}{ }^{20}=+47.4\left(c 3.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.27-7.07 (m, 5H), 6.63 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.82-5.53(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.50(\mathrm{~m}$, 1H), 4.48-4.33 (m, 1H), 4.10 (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.86 (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.69 (s, 3H), 3.18-3.08 $(\mathrm{m}, 1 \mathrm{H}), 3.06-3.01(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.30(\mathrm{~m}, 10 \mathrm{H})$, 1.21-1.06 (m, 1H), 0.99-0.69 (m, 9H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.3,172.1,171.1$, 168.1, 155.2, 136.4, 129.3, 129.1, 128.4, 126.8, 79.4.56.3, 53.9, 52.5, 52.0, 46.6, 37.7, 36.5, 35.3, 30.4, 28.3, 25.1, $17.7,15.4,11.5 \mathrm{ppm}$; HRMS (ESI) m / z calculated for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{NaO}_{7}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 549.3283, found: 549.3284.

Preparation of compound 2d was conduced according to procedures described for $\mathbf{2}$. Due to the acidity of the silica gel employed for column chromatographic purification, the TES protecting group was cleaved to give De-TES 2d as the isolated product. Analytical data for compound De-TES 2d:

Analytical data for compound De-TES 2d: $[\alpha]_{\mathrm{D}}{ }^{20}=+11.4$ (c 1.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (500 MHz , MeOD) existed as rotational conformers: $\delta 7.35-7.10(\mathrm{~m}, 5 \mathrm{H}), 7.04-6.87(\mathrm{~m}, 1 \mathrm{H}), 5.88-5.72(\mathrm{~m}, 1 \mathrm{H})$, 4.99 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.43-4.32(\mathrm{~m}, 2 \mathrm{H}), 4.18-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.21-2.76$ (m, 11H), 2.45-2.39 (m, 1H), 2.29-2.18 (m, 1H), 2.18-2.09 (m, 1H), 2.01-1.92(m, 1H), 1.92-1.84 (m, 4H), $1.84-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.32(\mathrm{~m}, 27 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.95-0.78(\mathrm{~m}, 21 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{MeOD}$) existed as rotational conformers: $\delta 172.5,171.5,170.8,169.5,168.9,167.8$, $156.0,141.5,137.0,129.3,128.6,128.0,127.9,127.7,126.3,81.8,80.3,75.2,70.0,53.0,46.5,40.9$, $37.5,37.1,37.0,36.7,35.8,35.5,34.6,31.6,30.7,30.3,29.8,29.7,29.3,27.3,27.0,25.9,22.2,15.3$, 14.6, 13.6, 13.5, 11.5, 10.7, 10.6, 8.3 ppm ; HRMS (ESI) m / z calculated for $\mathrm{C}_{54} \mathrm{H}_{89} \mathrm{~N}_{5} \mathrm{NaO}_{13}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 1038.6349, found: 1038.6341 .

Analytical data for compound $\mathbf{2 e}:[\alpha]_{\mathrm{D}}{ }^{20}=+13.8$ (c 1.4, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$) existed as rotational conformers: $\delta 7.30-7.10(\mathrm{~m}, 5 \mathrm{H}), 7.01-6.87(\mathrm{~m}, 1 \mathrm{H}), 5.88-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-4.90(\mathrm{~m}, 3 \mathrm{H}), 4.47-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.87(\mathrm{~m}, 1 \mathrm{H})$,
3.15-3.12 (m, 4H), 3.04-2.98 (m, 6H), 2.94-2.87 (m, 1H), $2.32(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.17-2.11(\mathrm{~m}, 1 \mathrm{H})$, 2.04-1.94 (m, 1H), 1.94-1.83 (m, 1H), $1.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.77-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.25(\mathrm{~m}$, $24 \mathrm{H}), 1.24-1.10(\mathrm{~m}, 2 \mathrm{H}), 1.08-0.85(\mathrm{~m}, 27 \mathrm{H}), 0.81(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.72-0.61(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, MeOD) existed as rotational conformers: $\delta 173.9,172.5,171.6,170.9,169.2,167.7$, 156.1, 141.9, 141.8, 136.9, 129.3, 127.9, 126.3, 119.8, 81.7, 81.6, 79.0, 77.9, 77.8, 75.2, 71.2, 71.1, 54.6, 53.5, 52.7, 51.1, 46.4, 41.5, 41.4, 37.4, 36.9, 36.7, 36.2, 35.8, 34.7, 30.8, 30.4, 29.8, 29.7, 29.3, 27.3, 27.0, 27.0, 26.8, 26.7, 26.5, 26.1, 25.9, 24.1, 15.8, 14.7, 14.0, 13.8, 13.6, 13.5, 11.7, 11.5, 11.5, 10.9, 10.9, 10.7, 10.6, 10.0, 8.8, 6.0, 4.7, 4.7 ppm ; HRMS (ESI) m / z calculated for $\mathrm{C}_{60} \mathrm{H}_{103} \mathrm{~N}_{5} \mathrm{NaO}_{13} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 1152.7214$, found: 1152.7211.

1d was prepared from De-TES 2d according to the procedure employed for the synthesis of $\mathbf{1}$ from intermediate 2. Analytical data for compound 1d: $[\alpha]_{\mathrm{D}}{ }^{20}=-13.3$ (c 0.1, MeOH); ${ }^{1} \mathrm{H}$ NMR (500 MHz , MeOD): $\delta 7.30$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.10(\mathrm{~m}, 5 \mathrm{H}), 5.46$ (dd, $J=10.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.05 (d, $J=6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.91(\mathrm{~m}$, 1H), 3.75 (d, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.57 (d, $J=18.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.30 (s, 3H), 3.08-3.01 (m, 1H), 3.04 ($\mathrm{s}, 3 \mathrm{H}$), $2.96(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.91$ (s, 3H), 1.91-1.81 (m, 2H), 1.76 (br, s, 1H), 1.64 (br, s, 2H), 1.57-1.46 (m, 1H), 1.42 (d, J = 6.9 Hz , $3 H), 1.39-1.27(\mathrm{~m}, 3 \mathrm{H}), 1.27-1.13(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.02-0.89(\mathrm{~m}, 23 \mathrm{H}), 0.86(\mathrm{~d}, \mathrm{~J}=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz, MeOD): $\delta 173.8,172.0,171.7,171.7,171.5,170.2,169.3$, 145.5, 137.3, 129.6, 128.0, 127.6, 126.3, 80.1, 76.7, 70.5, 59.3, 54.0, 53.6, 51.6, 45.3, 40.2, 38.4, 37.5, 36.9, 36.5, 35.5, 34.8, 29.6, 29.4, 26.3, 23.7, 22.3, 15.9, 14.9, 14.6, 13.5, 12.8, 11.4, 11.2, 10.8, 10.5, 9.0 ppm ; HRMS (ESI) m / z calculated for $\mathrm{C}_{45} \mathrm{H}_{71} \mathrm{~N}_{5} \mathrm{NaO}_{10}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 864.5093, found: 864.5093.

Analytical data for compound 1e: $[\alpha]_{\mathrm{D}}{ }^{20}=-33.8$ (c 0.1, MeOH); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$): δ 7.32 (brd, 1H), 7.26-7.14 (m, 5H), 5.46 (dd, $J=10.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05$ (d, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.92$ (m, $1 \mathrm{H}), 4.84(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (brd, 1H), 3.57 (d, $J=18.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.30(\mathrm{~s}, 3 \mathrm{H}), 3.09-3.02(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 2.96$ (dd, $J=12.1$, $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H})$, $1.90-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.43$ (d, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.38-1.26(\mathrm{~m}, 3 \mathrm{H})$, 1.19-1.10 (m, 2H), $1.05(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.01-0.89(\mathrm{~m}, 21 \mathrm{H}), 0.86(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, MeOD): δ 173.8, 172.0, 171.7, 171.7, 171.4, 170.2, 169.3, 145.6, 137.4, 129.6, 128.0, 127.6, 126.3, 78.0, 76.7, 70.4, 59.2, 54.0, 53.7, 51.6, 45.3, 40.3, 38.4, 37.5, 37.3, 36.4, 35.5, 34.8, 29.5, 29.5, 27.2, 26.3, 23.7, 14.9, 14.7, 13.5, 12.8, 11.7, 11.4, 11.3, 10.7, 10.4, 9.0 ppm; HRMS (ESI) m / z calculated for $\mathrm{C}_{45} \mathrm{H}_{71} \mathrm{~N}_{5} \mathrm{NaO}_{10}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 864.5093$, found: 864.5057.

Cell proliferation assays We established cell proliferation assay using 3-(4,5-dimethylthiazol-2-yl)-5-(3 carboxymethoxy phenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay kit (Promega Corp., Madison WI). Hela cells were seeded into 96 -well plate and incubated overnight, followed by washing cells with PBS twice, and then the compounds were added to cells in serial dilutions. The cells were then incubated for another 72 h at $37^{\circ} \mathrm{C}$. MTS working solution was added into each well and incubated at $37^{\circ} \mathrm{C}$ up to 2 h , followed by measuring OD at 490 nm using a microplate reader (Model 680, Bio-Rad) according to manufacturer's instruction.

		1	1b	1c	1d	1e
IC_{50}	nM	358.00	23.50	19.90	43.10	8.99
	$\mathrm{ng} / \mathrm{ml}$	301.46	19.79	16.76	36.29	7.57

