Electronic Supplementary Information

Poly(fluorene-thiophene)DonorTetheredPhenanthro[9,10-d]imidazoleAcceptorforFlexibleNonvolatileFlashResistiveMemoryDevicesImage: State of the state of

Hung-Chin Wu,[‡]^{*a*} An-Dih Yu,[‡]^{*a,b*} Wen-Ya Lee,^{*a*} Cheng-Liang Liu,^{**c*} and Wen-Chang Chen^{**a*}

^{*a*} Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan. E-mail: chenwc@ntu.edu.tw

^b Department of Organic Device Engineering and Research Center for Organic Electronics, Yamagata University, Yonezawa, Yamagata 992-8510 Japan.

^c Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan. E-mail: clliu@ncu.edu.tw

‡ The first two authors contributed equally to this paper

S1. Materials

All commercially available reagents or anhydrous solvents obtained from suppliers were used without further purification. 2,2'-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (**F**)^{S1} and 2-(2,5-dibromothiophen-3-yl)-6,9-dihexyl-1-(4-hexylphenyl)-1H-phenanthro[9,10-d]imidazole(**T-PI**)^{S2} were prepared according to literature procedures.

S2. Polymer Synthesis

Poly[2,2'-(9,9-dioctyl-9H-fluorene-2,7-diyl)-alt-2-(2,5-thiophen-3-yl)-6,9-dihexyl-1-(4-hexylphe nvl)-1H-phenanthro[9,10-d]imidazole] (**PFT-PI**) was synthesized bv Suzuki coupling polymerization as shown in Scheme S1 (see SI). A 3-neck flash connected to a condenser was charged with following materials: a stir bar, diborate monomer (F; 310.1 mg (0.48 mmol)), dibromo monomers (**T-PI**; 379.7 mg (0.48 mmol)), tetrakis(triphenylphosphine)palladium(0) (Pd(PPh₃)₄; 5.55 mg (4.8 µmol)), and a mixture of toluene and aqueous 2M K₂CO₃ (3/2 volume ratio) with several drops of aliquat[®] 336. The reaction mixture was refluxed under vigorous stirring for 72 h under a nitrogen atmosphere. The end groups were capped by refluxing for 12 h each with phenyl boronic acid and bromobenzene (both 1.1 equiv. with respect to diborate monomer) before being precipitated into a mixture of methanol and water. The precipitated compound was dissolved into a small amount of THF and then re-precipitated into methanol. The crude product was purified by Soxhlet extraction with methanol, acetone and hexanes and followed by drying at 40 °C under vacuum to afford a yellow solid (yield: 75 %). ¹H NMR (CD₂Cl₂, 400 MHz,): $\delta = 8.75-8.58$ (m, br, Ar H), 8.58-8.38 (m, br, Ar H), 7.82-7.35 (m, br, Ar H), 7.35-6.88 (m, br, Ar H), 6.88-6.68 (br, Ar-H), 2.91 (br, Ar CH₂), 2.80-2.50 (m, br, Ar CH₂), 2.02 (br, Ar CH₂), 1.88-1.55 (m, br, CH₂), 1.55-1.22 (m, br, CH₂), 1.22-0.95 (m, br, CH₂), 0.95-0.30 (m, br, CH₃). Anal. Calcd. for C₇₂H₉₂N₂S: C 84.98, H 9.11, N 2.75, S 3.15; found: C 84.65, H 9.28, N 2.72, S 3.43.

S3. Instrumentation

¹H-NMR spectra were obtained in CD₂Cl₂ with a Bruker Avance DRX-400 MHz spectrometer. Gel permeation chromatographic (GPC) analyses were performed on a Lab Alliance RI2000 instrument (two column, MIXED-C and D from Polymer Laboratories) connected with one refractive index detector from Schambeck SFD Gmbh. All GPC analyses were performed on polymer/THF solution at a flow rate 1 ml min⁻¹ and temperature 40 °C and calibrated with polystyrene standards. Element analyses were performed with a Heraeus varioELIII-NCSH instrument. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) measurements were performed under a nitrogen atmosphere at a heating rate of 10 °C min⁻¹ using the TA instruments Q-50 and Q-100, respectively.

UV-Vis absorption spectral data were measured with Hitachi U-4100 spectrophotometer. Thin film measurements were collected by spin-coating onto untreated quartz substrate. Cyclic voltammetry (CV) was collected using CHI 611B electrochemical analyzer. A three-electrode cell based on ITO glass working electrode, an Ag/AgCl, KCl (sat.) reference electrode (calibrated vs Fc/Fc⁺) and a Pt wire counter electrode was purged with a nitrogen. The electrochemical properties of the polymer films were detected under 0.1 M anhydrous acetonitrile solution containing tetrabutylammonium perchlorate (TBAP) as the supporting electrolyte. The thickness of polymer film was determined with a Microfigure Measuring Instrument (Surfcorder ET3000, Kosaka Laboratory Ltd.).

S4. Computational Methodology

Molecular calculations studied in this work have been performed through Gaussian 03 program package.^{S3} Equilibrium ground state geometry and electronic properties were optimized by means of the density functional theory (DFT) method at the B3LYP level of theory (Beckes-style three-parameter density functional theory using the Lee-Yang-Parr correlation functional) with the 6-31G(d) basic set.

S5. Characterization

The position and integration of peak signals of ¹H NMR spectrum were consistent with the proposed **PFT-PI** structures. The carbon, hydrogen, nitrogen and sulfur experimental contents of the synthesized **PFT-PI** were all in a good agreement with theoretical contents. TGA showed a decomposition temperature of 415 °C, implying a high thermal stability. DSC results did not reveal any obvious transition until 300 °C. As the bulky phenanthro[9,10-d]imidazole side chain moiety was attached, the glass transition temperature was not clearly detectable.^{S2} The excellent thermal stability of conjugated **PFT-PI** is expected to be beneficial for device fabrication and meet the requirement of heat resistance in the electronic industry.

S6. Device Fabrication and Measurement

PEN substrate was first pre-cleaned by an ultrasonic cleaning process with water, isopropanol, and acetone successively for 15 minutes each. 30-nm thick Al bottom electrode patterns were deposited by a thermal evaporator at a pressure of 10^{-5} torr with a depositing rate of 1 Å s⁻¹. Then, 8 mg mL⁻¹ of **PFT-PI** in chloroform was filtered through 0.22 µm pore size of PTFE membrane syringe filter, spin-coated onto the bottom Al electrode/PEN substrate at 1000 rpm for 60 s and baked at 100 °C on a hot plate in N₂-filled glove box. Finally, the 30-nm Al top electrodes was deposited and patterned by a metal mask with cross-point device joint area of 0.2×0.2 , 0.4×0.4 and 0.6×0.6 mm², respectively. The sneak path problem can be overcome by introducing additional control elements between the electrode and memory elements. However, in this work, a single bit-line with several word lines were made (for example, retrieved from 6 bits; a 1×6 array for 0.4×0.4 mm² cross-point device) to demonstrate the **PFT-PI** device for flexible electronics and verify the correct reading of the information. All the electrical characteristics of the fabricated flexible memory devices were measured by a Keithley 4200-SCS semiconductor parameter analyzer using a probe station at room temperature in a N₂-filled glove box. The bottom electrode was grounded during all the electrical measurement with a swept step of 0.1 V.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

- [S1] J. Y. Lee, Y. J. Kwon, J.-W. Woo and D. K. Moon, J. Ind. Eng. Chem., 2008, 14, 810.
- [S2] Y.-T. Chang, S.-L. Hsu, M.-H. Su and K.-H. Wei, Adv. Mater., 2009, 21, 2093.
- [S3] Gaussian 03, Revision B.04 Gaussian, Inc., Wallingford, CT 2004.

Scheme S1. Reaction scheme of PFT-PI conjugated polymer.

Figure S1. ¹H NMR Spectrum of PFT-PI in CD₂Cl₂ (x: CD₂Cl₂, y: H₂O).

Figure S2. TGA curves of PFT-PI at a heating rate of 10 °C min⁻¹ under a nitrogen atmosphere.

Figure S3. DSC curves of PFT-PI at a heating rate of 10 °C min⁻¹ under a nitrogen atmosphere.

Figure S4. UV-Vis absorption spectra of **PFT-PI** in CHCl₃ solution and as a thin film on a quartz substrate.

Figure S5. Cyclic voltammogram of the **PFT-PI** thin film spin-coated onto an ITO glass substrate in 0.1 M TBAP/acetonitrile solution at a scan rate of 100 mV s⁻¹.

Figure S6. PFT-PI memory device on flat and various bending conditions.

Figure S7. Current density-voltage (*J-V*) characteristic of the flexible **PFT-PI** memory device on successive scan under the flat condition.

Figure S8. Current density-voltage (*J-V*) characteristic of the flexible **PFT-PI** memory device on successive scan under bending condition (radius of curvature: 30 mm).

Figure S9. Current density-voltage (*J-V*) characteristic of the flexible **PFT-PI** memory device on successive scan under bending condition (radius of curvature: 20 mm).

Figure S10. Current density-voltage (*J-V*) characteristic of the flexible **PFT-PI** memory device on successive scan under bending condition (radius of curvature: 10 mm).

Figure S11. Current density-voltage (*J-V*) characteristic of the flexible **PFT-PI** memory device on successive scan under bending condition (radius of curvature: 5 mm).

Figure S12. WRER cycles of PFT-PI memory device.

Figure S13. Mechanical endurance of the flexible PFT-PI memory device.

Figure S14. *J-V* characteristics of the PFT device.

Figure S15. Experimental and fitted *J-V* characteristics of PFT-PI device in the OFF and ON states.

Figure S16. ESP surface of PFT-PI.