Supporting Information for:

Carbon disulfide binding at dinuclear and mononuclear nickel complexes ligated by a redox-active ligand: Iminopyridine serving as an accumulator of redox equivalents for the activation of heteroallenes

Amarnath Bhemaraju, Jeffrey W. Beattie, Richard L. Lord, Philip D. Martin, and Stanislav Groysman*

Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States.

Index	Page
1. General methods and procedures	S2
2. Synthesis and characterization of compounds	S2-S3
3. X-ray crystallographic details	S3
4. X-ray structure of 4	S4
5. ¹ H, ¹³ C and ³¹ P NMR spectra	S5-S23
6. Mass spectrum of 2	S24-S26
7. FT-IR spectra	S27-S30
8. Computational details	S31-S34
9. Electrochemistry	S35-S36
10. References	S37

1. General methods and procedures

All reactions involving air-sensitive materials were executed in a nitrogen-filled glovebox. pbenzylamine, 2-carboxaldehydepyridine, bis(cyclooctadiene)nickel(0) (Ni(COD)₂), carbon disulfide, and ¹³C-labeled carbon disulfide were purchased from Aldrich. Strem or TCI America and used as received. All solvents were purchased from Fisher scientific and were of HPLC grade. The solvents were purified using an MBRAUN solvent purification system and stored over 3-Å molecular sieves. Compounds were routinely characterized by ¹H and ¹³C {H} NMR (¹³C NMR thereafter), X-ray crystallography, and elemental analyses. Selected compounds were characterized by mass spectrometry (ESI). NMR spectra of all compounds were recorded at the Lumigen Instrument Center (Wayne State University) on a Varian Mercury 400 NMR Spectrometer in C₆D₆ or (CD₃)₂SO at room temperature. Chemical shifts and coupling constants (J) were reported in parts per million (δ) and Hertz respectively. Low resolution mass spectra were obtained at the Lumigen Instrument Center utilizing a Waters Micromass ZQ mass spectrometer (direct injection, with capillary at 3.573 (KV) and cone voltage of 20.000 (V)). Elemental analyses were performed by Midwest Microlab LLC.

2. Synthesis and characterization of compounds

Preparation of L¹, Ni₂(L¹)(COD)₂(1), Ni₂L¹(CS₂)₂(2), Ni(L²)(COD) (3), and Ni(L²)(CS₂) (4).

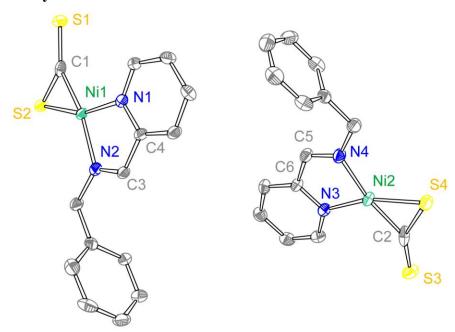
The synthesis of L^1 and $Ni_2(L^1)(COD)_2$ has been reported by us previously 11 , and L^2 was synthesized according to the previously published procedure. 2

Ni(**L**²)(**COD**) (**3**). A solution of L² (53 mg, 0.27 mmol) in 5 mL of THF was added dropwise at room temperature to a 5 mL solution of bis(cyclooctadiene)nickel(0) (Ni(COD)₂) (103 mg, 0.374 mmol) in THF. The resulting violet-blue colored reaction mixture was stirred for 1 h, and the solvent was removed in *vacuo*. Crystallization from hexanes resulted in violet-blue crystalline solid (70 mg, 71 %). ¹H NMR (C₆D₆, 400 MHz) δ 10.10 (d, J = 6.8, 1H), 8.23 (s, 1H), 7.31-7.27 (m, 2H), 7.23-7.18 (m, 2H), 7.17-7.10 (m, 2H), 7.07 (m, 1H), 6.92 (dt, J = 8.0, 1.2, 1H), 5.29 (s, 2H), 3.77 (m, 2H), 3.70 (m, 2H), 2.74 (m, 2H), 2.51 (m, 2H), 1.74-1.57 (m, 4H); ¹³C NMR (C₆D₆, 75 MHz) δ 152.22, 147.96, 142.60, 139.86, 128.60, 128.42, 127.63, 127.44, 127.16, 125.47, 118.98, 82.97, 82.06, 66.38, 31.36, 31.32. Anal. Calcd for C₂₁H₂₄N₂Ni·C₄H₁₀O: C, 68.67; H, 7.84; N, 6.41. Found: C, 68.19; H, 6.65; N, 6.03.

NiL²(CS₂) (4). A 0.083 M solution of CS₂ (1.38 ml, 0.115 mmol) in THF, was added to the 3 mL of violet-blue Ni(L²)(COD) (60 mg, 0.165 mmol) solution in diethyl ether. A precipitate was obtained after the addition of the CS₂ solution. An additional 4 mL of diethyl ether was added to the reaction mixture and it was stirred for 10 minutes. Crystallization of the insoluble precipitate using CH₃CN and ether resulted in a crystalline purple-brown solid (32 mg, 84 %). ¹H NMR (DMSO-d6, 400 MHz) δ 9.47 (d, J = 4.8, 1H), 8.93 (s, 1H), 8.22 (t, J = 7.6, 1H), 7.98 (d, J = 7.6, 1H), 7.91 (t, J = 6.4, 1H), 7.48 (d, J = 7.2, 2H), 7.41-7.27 (m, 3H), 5.23 (m, 2H); ¹³C NMR (DMSO-d6, 75 MHz) δ 267.90 (13 CS₂), 165.75, 152.50, 148.36, 138.63, 136.36, 130.76, 128.48, 128.33, 128.12, 128.05, 127.27, 126.33, 62.10. MS (ESI) calcd for [Ni(L²)]⁺ 254.03, found 253.11. We were not able to observe the parent ion in the mass spectrum. The compound is unstable, decomposing over time as demonstrated below. The attempted EA shows low carbon

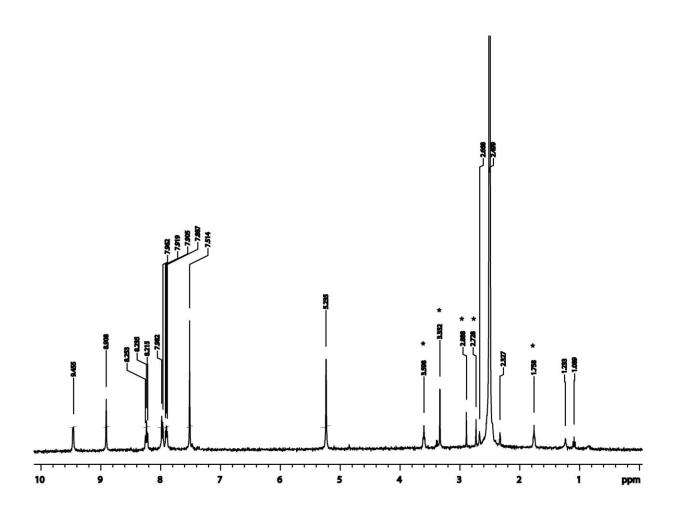
percentage. Anal. Calcd for $C_{14}H_{12}N_2NiS_2$: C, 50.79; H, 3.65; N, 8.46. Found: C, 46.34; H, 3.52; N, 7.24.

Reaction of Ni₂L¹(¹³CS₂)₂ with unlabelled CS₂. A solution of 5 mg of Ni₂L¹(¹³CS₂) in DMSO-d₆ was treated with ca. 3 equiv of CS₂. ¹³C NMR spectrum (600 scans, Figure S12) was collected has demonstrated no signals attributable to ¹³CS₂. The solution was left overnight at RT, and another ¹³C NMR spectrum (600 scans, Figure S13) was collected. The peak at 193 ppm (free 13 CS₂) was observed.


Reaction of Ni₂**L**¹(¹³**CS**₂)₂ with [FeCp₂](PF₆). A deep-purple solution of 22 mg of Ni₂**L**¹(¹³**CS**₂) in 2 mL of DMSO-d₆ was treated with 2 equiv (25 mg) of [FeCp₂](PF₆). An immediate color change to yellow was observed, and was followed by a slow color change to purple. ¹H NMR (Figure S14) displayed a peak at 4.16 ppm (FeCp₂). In addition, small amount of the unreacted starting material (Ni₂L¹(¹³CS₂)₂) was also observed. ¹³C NMR spectrum (1200 scans, Figure S15) has displayed a signal at 192 ppm (free ¹³CS₂) and 67 ppm (FeCp₂). Addition of another batch of [FeCp₂](PF₆) (18 mg) resulted in a yellow-green solution. ¹H NMR of this solution contained no peaks attributed to (Ni₂L¹(¹³CS₂)₂; a very broad resonance (that we attribute to the mixture of FeCp₂/[FeCp₂](PF₆)) was observed around 6.2 ppm (Figure S16). ¹³C NMR (Figure S17) demonstrated significantly larger resonance (versus internal standard – toluene) at 192 ppm (free ¹³CS₂) compared to ¹³C NMR of the reaction of Ni₂L¹(¹³CS₂) with 2 equiv of [FeCp₂](PF₆) (See Figure S15).

Reaction of Ni₂L¹(CS₂)₂ with PPh₃. A solution of 12 mg of Ni₂L²(CS₂) in DMSO-d₆ was treated with 2 equiv of PPh₃ (11 mg, 0.042 mmol). No color change was observed. The solution was stirred overnight at RT. ¹H and ³¹P NMR spectra demonstrated only starting materials present (See Figure S18 for ¹H NMR and Figure S19 for ³¹P NMR).

3. X-ray crystallographic details


Structures of **2-4** were confirmed by X-ray analysis. The crystals were mounted on a Bruker APEXII/Kappa three circle goniometer platform diffractometer equipped with an APEX-2 detector. A graphic monochromator was employed for wavelength selection of the Mo K α radiation (λ = 0.71073 Å). The data were processed and refined using the program SAINT supplied by Siemens Industrial Automation. Structures were solved by direct methods in SHELXS and refined by standard difference Fourier techniques in the SHELXTL program suite (6.10 v., Sheldrick G. M., and Siemens Industrial Automation, 2000). Hydrogen atoms were placed in calculated positions using the standard riding model and refined isotropically; all other atoms were refined anisotropically. In the structure of 2, Ni₂L¹(CS₂)₂ occupies a special position. The structure of **4** contained two crystalographically independent molecules of L²Ni(CS₂), displaying slightly different metrics (Figure S1).

4. X-ray structure of 4

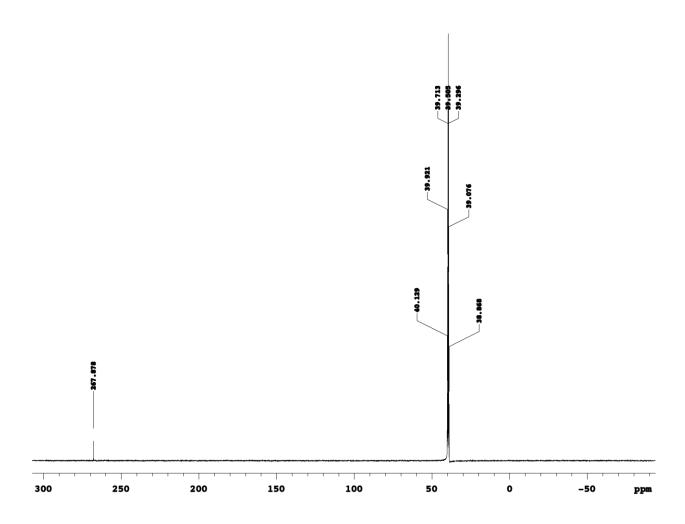


Figure S1. X-ray structure of **4**, 50% probability ellipsoids. Selected bond distances: S1 C1 1.548(8) Å, S2 C1 1.745(8) Å, S3 C2 1.617(7) Å, S4 C2 1.686(7) Å, N2 C3 1.271(7) Å, C3 C4 1.454(7) Å, N4 C5 1.267(7) Å, C5 C6 1.468(7) Å.

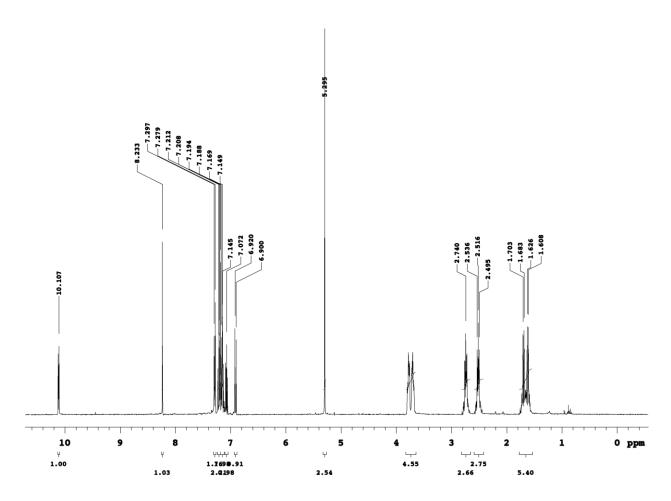

5. ¹H, ¹³C and ³¹P-NMR Spectra

Figure S2. 1 H NMR of Ni₂(L¹)(CS₂)₂ (**2**). Solvent peaks (indicated by *): 3.598: THF; 3.332: H₂O; 1.759: THF; 2.888: DMF; 2.728: DMF.

Figure S3. 13 C NMR of Ni₂(L¹)(13 CS₂)₂ (**2**- 13 CS₂).

Figure S4. 1 H NMR of Ni(L 2)(COD) (3).

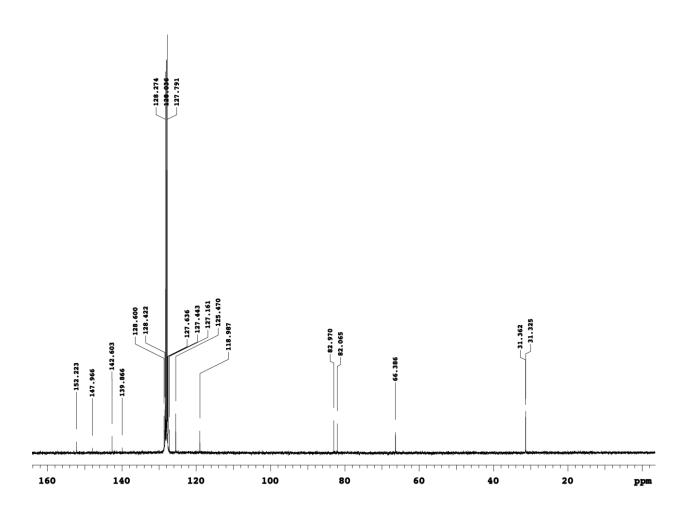
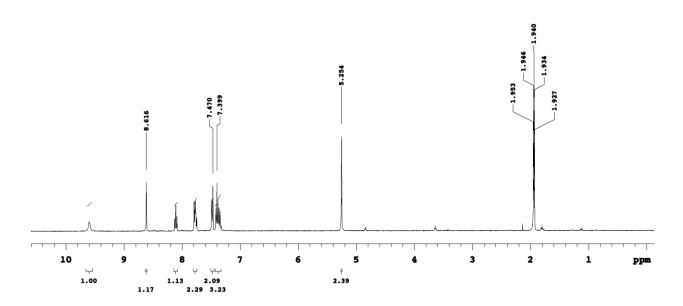
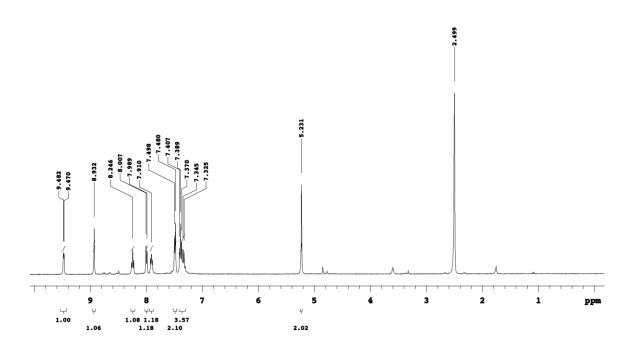
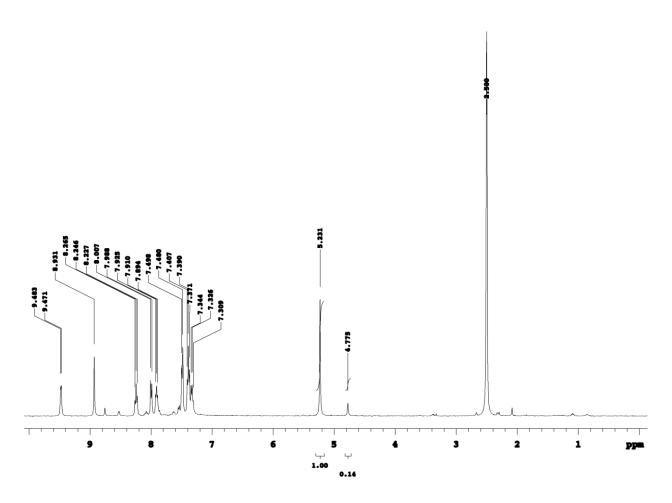
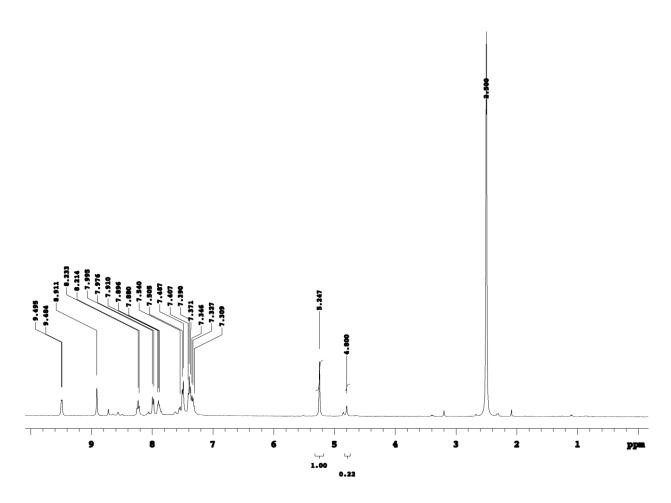
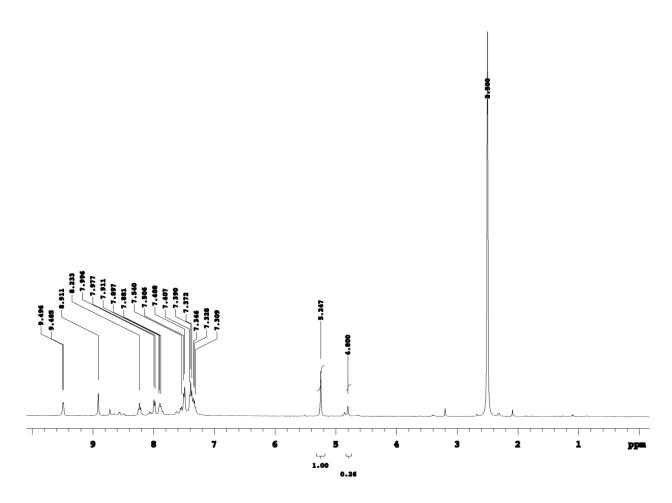
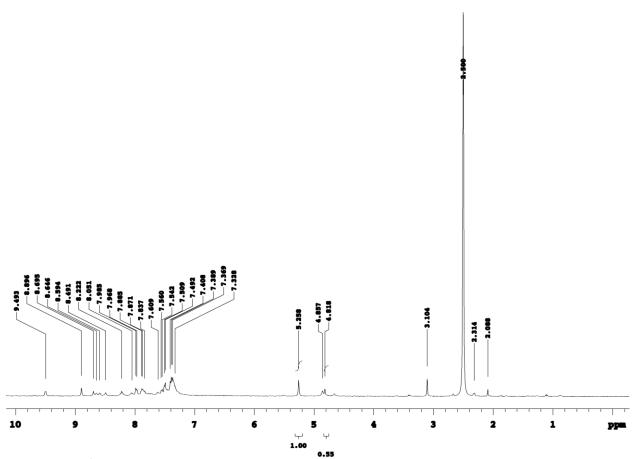


Figure S5. 13 C NMR of Ni(L²)(COD) (3).


Figure S6. 1 H NMR of Ni(L^{2})(CS₂) (4) in CD₃CN.


Figure S7. ¹H NMR of **4** in DMSO.


Figure S8. ¹H NMR of **4** after 10 min at RT (in DMSO). Ratio between peaks at 5.331 and 4.775 (decomposition product) is 1 : 0.14.

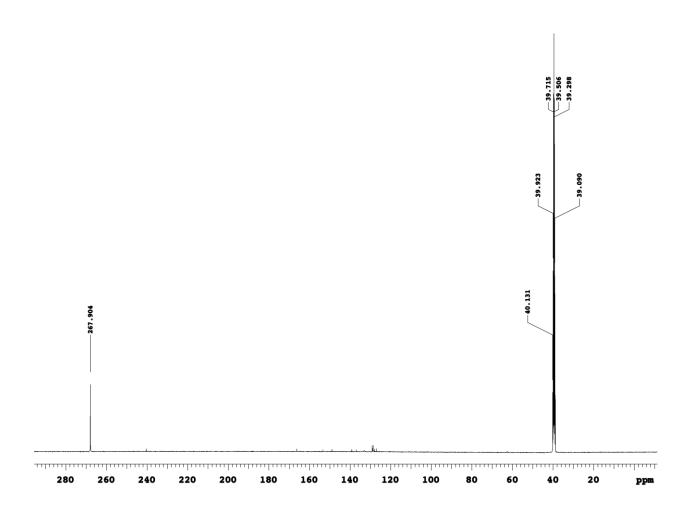
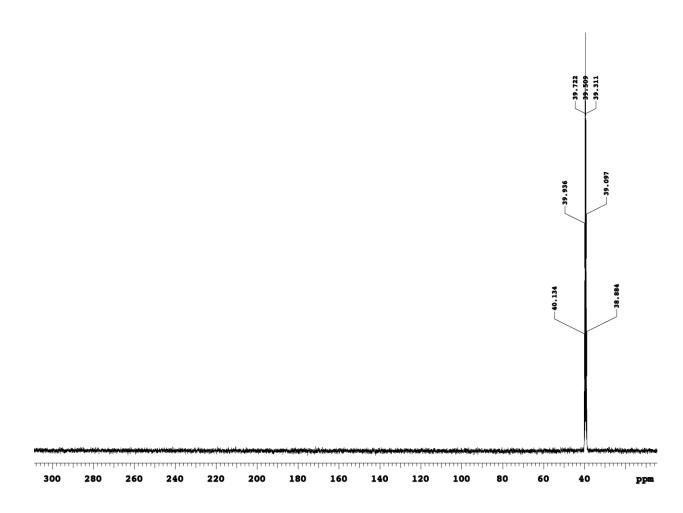
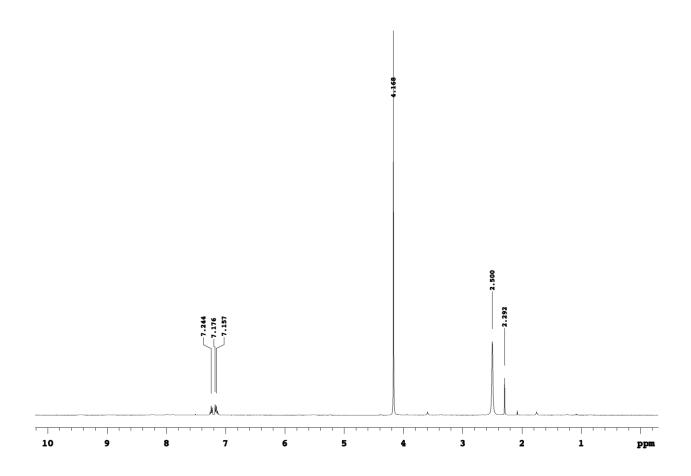
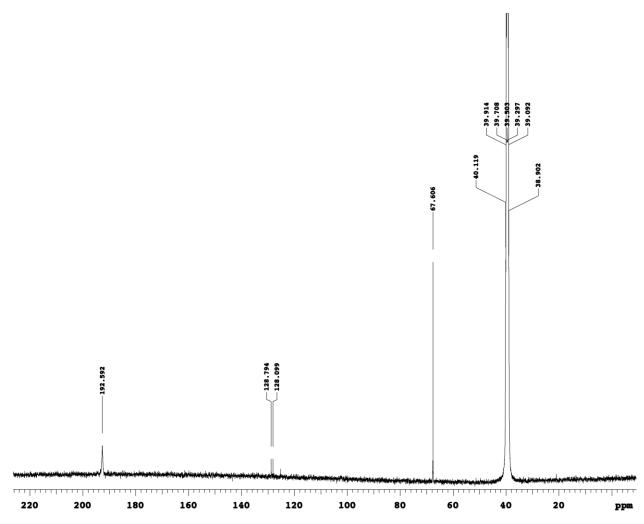

Figure S9. 1 H NMR of **4** after 60 min at 50 $^{\circ}$ C. Ratio between peaks at 5.247 and 4.800 (decomposition product) is 1 : 0.22.

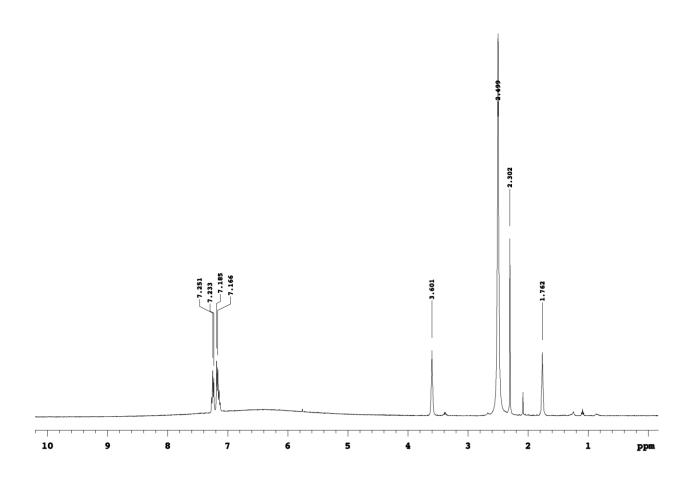
Figure S10. 1 H NMR of **4** after 90 min at 50 $^{\circ}$ C. Ratio between peaks at 5.247 and 4.800 (decomposition product) is 1 : 0.26.

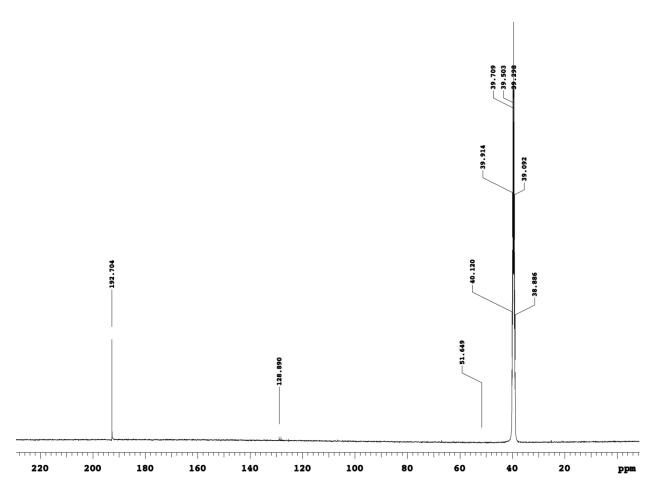
Figure S11. ¹H NMR of **4** after 90 min at 50 °C followed by 60 min at 70 °C. Ratio between peaks at 5.258 and 4.818 is 1 : 0.55.

Figure S12. ¹³C NMR of **4**-¹³CS₂ showing ¹³CS₂ signal.


Figure S13. 13 C NMR of reaction of $Ni_2L^2(^{13}CS_2)_2$ (2- $^{13}CS_2$) with unlabelled CS_2 after 1 h.


 $\textbf{Figure S14.} \ ^{13}\text{C NMR of reaction of Ni}_2L^2(^{13}\text{CS}_2)_2 \ (\textbf{2-}^{13}\text{CS}_2) \ \text{with unlabelled CS}_2 \ \text{after 12 h}$


Figure S15. 1 H NMR of Ni₂L²(13 CS₂)₂ (**2**- 13 CS₂) with 2 equiv of [FeCp₂](PF₆) (the spectrum contains toluene as an internal standard).

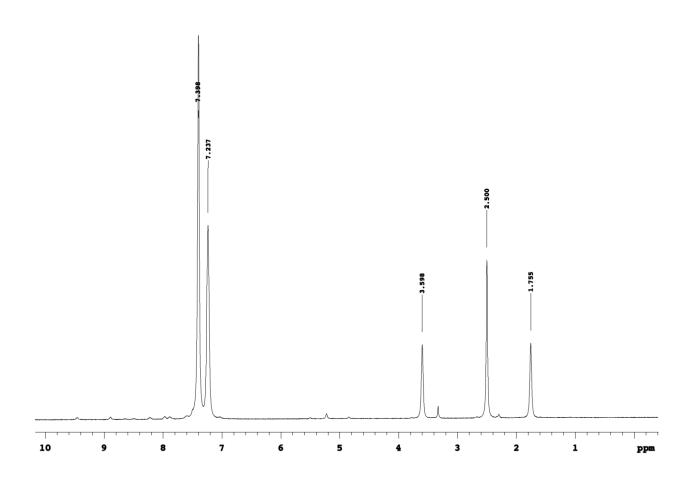

Figure S16. 13 C NMR of $Ni_2L^2(^{13}CS_2)_2$ (**2**- $^{13}CS_2$) with 2 equiv. of [FeCp₂](PF₆).

Figure S17. 1 H NMR of Ni₂L²(13 CS₂)₂ (**2**- 13 CS₂) with 4 equiv of [FeCp₂](PF₆).

Figure S18. 13 C NMR of Ni₂L²(13 CS₂)₂ (**2**- 13 CS₂) with 4 equiv of [FeCp₂](PF₆).

Figure S19. 1 H NMR of Ni₂L 1 (CS₂)₂ (**2**) and PPh₃.

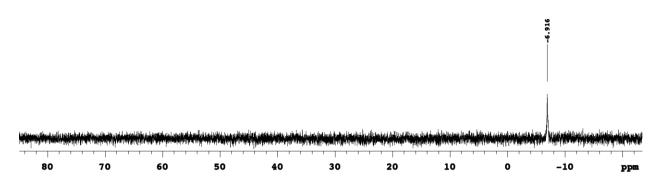
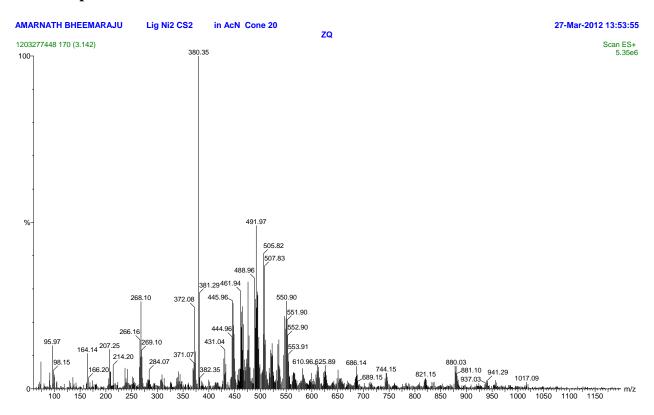
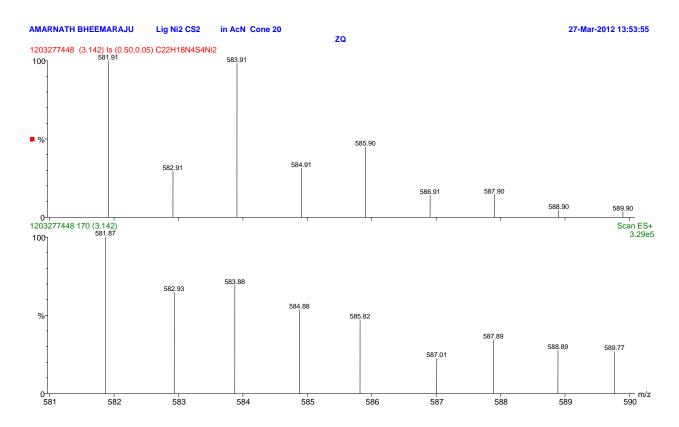




Figure S20. ^{31}P NMR of $Ni_2L^1(CS_2)_2$ (2) and PPh_3

6. Mass Spectra

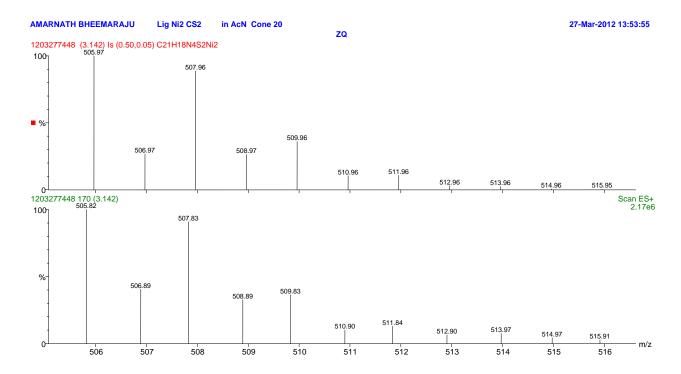


Figure S21. MS of $Ni_2L^1(CS_2)_2$ (2).

Figure S22. Peak attributed to $[Ni_2L^1(CS_2)_2]^+$ (2⁺). Above: calcd for $[Ni_2(L^1)(CS_2)_2]^+$ 581.9. Below: found 581.8.

.

Figure S23. Peak attributed to $[(Ni_2(L^1)CS_2)]+([\mathbf{2}-CS_2]+)$ Above: calcd for $[Ni_2(L^1)(CS_2)]^+$ 505.9. Below: found 505.8.

7. FT-IR Spectra

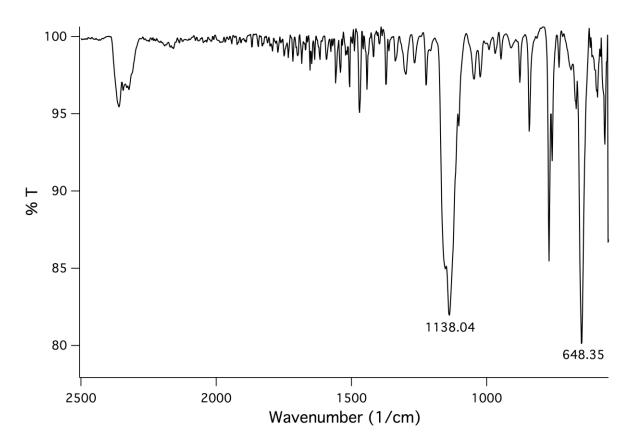
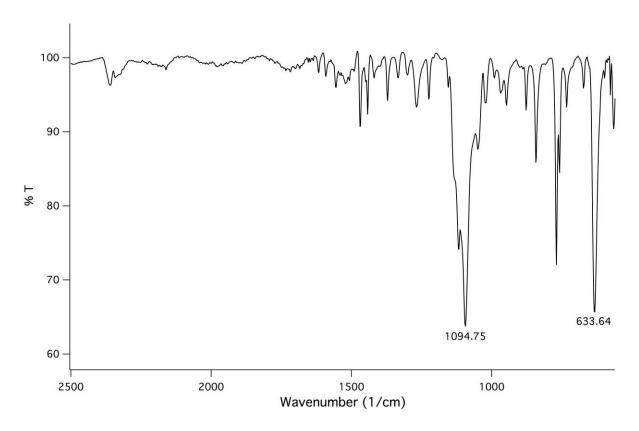
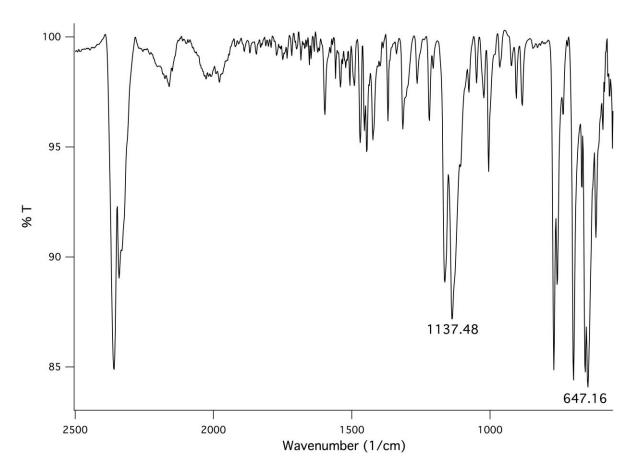
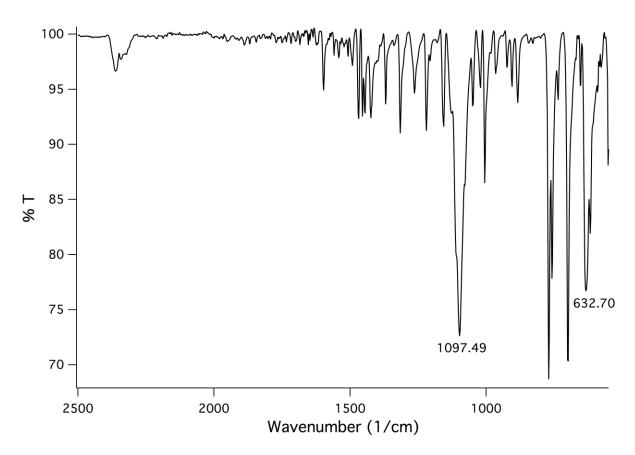



Figure S24. FT-IR spectra of $Ni_2(L^1)(CS_2)_2$ (2).

Figure S25. FT-IR spectra of $Ni_2(L^1)(^{13}CS_2)_2(2-^{13}CS_2)$.

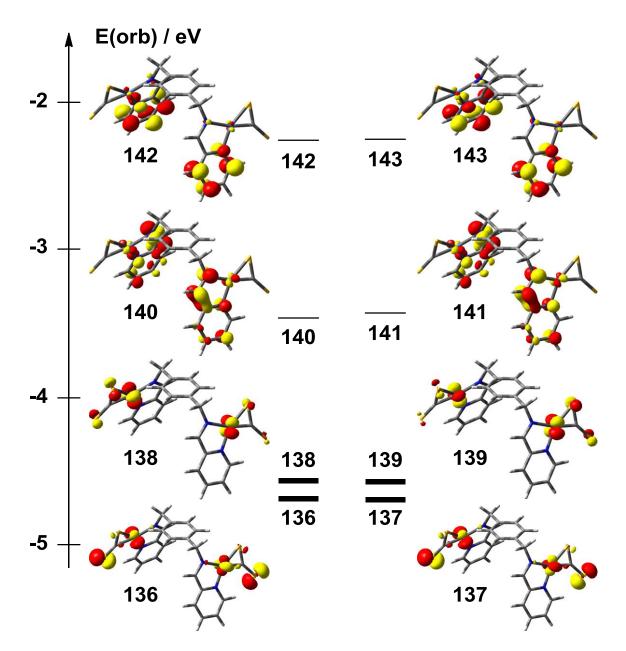

Figure S26. FT-IR spectra of $Ni(L^2)(CS_2)$ (4).

Figure S27. FT-IR spectra of $Ni(L^2)(^{13}CS_2)$ (**4**- $^{13}CS_2$).

8. Computational Details. Electronic structure calculations were carried out using density functional theory (DFT) ³ as implemented in Gaussian09. ⁴ Geometry optimizations were performed at the BP86/LANL2DZ/6-31G(d,p)⁵⁶⁷⁸⁹ level of theory with no symmetry constraints. We chose to use a pure functional here, BP86 compared to B3LYP in our previous report, ¹ to allow for the use of density fitting ¹⁰ which significantly sped up geometry optimizations for the dinickel complex. All optimized structures were confirmed to have stable wavefunctions, ^{11,12} and to be local minima by analyzing the harmonic frequencies. ¹³ Cartesian coordinates and frequencies for the two species can be found in Tables S1 and S2, respectively.

As Figure S27 shows, the electronic structure of the dinickel complex **2** is the same as for the mononickel complex **4**. The HOMO (138/139) is a linear combination of the metal-d and sulfurp orbitals, and the LUMO (140/141) is the π^* orbital of iminopyridine, with the exception that you get linear combinations between both Ni/iminopyridine fragments unlike in complex **4**. We have plotted the in- and out-of-phase orbitals side-by-side in the MO plot to emphasize their near degeneracy, showing weak electronic coupling across the bridge between the Ni/iminopyridine fragments. We show only the lowest energy minimum structure here.

Figure S28. Frontier orbital diagram of **2**. Doubly occupied and unoccupied orbitals represented by bold and normal lines, respectively. All orbitals are plotted using an isosurface value of 0.05 both here and in Figure 4 of the main text.

Table S1. Cartesian coordinates (Å) for optimized structures of 2 and 4.

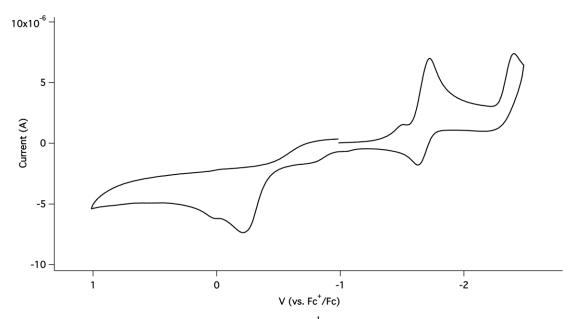
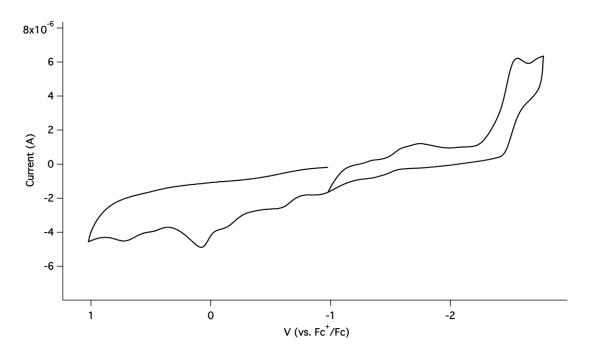

2				Н	0.798771	5.915465	3.577484
C	2.079558	-1.899228	1.010234	Ni	4.881457	-3.844789	5.914926
C	3.214499	-2.655487	1.336174	Ni	0.826807	1.701920	0.672670
C	3.235347	-3.467749	2.486777	C	1.638751	2.695877	-0.647412
C	2.095032	-3.507184	3.312884	C	4.322259	-4.297991	7.609521
C	0.962335	-2.746111	2.990283	S	3.370959	-5.284952	6.593947
C	0.940044	-1.936938	1.837557	S	1.410450	1.169785	-1.374981
Н	2.080355	-1.268459	0.113856	S	4.625744	-3.910022	9.167932
Н	4.091108	-2.620885	0.677081	S	2.223620	4.202272	-0.892289
Н	2.098644	-4.128496	4.215835				
Н	0.079512	-2.793943	3.640191	4			
C	-0.292233	-1.101596	1.511133	C	1.024526	1.055386	0.601905
Н	-1.161988	-1.477628	2.085888	Н	1.645975	1.702785	1.240918
Н	-0.531734	-1.166453	0.435479	N	1.326626	-0.189212	0.384885
C	4.483621	-4.269169	2.836704	Ni	0.014356	-1.077850	-0.827916
Н	4.212522	-5.289597	3.158933	C	-0.596766	-2.787342	-1.531495
Η	5.139938	-4.346622	1.947054	S	0.945000	-3.198985	-1.275995
N	5.213686	-3.647102	3.959340	S	-2.145352	-2.645395	-1.894355
N	-0.058297	0.325224	1.810806	C	-0.185911	1.594616	-0.022699
C	-0.470292	0.806095	2.949396	C	-2.006039	1.088763	-1.405059
Η	-1.017183	0.199336	3.689905	C	-0.619966	2.918670	0.134589
C	6.221466	-2.863510	3.699118	C	-2.497864	2.400847	-1.294827
Η	6.575668	-2.668514	2.673391	Н	-2.525430	0.331605	-2.000553
C	6.879665	-2.231245	4.836394	C	-1.797265	3.329078	-0.513052
C	7.972257	-1.355166	4.733487	Н	-0.042408	3.611896	0.754665
N	6.327333	-2.574026	6.050207	Н	-3.418290	2.676394	-1.817762
C	8.518262	-0.807677	5.903247	Н	-2.158330	4.356718	-0.406729
Η	8.379645	-1.111555	3.746249	N	-0.876859	0.688365	-0.785685
C	6.860992	-2.043203	7.172673	C	3.518681	-1.278439	-0.045719
C	7.950399	-1.160100	7.138923	C	4.050939	-2.579086	0.069628
Н	9.369240	-0.120861	5.850898	C	3.932442	-0.454893	-1.113335
Η	6.383394	-2.358777	8.111683	C	4.985065	-3.048939	-0.867998
Η	8.343857	-0.758511	8.078076	Н	3.744926	-3.221362	0.904937
C	-0.172507	2.207042	3.223326	C	4.860890	-0.928018	-2.053042
C	-0.535545	2.878929	4.401732	Н	3.533195	0.561956	-1.212034
N	0.510691	2.832241	2.204373	C	5.387142	-2.225761	-1.933045
C	-0.189239	4.229657	4.549391	Н	5.399096	-4.057592	-0.764495
Η	-1.079712	2.341183	5.185735	Н	5.176998	-0.281404	-2.878622
C	0.838840	4.134682	2.354266	Н	6.112952	-2.593009	-2.666282
C	0.508519	4.862424	3.507128	C	2.536417	-0.767908	0.997751
Н	-0.458866	4.776421	5.458770	Н	2.203611	-1.604933	1.638674
Н	1.376702	4.581794	1.505606	Н	3.007518	-0.009736	1.656648

Table S2. Frequencies ((cm ⁻¹) for optimized structu	res of 2 and 4.
--------------------------------	---	-----------------


2	1	() • F	1508.6621	1545.5157 1545.7144
5.1818	11.9155	12.4081	1580.2787	1594.2350 1594.2864
25.9637	26.6556	36.9066	1600.4680	1601.0226 1612.8951
45.3892	54.8766	59.2170	2959.8434	2959.9573 3033.5090
60.0255	77.6280	92.7126	3033.5600	3048.4385 3048.4656
98.3389	111.7321	127.2855	3065.0456	3065.0844 3100.6275
127.7716	155.2031	174.7145	3101.8771	3122.4694 3124.0297
174.8754	188.4181	191.6533	3126.1146	3126.1272 3137.6811
228.4361	242.1085	269.8143	3137.6956	3149.1066 3149.1210
277.7304	293.6624	307.6754		
308.9239	312.1262	330.1953	4	
348.8200	355.5316	363.9434	15.2757	21.0504 40.2939
367.1051	400.3866	403.7404	43.3892	45.8215 75.8520
411.3661	421.5640	423.3688	77.1653	96.5592 138.3203
427.9403	455.2550	457.9297	145.4224	179.8550 231.0544
473.9424	492.0548	492.4085	250.4157	274.6245 279.5487
504.7788	514.2114	520.9041	314.9956	324.7940 346.2419
610.5333	634.1567	637.3380	399.0958	410.5144 422.7691
638.3144	643.7527	643.7745	455.8114	461.5932 492.7254
655.8236	662.5277	702.9926	502.5132	599.3664 603.9221
722.1339	724.2204	744.1798	610.7956	641.1460 659.6500
747.9226	781.1334	804.4322	686.4616	728.1388 734.0283
818.2315	835.6307	865.3261	753.9188	804.1315 822.1314
867.0452	867.1428	868.7022	866.8881	878.9081 891.5846
898.2135	900.7688	925.1553	924.0423	934.3646 946.4630
927.2631	944.2042	944.2514	951.1761	971.4029 985.2413
958.4405	974.6004	975.2494	985.3932	1006.5128 1027.8364
975.3583	1000.3720		1037.2416	1048.8183 1087.1316
1007.7484	1019.2987		1108.5099	1162.4339 1164.7494
1044.7606	1044.7737		1178.8592	1189.5865 1210.2229
1104.8343	1121.2447		1230.0613	1290.6947 1298.8190
	1182.2697			1332.5066 1358.5873
	1193.0355		1364.2839	1394.0642 1439.0335
1199.2168	1199.3883		1445.5641	1453.3364 1470.1977
1227.5679	1296.4968		1493.9002	1563.7055 1588.2678
1310.5919	1314.5011		1594.5076	1602.8769 1618.0949
1319.6482	1326.7039		2951.1361	3019.4322 3068.1530
1359.4416	1364.3430		3105.5199	3106.2340 3128.8249
1436.9158	1437.1119		3136.7713	3142.0041 3146.2068
1465.3784	1467.7285	5 1468.5605	3147.3439	3155.0263 3165.0196

9. Electrochemistry

The electrochemical properties were determined by CV on a BAS Epsilon system. Samples were prepared in anhydrous N,N'-Dimethylformamide with tetrabutylammonium hexafluorophosphate (0.1 M) as the supporting electrolyte. The redox potentials were found versus an Ag/Ag⁺ reference electrode. The Fc/Fc⁺ potential was determined vs. the Ag/Ag⁺ electrode using average based on 10 observations.

Figure S29. Cyclic voltammogram of $Ni_2Lig^1(CS_2)_2$ (0.1 M [N(n-Bu) $_4$](PF $_6$) in DMF, 25 0 C, Platinum working electrode, 100 mV/s scan rate).

Figure S30. Cyclic voltammogram of $Ni_2Lig^1(COD)_2$ (0.1 M [N(n-Bu) $_4$](PF $_6$) in DMF, 25 0 C, Platinum working electrode, 100 mV/s scan rate).

10. References

¹. Bheemaraju, A.; Lord, R.L.; Müller, P.; Groysman, S. Organometallics **2012**, 31, 2120.

². Volpe, E. C.; Wolczanski, P. T.; and Lobkovski, E. B. Organometallics, **2010**, 29, 364.

³. Parr, R. G.; Yang, W. Density-functional theory of atoms and molecules; Oxford University Press: New York, 1989.

⁴. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Nakatsuji, G. A. P. H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; J. A. Montgomery, J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Parandekar, P. V.; Mayhall, N. J.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09, Revision C.01* Wallingford CT, 2010.

⁵. Becke, A. D. *Phys. Rev. A* **1988**, *38*, 3761.

⁶. Perdew, J.P. *Phys. Rev. B* **1986**, *33*, 8822.

⁷. Hay, P.J.; Wadt, W.R. J. Chem. Phys. **1985**, 82, 270.

⁸. Wadt, W.R.; Hay, P.J. J. Chem. Phys. **1985**, 82, 284.

⁹. Hay, P.J.; Wadt, W.R. J. Chem. Phys. **1985**, 82, 299.

¹⁰. Dunlap, B.I. J. Mol. Struct. (Theochem) **2000**, 529, 37.

¹¹. Schlegel, H. B.; McDouall, J. J. In *Computational Advances in Organic Chemistry*; Ögretir, C., Csizmadia, I. G., Eds.; Kluwer Academic: Amsterdam, The Netherlands, 1991.

¹². Bauernschmitt, R.; Ahlrichs, R. J. Chem. Phys. **1996**, 104, 9047.

¹³. Schlegel, H. B. J. Comput. Chem. **1982**, *3*, 214.