## **Supporting Information**

#### Asymmetric Construction of Spirocyclohexanonerhodanines Catalyzed by Simple Diamine Derived from Chiral tert-Leucine

Wenbin Wu, Huicai Huang, Xiaoqian Yuan, Kailong Zhu and Jinxing Ye<sup>a</sup>\*

Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. yejx@ecust.edu.cn

| A: General Information and Starting Materials     | 2  |
|---------------------------------------------------|----|
| B: Experimental Details                           | 3  |
| C: Characterization of Cascade Reaction Products  | 1  |
| D: Elaboration of spiro-products                  | 16 |
| E: HPLC Charts of Products                        |    |
| F: NMR Spectra of Products                        | 42 |
| G: Absolute Configuration and X-Ray Analysis Data | 70 |

#### **A:** General Information and Starting Materials

General Information. Proton nuclear magnetic resonance (<sup>1</sup>H NMR) spectra and carbon nuclear magnetic resonance (<sup>13</sup>C NMR) spectra were recorded on a Bruker AV-400 spectrometer (400 MHz and 100 MHz). Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CDCl<sub>3</sub>:  $\delta$  7.26) Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent (CDCl<sub>3</sub>:  $\delta$  77.16). Data are represented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz). High resolution mass spectrometry (EI) were carried out using a Waters Quatro Macro triple quadrupole mass spectrometer Mass spectra (EI) were measured on a Waters Micromass GCT spectrometer. Optical rotations were measured on an Autopol III automatic polarimeter (Rudolph Research analytical). Melting points were measured on a XT3A apparatus. High Performance Liquid Chromatography (HPLC) was performed on an Agilent 1200 Series chromatographs using chiral columns (DAICEL CHIRALPAK IA, AD, IC) as noted.

**Starting Materials.** All solvents and inorganic reagents were from commercial sources and used without purification unless otherwise noted. Substrates 5,8,9 was synthesized following the literature procedure<sup>[1-4]</sup>. Catalyst 4a-4e was synthesized following the literature procedure<sup>[5]</sup>.

#### **Reference.**

- 1 Yılmaz E. M., Doğn I. Tetrahedron Asymmetry. 2008, 19, 2184.
- 2 N. K. El-Aasar, K. F. Saied. J. Heterocylic Chem. 2008, 45, 645.
- 3 Y. Dürüst, F. Nohout. *Synth.Commun.***1999**,29,1997.
- 4 N. Faucher, P. Martres, A. Laroze, O. Pineau, F. Potvain, D. Grillot. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 710.
- a) F. Yu, H. Hu, X. Gu, J. Ye. Org. Lett. 2012, 12, 1008; b) Y.-Q, Yang, G. Zhao, Chem. Eur. J., 2008, 14, 10888; c) J. Li, S. Luo, J.-P. Cheng. J. Org. Chem. 2009, 74, 1747; d) Y. Gao, Q. Ren, L. Wang, J. Wang, Chem. Eur. J., 2010, 16, 13068.

#### **B:** Experimental Sections:



To a solution of **6** (0.45 mmol, 1.5 equiv.) in solvent (0.6 mL) was added catalyst **4** (0.03 mmol, 0.10 equiv.) and acid (0.06 mmol, 0.20 equiv.), then substrate 5 (0.30 mmol, 1.0 equiv.) was added. The reaction mixture was stirred at  $30^{\circ}$ C or  $50^{\circ}$ C for 1-3 days and then the solvent was removed under vacuum. The residue was purified by silica gel chromatography to yield the desired product.

#### **C:** Characterization of Cascade Reaction Products



7a: (5S,6S,10S)-ethyl 4,8-dioxo-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5]decane-6-carboxylate

The product was obtained in 86% yield, light yellow solid. Mp 105-106°C;  $[\alpha]^{20}_{D}$  -40.8 (*c* 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, CDCl3): (ppm)  $\delta$ 1.32 (t, J = 7.2 Hz, 3H), 2.64 (dd, J = 4.0, 15.6 Hz, 1H), 2.83 (dd, J = 6.8, 16.0 Hz, 1H), 3.46-3.60 (m, 2H), 3.95-3.81 (t, J = 6.0 Hz, 1H), 4.11 (dd, J = 4.0, 14.0 Hz, 1H), 4.21-4.35 (m, 2H), 6.68-6.92 (m, 2H), 7.33-7.44 (m, 8H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  14.3, 39.5, 42.6, 47.9, 48.4, 62.5, 63.9, 128.1, 128.8, 128.9, 129.4, 129.5, 129.8, 134.7, 135.6, 170.7, 175.9, 198.4, 206.2; HRMS (EI): Exact mass calcd for (C<sub>23</sub>H<sub>21</sub>NO<sub>4</sub>S<sub>2</sub>)<sup>+</sup>: 439.0912. Found: 439.0914. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), n-Hexane / EtOH= 4:1, 1.0 mL/min<sup>-1</sup>,  $\lambda$  = 240 nm, 19.2 min (major), 22.8 min (minor), ee 98%.



# 7b: (5S,6S,10S)-ethyl 10-(2-fluorophenyl)-4,8-dioxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-6-carboxylate

The product was obtained in 83% yield, yellow solid. Mp 92-93°C;  $[\alpha]^{20}_{D}$  -42.3 (*c* 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, CDCl3): (ppm) $\delta$ 1.34 (t, J = 7.2 Hz, 3H), 2.72-2.85 (m, 2H);3.39 (dd, J = 10.4, 15.6 Hz, 1H), 3.54 (dd, J = 6.4, 16.0 Hz, 1H), 3.85 (t, J = 6.4 Hz, 1H), 4.29 (q, J = 6.8 Hz, 1H), 4.67 (dd, J = 5.2, 10.0 Hz, 1H), 7.03-7.25 (m, 5H), 7.35-7.40 (m, 1H), 7.49-7.54 (m, 3H); 13C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ 14.2, 40.2, 42.7, 47.6, 62.6, 63.5, 116.1, 116.3, 124.5, 124.6, 128.2, 129.6, 129.9, 130.4, 130.5, 135.0, 170.4, 175.5, 196.4, 205.4; HRMS (EI): Exact mass calcd for (C<sub>23</sub>H<sub>20</sub>FNO<sub>4</sub>S<sub>2</sub>)<sup>+</sup>: 457.0818. Found: 457.0819. The enantiomeric ratio was determined by Daicel Chiralpak AD (25 cm), n-Hexane / EtOH= 4:1, 0.8 mL/min<sup>-1</sup>,  $\lambda$  = 240 nm, 10.5 min (minor), 22.2 min (major), ee 92%.



## 7c: (5S,6S,10S)-ethyl 10-(4-bromophenyl)-4,8-dioxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-6-carboxylate

The product was obtained in 81% yield, light yellow solid. Mp 147-148°C;  $[\alpha]^{20}_{D}$  -27.8 (*c* 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm) $\delta$ 1.34 (t, J = 7.2 Hz, 3H), 2.62 (d, J = 16.0 Hz, 2H), 2.83 (dd, J = 6.0, 16.0 Hz, 1H), 3.48-3.56 (m, 2H), 3.94 (t, J = 5.6 Hz, 1H), 4.09-4.12 (m, 1H), 4.25-4.32(m, 2H), 6.72 (bs, 2H), 7.23-7.29 (m, 2H), 7.49-7.54 (m, 5H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 14.3, 39.5, 42.6, 47.4, 48.4, 62.7, 63.6, 123.2, 128.0, 129.7, 130.0, 131.0, 131.9, 134.6, 134.8, 170.7, 175.7, 197.9, 205.6; HRMS (EI): Exact mass calcd for (C<sub>23</sub>H<sub>20</sub>BrNO<sub>4</sub>S<sub>2</sub>)<sup>+</sup>: 517.0017, Found: 517.0020. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), n-Hexane / EtOH= 7:3, 1.0 mL/min<sup>-1</sup>,  $\lambda$  = 240 nm, 13.9 min (minor), 20.4 min (major), ee 87%.



7d: 6S,10S)-ethyl 10-(2-methoxyphenyl)-4,8-dioxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-6-carboxylate

The product was obtained in 79% yield, light yellow solid. Mp 143-145°C;  $[\alpha]^{20}_{D}$  -43.5 (*c* 1.0, CH<sub>2</sub>Cl<sub>2</sub>);<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm)  $\delta$ 1.30 (t, J = 6.8 Hz, 3H), 2.70-2.78 (m, 2H), 3.27 (dd, J = 9.2, 14.8 Hz, 1H), 3.43 (dd, J = 5.2, 16.0 Hz, 1H), 3.78 (s, 3H), 3.84-3.86 (m, 1H), 4.24 (t, J = 7.2 Hz, 1H), 4.79 (bs, 1H), 6.87-6.89 (m, 1H), 6.93-6.97 (m, 1H), 7.07-7.08 (m, 3H), 7.29-7.33 (m, 1H), 7.44-7.52 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 14.2, 40.3, 43.2, 47.3, 55.5, 55.6, 62.3, 64.0, 111.3, 120.8, 125.6, 128.3, 129.5, 129.7, 129.8, 135.3, 157.5, 170.4, 175.6, 192.9, 199.2; HRMS (EI): Exact mass calcd for (C<sub>24</sub>H<sub>23</sub>NO<sub>5</sub>S<sub>2</sub>)<sup>+</sup>: 469.1018, Found: 469.1016. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), n-Hexane / EtOH= 7:3, 0.8 mL/min<sup>-1</sup>,  $\lambda$  = 254 nm, 10.2 min (minor), 12.6 min (major), ee 88%.



# 7e: (5S,6S,10S)-ethyl 4,8-dioxo-3-phenyl-2-thioxo-10-m-tolyl-1-thia-3-azaspiro[4.5] decane-6-carboxylate

The product was obtained in 80% yield, light yellow solid. Mp 138-139°C;  $[\alpha]^{20}_{D}$  -58.4 (*c* 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm)  $\delta$ 1.35 (t, J = 7.2 Hz, 3H), 2.37 (s, 3H), 2.64 (dd, J = 3.6, 15.2 Hz, 1H), 2.84 (dd, J = 6.4, 16.0 Hz, 1H), 3.49-3.60 (m, 2H), 3.96 (t, J = 6.4 Hz, 1H), 4.10 (dd, J = 4.4, 14.0 Hz, 1H), 4.23-4.37 (m, 2H), 6.71 (bs, 2H), 7.15-7.17 (m, 2H), 7.23-7.31 (m, 2H), 7.45-7.47 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 14.2, 21.5, 39.5, 42.6, 47.8, 48.3, 62.5, 63.8, 126.7, 128.1, 128.6, 129.5, 129.6, 129.8, 129.9, 134.7, 135.5, 138.4, 170.8, 175.8, 198.6, 206.2; HRMS (EI): Exact mass calcd for (C<sub>24</sub>H<sub>23</sub>NO<sub>4</sub>S<sub>2</sub>)<sup>+</sup>: 453.1068, Found: 453.1069; The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), n-Hexane / <sup>1</sup>PrOH= 7:3, 0.8 mL/min<sup>-1</sup>,  $\lambda$  = 254 nm, 12.8 min (minor), 14.0 min (major), ee 98%.



7f: (5S,6S,10S)-ethyl 4,8-dioxo-3-phenyl-2-thioxo-10-p-tolyl-1-thia-3-azaspiro[4.5] decane-6-carboxylate

The product was obtained in 80% yield, yellow solid. Mp 83-84°C ;  $[\alpha]^{20}_{D}$  -62.1 (*c* 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm) $\delta$ 1.32 (t, J = 7.2 Hz, 3H), 2.39 (s, 3H), 2.61 (dd, J = 4.0, 15.6 Hz, 1H), 2.80 (dd, J =6.8, 16.4 Hz, 1H), 3.43-3.56 (m, 2H), 3.93 (t, J = 6.4 Hz, 1H), 4.06 (dd, J =4.0, 13.6 Hz, 1H), 4.20-4.34 (m, 2H), 6.69 (bs, 2H), 7.17-7.23 (m, 4H), 7.42-7.49 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 14.3, 21.2, 39.4, 42.8, 47.6, 48.2, 62.5, 64.0, 129.1, 129.2, 129.4, 129.5, 129.8, 132.6, 134.8, 138.8, 170.7, 175.9, 198.6, 206.3; HRMS (EI): Exact mass calcd for (C<sub>24</sub>H<sub>23</sub>NO<sub>4</sub>S<sub>2</sub>)<sup>+</sup>: 453.1068, Found: 453.1069; The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), n-Hexane / <sup>i</sup>PrOH= 7:3, 0.8 mL/min<sup>-1</sup>,  $\lambda$  = 254 nm, 10.2 min (major), 14.5 min (minor), ee >99%.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012



# 7g:(5R,6S,10S)-ethyl 4,8-dioxo-3-phenyl-10-(thiophen-2-yl)-2-thioxo-1-thia-3-azaspiro[4.5] decane-6-carboxylate

The product was obtained in 90% yield, light yellow solid. Mp 82-83°C;  $[\alpha]^{20}_{D}$  -82.9 (*c* 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm) $\delta$ 1.33 (t, J = 7.2 Hz, 3H), 2.75-2.81 (m, 2H), 3.47-3.54 (m, 2H), 3.90 (t, J = 6.0 Hz, 1H), 4.23-4.31 (m, 2H), 4.44 (dd, J = 4.4, 13.6 Hz, 2H), 6.75 (bs, 2H), 7.04-7.06 (m, 1H), 7.34-7.35 (m, 1H), 7.44-7.46 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 14.2, 39.7, 43.6, 44.0, 48.5, 62.7, 63.8, 126.0, 127.0, 127.5, 128.1, 129.6, 129.9, 134.7, 138.6, 170.9, 175.6, 198.6, 205.0; HRMS (EI): Exact mass calcd for (C<sub>21</sub>H<sub>19</sub>NO<sub>4</sub>S<sub>3</sub>)<sup>+</sup>: 445.0476, Found: 445.0477; The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), n-Hexane / <sup>1</sup>PrOH = 7:3, 0.8 mL/min<sup>-1</sup>,  $\lambda$  = 254 nm, 12.9 min (minor), 13.4 min (major), ee 90%.



## 7h: (6S,10S)-diethyl 4,8-dioxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-6,10-dicarboxylate

The product was obtained in 35% yield, yellow oil.  $[\alpha]^{20}{}_{D}$  -160.4 (*c* 0.5, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm) $\delta$ 1.26 (t, J = 7.2 Hz, 3H), 1.30 (t, J = 7.2 Hz, 3H), 2.61 (dd, J = 6.8, 16.0 Hz, 1H), 2.73 (dd, J = 5.2, 15.2 Hz, 1H), 3.04 (dd, J = 8.4, 15.2 Hz, 1H), 3.37 (dd, J = 6.0, 15.6 Hz, 1H), 3.88-3.97 (m, 2H), 4.18-4.26(m, 3H), 7.34-7.36 (m, 2H), 7.49-7.58 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 14.1, 14.2, 39.9, 40.4, 48.0, 49.1, 59.8, 62.4, 62.6, 128.4, 129.8, 130.0, 135.3, 170.6, 175.9, 196.2, 203.1; HRMS (EI): Exact mass calcd for (C<sub>20</sub>H<sub>21</sub>NO<sub>6</sub>S<sub>2</sub>)<sup>+</sup>: 435.0810, Found: 435.0811; The enantiomeric ratio was determined by Daicel Chiralpak IC (25 cm), n-Hexane / <sup>1</sup>PrOH= 7:3, 0.8 mL/min<sup>-1</sup>,  $\lambda$  = 254 nm, 19.8 min (major), 23.9 min (minor), ee 94%.



7i: ethyl 4',5-dioxo-3'-phenyl-2'-thioxospiro[bicyclo[2.2.2] octane-2,5'-thiazolidine]-3-carboxylate The product was obtained in 95% yield, yellow solid. Mp 166-167°C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm) $\delta$ 1.28 (t, J = 7.2 Hz, 3H), 1.59-1.68 (m, 2H), 1.92-1.99 (m, 1H), 2.09-2.17 (m, 1H), 2.22-2.32 (m, 2H), 2.76-2.77 (m, 1H), 2.93-2.94 (m, 1H), 3.36-3.41 (m, 1H), 3.76 (bs, 1H), 4.15-4.30 (m, 2H), 7.19-7.21 (m, 2H), 7.51-7.57 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 14.4, 18.5, 24.7, 39.0, 41.2, 43.9, 48.3, 62.3, 128.3, 129.8, 130.1, 168.4, 178.3, 198.6, 210.4; HRMS (EI): Exact mass calcd for (C<sub>19</sub>H<sub>19</sub>NO<sub>4</sub>S<sub>2</sub>)<sup>+</sup>: 389.0755, Found: 389.0753.



#### 7j: (6S,10S)-3,6,10-triphenyl-2-thioxo-1-thia-3-azaspiro[4.5]decane-4,8-dione

The product was obtained in 70% yield, light yellow solid. Mp 157-158°C;  $[\alpha]^{20}_{D}$  -118.0 (*c* 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm) $\delta$ 2.80-2.84 (m, 1H), 3.02 (dd, J = 8.4, 16.4 Hz, 1H), 3.37(dd, J = 4.8, 16.8 Hz, 1H), 3.67-3.74 (m, 1H), 3.87-3.91(m, 1H), 4.31-4.34(m, 1H), 6.61 (bs, 2H), 7.26-7.43 (m, 13H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 42.4, 42.6, 46.8, 48.1, 69.3, 128.0, 128.6, 128.7, 128.9, 129.2, 129.3, 129.5, 129.7, 134.8, 135.9, 138.2, 176.4, 197.7, 208.2; HRMS (EI): Exact mass calcd for (C<sub>26</sub>H<sub>21</sub>NO<sub>2</sub>S<sub>2</sub>)<sup>+</sup>: 443.1014, Found: 443.1016; The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), n-Hexane / <sup>i</sup>PrOH= 7:3, 0.8 mL/min<sup>-1</sup>,  $\lambda$  = 254 nm, 11.7 min (minor), 22.0 min (major), ee 94%.



7k: (5S,6S,10S)-6-(4-bromophenyl)-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-4,8-dione

The product was obtained in 94% yield, yellow solid. Mp 101-103°C;  $[\alpha]^{20}_{D}$  -75.8 (*c* 1.0, CH<sub>2</sub>Cl<sub>2</sub>);<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm) $\delta$ 2.78 (dd, J = 4.0, 16.4 Hz, 1H), 2.95 (dd, J = 8.8, 16.4 Hz, 1H), 3.28(dd, J = 4.8, 16.4 Hz, 1H), 3.65 (dd, J = 13.2, 16.4 Hz, 1H), 3.81(dd, J = 3.6, 12.8 Hz, 1H), 4.27(dd, J = 4.8, 8.8 Hz, 1H), 6.55 (bs, 2H), 7.10-7.12(m, 1H), 7.28-7.29(m, 2H), 7.34-7.42(m, 6H), 7.51-7.53 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 42.3, 42.6, 46.2, 48.3, 69.0, 122.9, 128.0, 128.8, 128.9, 129.3, 129.6, 129.8, 130.8, 132.1, 134.7, 135.8, 137.2, 176.3, 197.0, 207.8; HRMS (EI): Exact mass calcd for (C<sub>26</sub>H<sub>20</sub>BrNO<sub>2</sub>S<sub>2</sub>)<sup>+</sup>: 521.0119, Found: 521.0119; The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), n-Hexane / <sup>i</sup>PrOH = 7:3, 0.8 mL/min<sup>-1</sup>,  $\lambda$  = 254 nm, 11.0 min (minor), 17.2 min (major), ee 98%.



## 71: (5S,6S,10S)-6-(4-fluorophenyl)-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-4,8-dione

The product was obtained in 86% yield, yellow solid. Mp 197-198°C;  $[\alpha]^{20}_{D}$  -126.5(*c* 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm) $\delta$ 2.79 (dd, J = 4.0, 16.4 Hz, 1H), 2.95 (dd, J = 8.8, 16.4 Hz, 1H), 3.29(dd, J = 4.8, 16.8 Hz, 1H), 3.66 (dd, J = 13.2, 16.0 Hz, 1H), 3.82(dd, J = 4.0, 13.2 Hz, 1H), 4.30(dd, J = 4.8, 8.8 Hz, 1H), 6.55 (bs, 2H), 7.07-7.11(m, 1H), 7.20-7.24(m, 2H), 7.28-7.30(m, 2H), 7.35-7.42 (m, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 42.5, 42.6, 46.1, 48.2, 69.4, 115.8, 116.0, 128.0, 128.8, 129.3, 129.5, 129.8, 130.9, 131.0, 134.0, 134.7, 135.9, 161.5, 163.9, 176.3, 197.2, 207.9; HRMS (EI): Exact mass calcd for (C<sub>26</sub>H<sub>20</sub>FNO<sub>2</sub>S<sub>2</sub>)<sup>+</sup>: 461.0919, Found: 461.0920; The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), n-Hexane / <sup>i</sup>PrOH = 7:3, 0.8 mL/min<sup>-1</sup>,  $\lambda$  = 254 nm, 13.3 min (minor), 20.9 min (major), ee 95%.



# 7m: (5S,6S,10S)-6-(4-nitrophenyl)-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-4,8-dione

The product was obtained in 85% yield, yellow solid. Mp 214-215°C;  $[\alpha]^{20}_{D}$  -187.5 (*c* 1.0, CH<sub>2</sub>Cl<sub>2</sub>);<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm)\delta2.81 (dd, J = 3.6, 16.4 Hz, 1H), 3.04 (dd, J = 10.0, 16.8 Hz, 1H), 3.23(dd, J = 4.4, 16.4 Hz, 1H), 3.68 (dd, J = 13.2, 16.4 Hz, 1H), 3.84(dd, J = 3.6, 13.2 Hz, 1H), 4.49(dd, J = 4.4, 10.0 Hz, 1H), 6.48 (bs, 2H), 7.30-7.32(m, 2H), 7.36-7.43(m, 8H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 41.8, 42.3, 46.0, 48.6, 68.7, 124.1, 127.9, 128.9, 129.0, 129.3, 129.6, 129.9, 130.1, 134.4, 135.3, 145.2, 147.9, 176.1, 196.2, 207.0; HRMS (EI): Exact mass calcd for (C<sub>26</sub>H<sub>20</sub>N<sub>2</sub>O<sub>4</sub>S<sub>2</sub>)<sup>+</sup>: 488.0864, Found: 488.0865; The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), n-Hexane / <sup>i</sup>PrOH = 7:3, 0.8 mL/min<sup>-1</sup>,  $\lambda$  = 254 nm, 21.9 min (minor), 25.6 min (major), ee 98%.



### 7n: (5S,6S,10S)-6-(4-methoxyphenyl)-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-4,8-dione

The product was obtained in 68% yield, yellow solid.  $[\alpha]^{20}{}_{D}$  -155.4 (*c* 0.5, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm) $\delta$ 2.77 (dd, J = 3.6, 16.0 Hz, 1H), 2.93 (dd, J = 8.0, 16.4 Hz, 1H), 3.35(dd, J = 5.2, 16.4 Hz, 1H), 3.62-3.70 (m, 1H), 3.80-3.81(m, 1H), 3.83(s, 1H), 4.22(dd, J = 5.2, 7.6 Hz, 1H), 6.61 (bs, 2H), 6.89-6.92(m, 2H), 7.15-7.17(m, 2H), 7.26-7.28 (m, 2H), 7.35-7.42 (m, 5H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 42.7, 42.8, 46.4, 48.1, 55.5, 69.7, 114.2, 128.1, 128.8, 129.3, 129.5, 129.8, 130.4, 134.9, 136.1, 159.7, 176.5, 197.8, 208.5; HRMS (EI): Exact mass calcd for (C<sub>27</sub>H<sub>23</sub>NO<sub>3</sub>S<sub>2</sub>)<sup>+</sup>: 473.1119, Found: 473.1123; The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), n-Hexane / iPrOH = 7:3, 0.8 mL/min<sup>-1</sup>,  $\lambda$  = 254 nm, 16.4 min (minor), 25.4 min (major), ee 99%.



70: (5S,6S,10S)-ethyl 4,8-dioxo-10-phenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-6-carboxylate

The product was obtained in 88% yield, yellow oil.  $[\alpha]^{20}{}_{D}$  -58.2 (*c* 0.5, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm) $\delta$ 1.31 (t, J = 7.2 Hz, 3H), 2.65 (dd, J = 4.0, 15.2 Hz, 1H), 2.78(dd, J = 5.2, 16.0 Hz, 1H), 3.51-3.58 (m, 2H), 3.80 (t, J = 5.6 Hz, 1H), 4.09(dd, J = 4.0, 12.8 Hz, 1H), 4.19-4.32 (m,2H), 7.29-7.30(m, 2H), 7.33-7.34(m, 3H), 8.91 (bs, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 14.1, 39.8, 42.9, 47.8, 48.3, 62.7, 66.8, 128.8, 128.9, 129.2, 135.9, 170.9, 176.4, 197.8, 206.1; HRMS (EI): Exact mass calcd for (C<sub>17</sub>H<sub>17</sub>NO<sub>4</sub>S<sub>2</sub>)<sup>+</sup>: 363.0599, Found: 363.0598; The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), n-Hexane / <sup>i</sup>PrOH= 7:3, 0.8 mL/min<sup>-1</sup>,  $\lambda$  = 254 nm, 20.9 min (major), 32.8 min (minor), ee 99%.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012



## 7p:(5S,6S,10S)-ethyl 4,8-dioxo-2-thioxo-10-m-tolyl-1-thia-3-azaspiro[4.5] decane-6-carboxylate

The product was obtained in 77% yield, yellow oil.  $[\alpha]^{20}_{D}$  -75.2 (*c* 0.5, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm) $\delta$ 1.28 (t, J = 7.2 Hz, 3H), 2.31(s, 3H), 2.61 (dd, J = 3.6, 15.2 Hz, 1H), 2.75 (dd, J = 5.2, 16.0 Hz, 1H), 3.45-3.53 (m, 2H), 3.77 (t, J = 6.0 Hz, 1H), 4.01 (dd, J = 4.4, 12.8 Hz, 1H), 4.16-4.26 (m, 2H), 7.04-7.05 (m, 2H), 7.10-7.12(m, 1H), 7.17-7.20(m, 1H), 9.20(bs, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 14.1, 21.6, 39.8, 43.0, 47.7, 48.2, 62.6, 66.8, 125.9, 128.6, 129.6, 130.1, 135.8, 138.4, 170.9, 176.6, 198.1, 206.4; HRMS (EI): Exact mass calcd for (C<sub>18</sub>H<sub>19</sub>NO<sub>4</sub>S<sub>2</sub>)<sup>+</sup>: 377.0755, Found: 377.0753; The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), n-Hexane / <sup>i</sup>PrOH= 7:3, 0.8 mL/min<sup>-1</sup>,  $\lambda$  = 254 nm, 8.5 min (minor), 12.8 min (major), ee 89%.



# 7q: (5S,6S,10S)-6-(4-bromophenyl)-3-isopropyl-10-phenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-4,8-dione

The product was obtained in 88% yield, light yellow solid. Mp 85-86°C;  $[\alpha]^{20}_{D}$ -138.7 (*c* 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm) $\delta$ 1.03(d, J = 6.8 Hz, 3H), 1.16(d, J = 6.8 Hz, 3H), 2.75 (dd, J = 4.0, 16.0 Hz, 1H), 2.89 (dd, J = 10.4, 16.4 Hz, 1H), 3.08 (dd, J = 4.4, 16.8 Hz, 1H), 3.55(dd, J = 12.0, 16.4 Hz, 1H), 3.68(dd, J = 4.0, 11.6 Hz, 1H), 4.11(dd, J = 4.4, 10.4 Hz, 1H), 4.82-4.88 (m, 1H), 7.00-7.03 (m, 2H), 7.18-7.20 (m, 2H), 7.28-7.30 (m, 3H), 7.41-7.43 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 17.7, 18.1, 42.4, 42.7, 45.5, 48.4, 50.2, 65.6, 122.6, 128.5, 128.6, 129.2, 130.8, 131.8, 135.9, 136.6, 176.6, 197.9, 207.8; HRMS (EI): Exact mass calcd for (C<sub>23</sub>H<sub>22</sub>BrNO<sub>2</sub>S<sub>2</sub>)<sup>+</sup>: 487.0275, Found: 487.0275; The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), n-Hexane / <sup>i</sup>PrOH= 7:3, 0.8 mL/min<sup>-1</sup>,  $\lambda$  = 254 nm, 10.6 min (major), 12.3 min (minor), ee 98%.



### 7r: (58,68,108)-6-(4-bromophenyl)-3-cyclohexyl-10-phenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-4,8-dione

The product was obtained in 87% yield, white solid. Mp 149-150°C;  $[\alpha]^{30}_{D}$  -153.9 (*c* 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm) $\delta$ 0.95-0.98(m, 1H), 1.13-1.26(m, 4H), 1.59-1.63 (m, 1H), 1.74-2.09 (m, 4H), 2.75 (dd, J = 3.6, 16.0 Hz, 1H), 2.89(dd, J = 10.4, 16.8 Hz, 1H), 3.09(dd, J = 4.4, 16.8 Hz, 1H), 3.55(dd, J = 12.0, 16.4 Hz, 1H), 3.66 (dd, J = 4.0, 12.0 Hz, 1H), 4.10 (dd, J = 4.4, 10.4 Hz, 1H), 4.49(t, J = 11.6 Hz, 1H), 7.00-7.02 (m, 2H), 7.18-7.19 (m, 2H), 7.28-7.30 (m, 3H), 7.41-7.43 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 25.0, 25.9, 26.0, 27.0, 27.4, 42.4, 42.7, 45.6, 48.4, 58.2, 122.6, 128.5, 128.6, 129.2, 130.8, 131.8, 135.9, 136.7, 176.8, 196.2, 207.9; HRMS (EI): Exact mass calcd for (C<sub>26</sub>H<sub>26</sub>BrNO<sub>2</sub>S<sub>2</sub>)<sup>+</sup>: 527.0588, Found: 527.0589; The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), n-Hexane / <sup>1</sup>PrOH= 7:3, 0.8 mL/min<sup>-1</sup>,  $\lambda$  = 254 nm, 9.8 min (minor), 12.0 min (major), ee 98%.



## 7s: (5S,6S,7R,10S)-ethyl 7-ethyl-4,8-dioxo-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-6-carboxylate

The product was obtained in 75% yield, yellow solid. Mp 84-85°C;  $[\alpha]^{20}_{D}$  -6.6 (*c* 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm) $\delta$ 1.03(t, J = 7.2 Hz, 3H), 1.27-1.31 (m, 2H), 1.36(t, J = 7.2 Hz, 3H), 1.87-1.94(m, 1H), 2.68 (dd, J = 4.8, 14.0 Hz, 1H), 3.59-3.69 (m, 2H), 3.80 (d, J = 6.4 Hz, 2H), 4.28-4.31 (m, 2H), 4.37 (dd, J = 4.4, 13.6 Hz, 1H), 6.78(bs, 2H), 7.35-7.46 (m, 8H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 12.0, 14.3, 20.0, 43.3, 48.3, 48.8, 55.3, 62.2, 64.0, 128.1, 128.7, 128.9, 129.6, 129.9, 134.6, 135.9, 170.5, 197.4, 206.7; HRMS (EI): Exact mass calcd for (C<sub>25</sub>H<sub>25</sub>NO<sub>4</sub>S<sub>2</sub>)<sup>+</sup>: 467.1225, Found: 467.1223; The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), n-Hexane / <sup>i</sup>PrOH= 7:3, 0.8 mL/min<sup>-1</sup>,  $\lambda$  = 254 nm, 5.6 min (major), 7.5 min (minor), ee 95%.



7t:(5S,6S,7R,10S)-10-(4-bromophenyl)-7-ethyl-3,6-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-4,8-dione

The product was obtained in 85% yield, yellow oil.  $[\alpha]^{20}{}_{D}$  -114.7 (*c* 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm) $\delta$ 0.78(t, J = 7.2 Hz, 3H), 1.38-1.48 (m, 1H), 1.92-2.02 (m, 1H), 2.90 (dd, J = 4.8, 16.4 Hz, 1H), 2.94-2.98 (m, 1H), 3.38 (dd, J = 8.8, 16.0 Hz, 1H), 3.92 (dd, J = 4.4, 8.8 Hz, 1H) , 4.24 (d, J = 13.6 Hz, 1H), 6.27-6.29(m, 2H), 7.22-7.24 (m, 2H), 7.32-7.37 (m, 7H), 7.44-7.52 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 9.8, 19.4, 43.5, 48.0, 49.7, 49.9, 71.2, 122.6, 127.9, 128.5, 128.7, 129.3, 129.5, 129.7, 131.7, 134.2, 134.6, 136.7, 175.2, 196.7, 208.7; HRMS (EI): Exact mass calcd for (C<sub>28</sub>H<sub>24</sub>BrNO<sub>2</sub>S<sub>2</sub>)<sup>+</sup>: 549.0432, Found: 549.0429; The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), n-Hexane / <sup>1</sup>PrOH= 7:3, 0.8 mL/min<sup>-1</sup>,  $\lambda$  = 254 nm, 11.9 min (minor), 13.6 min (major), ee 99%.



7u: (5S,6S,7R,10S)-ethyl 7-methyl-4,8-dioxo-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-6-carboxylate

The product was obtained in 87% yield, yellow solid. Mp 69-70°C;  $[\alpha]^{20}_{D}$  -20.5 (*c* 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm) $\delta$ 1.15(d, J = 6.8 Hz, 3H), 1.36 (t, J = 7.2 Hz, 3H), 2.71 (dd, J = 4.8, 14.4 Hz, 1H), 3.62 (t, J = 14.0 Hz, 1H), 3.76 (d, J = 6.0 Hz, 1H), 3.87-3.90 (m, 1H), 4.30 (q, J = 7.2 Hz, 1H), 4.37 (dd, J = 4.4, 13.6 Hz, 1H), 6.77 (bs, 2H), 7.35-7.45 (m, 8H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 11.9, 14.3, 41.9, 42.8, 48.0, 56.5, 62.2, 63.9, 128.1, 128.7, 128.9, 129.5, 129.9, 134.6, 135.9, 170.5, 197.3, 207.0; HRMS (EI): Exact mass calcd for (C<sub>24</sub>H<sub>23</sub>NO<sub>4</sub>S<sub>2</sub>)<sup>+</sup>: 453.1068, Found: 453.1070; The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), n-Hexane / <sup>1</sup>PrOH= 7:3, 0.8 mL/min<sup>-1</sup>,  $\lambda$  = 254 nm, 6.1 min (major), 8.5 min (minor), ee 98%.



# 7v:(5S,6S,7R,10S)-6-(4-fluorophenyl)-7-methyl-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro [4.5]decane-4,8-dione

The product was obtained in 80% yield, yellow oil.  $[\alpha]^{20}_{D}$  -138.4 (*c* 0.5, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm) $\delta$ 1.09 (d, J = 6.4 Hz, 3H), 2.90-3.03 (m, 2H), 3.40 (dd, J = 8.8, 16.4 Hz, 1H), 3.96 (dd, J = 4.8, 8.4 Hz, 1H), 4.06 (d, J = 13.2 Hz, 1H) , 6.31-6.33(m, 2H), 7.07-7.23 (m, 5H), 7.35-7.37 (m, 7H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 12.9, 42.8, 45.3, 49.7, 50.9, 71.4, 115.5, 127.9, 128.5, 129.4, 129.5, 129.7, 131.21, 131.25, 134.7, 134.8, 175.1, 196.8, 209.2; HRMS (EI): Exact mass calcd for (C<sub>27</sub>H<sub>22</sub>FNO<sub>2</sub>S<sub>2</sub>)<sup>+</sup>: 475.1076, Found: 475.1077; The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), n-Hexane / <sup>i</sup>PrOH= 7:3, 0.8 mL/min<sup>-1</sup>,  $\lambda$  = 254 nm, 11.8 min (major), 12.6 min (minor), ee 93%.



# 7w: (5S,6S,7R,10S)-ethyl 7-methyl-4,8-dioxo-10-phenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-6-carboxylate

The product was obtained in 78% yield, yellow oil.  $[\alpha]^{20}_{D}$  -42.2 (*c* 0.5, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm) $\delta$ 1.11 (d, J = 6.8 Hz, 3H), 1.33(t, J = 6.8 Hz, 3H), 2.68 (dd, J = 4.8, 14.4 Hz, 1H), 3.52-3.66 (m, 2H), 3.78-3.81 (m, 1H), 4.20-4.28 (m, 3H), 7.29-7.31 (m, 5H), 8.80 (bs, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 11.9, 14.3, 41.7, 43.1, 47.8, 56.5, 62.3, 67.2, 128.7, 128.8, 128.9, 129.0, 129.1, 129.4, 136.1, 170.5, 176.2, 196.6, 207.0; HRMS (EI): Exact mass calcd for (C<sub>18</sub>H<sub>19</sub>NO<sub>4</sub>S<sub>2</sub>)<sup>+</sup>: 377.0755, Found: 377.0758; The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), n-Hexane / <sup>i</sup>PrOH= 7:3, 0.8 mL/min<sup>-1</sup>,  $\lambda$  = 254 nm, 10.8 min (minor), 14.3 min (majr), ee 97%.



**7x**:(5S,6S,7R,10S)-ethyl 10-(furan-2-yl)-7-methyl-4,8-dioxo-2-thioxo-1-thia-3-azaspiro[4.5]decane-6-carboxylate

The product was obtained in 82% yield, yellow oil.  $[\alpha]^{20}{}_{D}$  -56.9 (*c* 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm) $\delta$ 1.08 (d, J = 7.2 Hz, 3H), 1.31(t, J = 7.2 Hz, 3H), 2.71 (dd, J = 4.8, 14.4 Hz, 1H), 3.49-3.62 (m, 2H), 3.72-3.80 (m, 1H), 4.23 (q, J = 7.2 Hz, 2H), 4.41(dd, J = 4.8, 13.2 Hz, 1H), 6.26-6.27 (m, 1H), 6.31-6.34 (m, 1H), 7.33-7.35 (m, 1H), 9.18 (bs, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 11.9, 14.3, 41.6, 42.1, 42.3, 55.8, 62.3, 65.6, 109.7, 110.8, 143.0, 150.6, 170.5, 176.0, 196.9, 206.2; HRMS (EI): Exact mass calcd for  $(C_{16}H_{17}NO_5S_2)^+$ : 367.0548, Found: 367.0549; The

enantiomeric ratio was determined by Daicel Chiralpak IC (25 cm), n-Hexane / EtOH= 4:1, 0.5 mL/min<sup>-1</sup>,  $\lambda = 254$  nm, 9.4 min (minor), 10.6 min (majr), ee 96%.



10: (5S,6R,10S)-ethyl 4,8-dioxo-3,10-diphenyl-2-thioxo-1,3-diazaspiro[4.5] decane-6-carboxylate

The product was obtained in 31% yield, yellow oil.  $[\alpha]^{20}_{D}$  -90.0 (*c* 0.5, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm) $\delta$ 1.33 (t, J = 7.2 Hz, 3H), 2.61(dd, J = 2.8, 14.4 Hz, 1H), 2.94(dd, J = 4.4, 15.6 Hz, 1H), 3.49-3.64 (m, 3H), 3.99 (dd, J = 4.0, 14.4 Hz, 1H), 4.29 (q, J = 7.2 Hz, 2H), 6.70-6.71 (m, 2H), 7.29-7.30 (m, 2H), 7.39-7.40 (m, 6H), 8.33 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 14.2, 38.8, 41.1, 46.1, 46.3, 60.6, 62.7, 66.6, 128.0, 129.0, 129.2, 129.5, 132.0, 135.0, 171.0, 173.1, 182.3, 206.2; HRMS (EI): Exact mass calcd for (C<sub>23</sub>H<sub>22</sub>N<sub>2</sub>O<sub>4</sub>S)<sup>+</sup>: 422.1300, Found: 422.1299; The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), n-Hexane / <sup>i</sup>PrOH= 7:3, 0.8 mL/min<sup>-1</sup>,  $\lambda$  = 254 nm, 10.7 min (minor), 13.9 min (majr), ee 99%.



#### 11:(Z)-ethyl 2-(2,4-dioxo-3-(3-oxo-1-phenylbutyl)thiazolidin-5-ylidene)acetate

The product was obtained in 93% yield, yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm) $\delta$ 1.32 (t, J = 6.8 Hz, 3H), 2.18 (s, 3H), 3.27 (dd, J = 5.6, 18.4 Hz, 1H), 3.95 (dd, J = 9.6, 18.0 Hz, 1H), 4.28 (t, J = 7.2 Hz, 1H), 5.89 (dd, J = 5.6, 10.0 Hz, 1H), 6.97 (s, 1H), 7.29-7.38 (m, 3H), 7.44-7.46 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 14.3, 30.2, 43.8, 53.5, 62.1, 119.6, 128.0. 128.8, 129.0, 137.4, 140.1, 164.9, 165.4, 169.2, 204.841.1, 63.2, 64.8, 65.2, 76.1, 93.2, 127.8, 127.9, 128.5, 133.4, 137.8, 145.1, 196.2; HRMS (EI): Exact mass calcd for (C<sub>17</sub>H<sub>17</sub>NO<sub>5</sub>S)<sup>+</sup>: 347.0827, Found: 347.0828;

#### **D:** Elaboration of spiro-Products

(a)



To a solution of compound 7k (52.2 mg, 0.10 mmol) in acetic acid (1.0 mL) was added chromium trioxide (30.0 mg, 0.30 mmol) in three portions over 30 mintutes at room temperature. The solution was stirred at 50 °C for 12 h. The mixture was treated with H<sub>2</sub>O (10 mL) and extracted with EtOAc (3 \*10 mL). The combined organic extracts was washed by brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and the solvent was removed under vacuum. The residue was purified by silica gel chromatography to yield the desired product.



**12:**(5S,6S,10S)-6-(4-bromophenyl)-3,10-diphenyl-1-thia-3-azaspiro[4.5]decane-2,4,8-trione The product was obtained in 85% yield, white solid. Mp 198-200°C;  $[\alpha]^{20}_{D}$  -112.8 (*c* 0.5, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm)\delta2.81 (dd, J = 2.4, 16.0 Hz, 1H), 2.97 (dd, J = 9.2, 16.4 Hz, 1H), 3.28 (dd, J = 4.4, 16.8 Hz, 1H), 3.65-3.72 (m, 1H), 3.79-3.83 (m, 1H), 4.31-4.34 (m, 1H), 6.57-6.71 (m, 2H), 7.12-7.20 (m, 2H), 7.53-7.55 (m, 2H) ; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 42.4, 42.8, 46.2, 48.6, 67.4, 122.8, 127.2, 128.7, 128.8, 128.9, 129.4, 129.6, 130.9, 132.0, 135.9, 137.4, 168.1, 174.6, 208.0; HRMS (EI): Exact mass calcd for (C<sub>26</sub>H<sub>20</sub>BrNO<sub>3</sub>S)<sup>+</sup>: 505.0347, Found: 505.0346;



To a solution of compound 7x (37.7 mg, 0.10 mmol) in MeOH (0.5 mL) was added NaBH<sub>4</sub> (113.4 mg, 0.30 mmol) at 0°C. The solution was stirred at room temperature for 16 h. The solvent was removed under vacuum and the residue was purified by silica gel chromatography to yield the desired product.



#### 13: (5S,6S,7R,8R,10S)-ethyl 8-hydroxy-7-methyl-4-oxo-10-phenyl-2-thioxo-1-thia-3-azaspiro [4.5]decane-6-carboxylate

The product was obtained in 86% yield, yellow solid. Mp 162-163°C;  $[\alpha]^{20}_{D}$  -15.5 (*c* 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): (ppm) $\delta$ 1.20 (d, J = 7.2 Hz, 3H), 1.38 (t, J = 7.2 Hz, 3H), 2.11-2.15 (m, 1H), 2.88-3.00 (m, 2H), 3.28-3.30 (m, 1H), 3.99-4.02 (m, 2H), 4.26-4.36 (m, 2H), 7.26-7.32 (m, 5H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ 14.3, 16.1, 33.3, 35.4, 40.9, 52.5, 62.5, 67.9, 69.8, 128.2, 128.5, 129.7, 137.5, 175.2, 176.7, 198.4; HRMS (ESI): Exact mass calcd for (C<sub>18</sub>H<sub>21</sub>NO<sub>4</sub>S<sub>2</sub>)<sup>+</sup>: 379.0912, Found: 379.0910;

#### **E: HPLC Charts of Products**

#### 7a: (5S,6S,10S)-ethyl 4,8-dioxo-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5]decane-6-carboxylate



# 7b: (5S,6S,10S)-ethyl 10-(2-fluorophenyl)-4,8-dioxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-6-carboxylate



| # | Time   | Area   | Height | Width  | Symmetry | Area % |
|---|--------|--------|--------|--------|----------|--------|
| 1 | 10.642 | 1541.4 | 58.5   | 0.4391 | 0.626    | 18.455 |
| 2 | 16.514 | 2542.3 | 53.2   | 0.7971 | 0.933    | 30.439 |
| 3 | 22.298 | 1721.8 | 40.5   | 0.7078 | 0.683    | 20.614 |
| 4 | 24.546 | 2546.8 | 51.9   | 0.8184 | 0.672    | 30.492 |









| # | Time   | Area   | Height | Width  | Symmetry | Area % |
|---|--------|--------|--------|--------|----------|--------|
| 1 | 13.918 | 624.3  | 30.5   | 0.3415 | 0.796    | 6.823  |
| 2 | 20.376 | 8525.6 | 239    | 0.5269 | 0.535    | 93.177 |





| # | Time   | Area    | Height | Width  | Symmetry | Area % |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 10.278 | 12324.4 | 725.3  | 0.2521 | 0.775    | 48.506 |
| 2 | 12.469 | 13083.6 | 607    | 0.3592 | 0.709    | 51.494 |



| # | Time   | Area   | Height | Width  | Symmetry | Area % |
|---|--------|--------|--------|--------|----------|--------|
| 1 | 10.161 | 315.5  | 15.5   | 0.3398 | 0.635    | 6.229  |
| 2 | 12.646 | 4749.8 | 157.4  | 0.4264 | 0.527    | 93.771 |



7e: (5S,6S,10S)-ethyl 4,8-dioxo-3-phenyl-2-thioxo-10-m-tolyl-1-thia-3-azaspiro[4.5] decane-6-carboxylate



| # | Time   | Area    | Height | Width  | Symmetry | Area % |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 12.8   | 472     | 12.8   | 0.6142 | 1.158    | 1.058  |
| 2 | 14.045 | 44124.5 | 1510.4 | 0.4384 | 0.528    | 98.942 |



7f: (5S,6S,10S)-ethyl 4,8-dioxo-3-phenyl-2-thioxo-10-p-tolyl-1-thia-3-azaspiro[4.5] decane-6-carboxylate

| # | Time  | Area    | Height | Width  | Symmetry | Area % |
|---|-------|---------|--------|--------|----------|--------|
| 1 | 9.866 | 16534.8 | 870.7  | 0.2711 | 0.465    | 51.812 |
| 2 | 14.15 | 15378.1 | 606.7  | 0.4225 | 0.501    | 48.188 |



| # | Time   | Area    | Height | Width  | Symmetry | Area % |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 10.241 | 15471.4 | 616    | 0.3804 | 0.706    | 99.882 |
| 2 | 14.511 | 18.2    | 7.8E-1 | 0.278  | 0        | 0.118  |



7g: (5R,6S,10S)-ethyl 4,8-dioxo-3-phenyl-10-(thiophen-2-yl)-2-thioxo-1-thia-3-azaspiro[4.5] decane-6-carboxylate



7h: (6S,10S)-diethyl 4,8-dioxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-6,10-dicarboxylate

| # | Time   | Area   | Height | Width  | Symmetry | Area % |
|---|--------|--------|--------|--------|----------|--------|
| 1 | 8.576  | 1826.7 | 138.6  | 0.196  | 0.872    | 16.054 |
| 2 | 10.021 | 1689.3 | 116.4  | 0.2202 | 1.005    | 14.847 |
| 3 | 20.036 | 4089.3 | 110.1  | 0.5438 | 0.575    | 35.939 |
| 4 | 23.66  | 3773.2 | 46.5   | 1.2097 | 0.566    | 33.161 |





7j: (6S,10S)-3,6,10-triphenyl-2-thioxo-1-thia-3-azaspiro[4.5]decane-4,8-dione



| 00- |        |        |        |        |          |        |
|-----|--------|--------|--------|--------|----------|--------|
| 50- |        |        |        |        |          |        |
| 00  |        |        |        |        |          |        |
| 50  |        |        | .723   |        |          |        |
| 0   |        |        | ÷      |        |          |        |
| 0   | 5      | 10     | 15     | 20     | 25       |        |
| #   | Time   | Area   | Height | Width  | Symmetry | Area % |
| 1   | 11.723 | 215.9  | 13.1   | 0.2748 | 0.843    | 2.850  |
| 2   | 22.001 | 7359.5 | 214.4  | 0.5139 | 0.683    | 97.150 |

min



7k: (5S,6S,10S)-6-(4-bromophenyl)-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5]decane-4,8-dione



71: (5S,6S,10S)-6-(4-fluorophenyl)-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5]decane-4,8-dione

| # | Time   | Area   | Height | Width  | Symmetry | Area % |
|---|--------|--------|--------|--------|----------|--------|
| 1 | 13.414 | 4277.8 | 133.1  | 0.5358 | 0.599    | 50.568 |
| 2 | 21.376 | 4181.7 | 79.1   | 0.7624 | 0.522    | 49.432 |





7m: (5S,6S,10S)-6-(4-nitrophenyl)-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5]decane-4,8-dione

# Time Area Height Width Symmetry Area % 1 21.892 5 0.6344 0.732 0.826 216.6 2 25.648 25998 360.1 1.0431 0.525 99.174



7n: (5S,6S,10S)-6-(4-methoxyphenyl)-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-4,8-dione

12.5 22.5 17.5 20 25 27.5 7.5 10 15 min # Time Area Height Width Symmetry Area % 1 16.407 51.3 1.1 0.5363 8.14E-3 0.578 2 25.407 8827.5 155.1 0.8271 0.675 99.422



## 70: (5S,6S,10S)-ethyl 4,8-dioxo-10-phenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-6-carboxylate

| #      | Time                                                 | Area  | Height | Width  | Symmetry | Area % |  |  |  |
|--------|------------------------------------------------------|-------|--------|--------|----------|--------|--|--|--|
| 1      | 20.48                                                | 995   | 20.8   | 0.7077 | 0.566    | 50.538 |  |  |  |
| 2      | 32.471                                               | 973.8 | 13.2   | 1.0586 | 0.655    | 49.462 |  |  |  |
| VWD1 A | VIND1 A 狭长~254 pm /D·I/CHEM2211\DATA\WWR\SNAPSHOT D) |       |        |        |          |        |  |  |  |



| # | Time   | Area | Height | Width  | Symmetry | Area % |
|---|--------|------|--------|--------|----------|--------|
| 1 | 20.923 | 2815 | 20.4   | 2.3047 | 0.48     | 99.505 |
| 2 | 32.862 | 14   | 2.2E-1 | 1.0388 | 0.728    | 0.495  |





| # | Time   | Area    | Height | Width  | Symmetry | Area % |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 8.575  | 14198   | 272.5  | 0.7534 | 0.376    | 49.764 |
| 2 | 14.509 | 14332.7 | 159.6  | 1.4971 | 0.372    | 50.236 |



| # | Time   | Area    | Height | Width  | Symmetry | Area % |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 8.514  | 818.7   | 27.5   | 0.4953 | 0.581    | 5.788  |
| 2 | 12.758 | 13326.4 | 189.7  | 1.1706 | 0.355    | 94.212 |





| # | Time   | Area   | Height | Width  | Symmetry | Area % |
|---|--------|--------|--------|--------|----------|--------|
| 1 | 9.808  | 5909.6 | 307.3  | 0.2739 | 0.547    | 52.477 |
| 2 | 12.397 | 5351.6 | 184.7  | 0.483  | 0.969    | 47.523 |



| # | Time   | Area    | Height | Width  | Symmetry | Area % |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 10.635 | 24883.2 | 713.3  | 0.5147 | 0.652    | 99.074 |
| 2 | 12.375 | 232.7   | 10.8   | 0.3578 | 0.374    | 0.926  |





| # | Time   | Area  | Height | Width  | Symmetry | Area % |
|---|--------|-------|--------|--------|----------|--------|
| 1 | 9.75   | 923.1 | 35.3   | 0.3606 | 0.421    | 48.931 |
| 2 | 12.069 | 963.4 | 30.6   | 0.5247 | 0.572    | 51.069 |



| # | Time  | Area   | Height | Width  | Symmetry | Area % |
|---|-------|--------|--------|--------|----------|--------|
| 1 | 9.832 | 20.2   | 9.3E-1 | 0.3624 | 0.659    | 0.558  |
| 2 | 12    | 3593.8 | 129    | 0.4035 | 0.602    | 99.442 |



7s: (5S,6S,7R,10S)-ethyl 7-ethyl-4,8-dioxo-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-6-carboxylate

| # | Time   | Area    | Height | Width  | Symmetry | Area % |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 5.858  | 32644.3 | 2694.9 | 0.1719 | 0.516    | 35.212 |
| 2 | 7.702  | 7293    | 641.9  | 0.1894 | 8084.96  | 7.867  |
| 3 | 7.834  | 32479.4 | 1987.2 | 0.2724 | 0.481    | 35.034 |
| 4 | 8.931  | 7837.8  | 460.1  | 0.2839 | 0.698    | 8.454  |
| 5 | 12.722 | 6104.5  | 250.9  | 0.4056 | 0.778    | 6.585  |
| 6 | 16.659 | 6348.8  | 190.8  | 0.4828 | 0.627    | 6.848  |







| # | Time   | Area   | Height | Width  | Symmetry | Area % |
|---|--------|--------|--------|--------|----------|--------|
| 1 | 11.878 | 4057.4 | 144.5  | 0.4679 | 0.709    | 50.236 |
| 2 | 13.64  | 4019.2 | 121.4  | 0.5517 | 0.854    | 49.764 |



| # | Time   | Area   | Height | Width  | Symmetry | Area % |
|---|--------|--------|--------|--------|----------|--------|
| 1 | 11.871 | 9.8    | 4.6E-1 | 0.3528 | 0.814    | 0.679  |
| 2 | 13.63  | 1430.5 | 43.1   | 0.47   | 0.69     | 99.321 |


# 7u: (5S,6S,7R,10S)-ethyl 7-methyl-4,8-dioxo-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-6-carboxylate

| # | Time   | Area    | Height | Width  | Symmetry | Area % |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 6.111  | 22774.2 | 1828.7 | 0.2076 | 0.566    | 29.765 |
| 2 | 8.399  | 22457.4 | 1297.8 | 0.2543 | 0.613    | 29.351 |
| 3 | 9.162  | 17028.1 | 659    | 0.4307 | 1.126    | 22.255 |
| 4 | 13.081 | 14253.4 | 475    | 0.5001 | 0.713    | 18.629 |





7v:(5S,6S,7R,10S)-6-(4-fluorophenyl)-7-methyl-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro [4.5]decane-4,8-dione



| # | Time   | Area   | Height | Width  | Symmetry | Area % |
|---|--------|--------|--------|--------|----------|--------|
| 1 | 11.778 | 2713.6 | 106.3  | 0.4255 | 0.763    | 96.387 |
| 2 | 12.551 | 101.7  | 5.9    | 0.2016 | 0        | 3.613  |



# 7w: (5S,6S,7R,10S)-ethyl 7-methyl-4,8-dioxo-10-phenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-6-carboxylate

| # | Time   | Area    | Height | Width  | Symmetry | Area % |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 10.085 | 24450.8 | 482.9  | 0.7406 | 0.308    | 50.155 |
| 2 | 14.394 | 24299.6 | 405.1  | 0.8803 | 0.398    | 49.845 |



| # | Time   | Area    | Height | Width  | Symmetry | Area % |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 10.809 | 196     | 6.1    | 0.5353 | 0.544    | 1.577  |
| 2 | 14.299 | 12230.9 | 222.7  | 0.8009 | 0.416    | 98.423 |





| # | Time   | Area    | Height | Width  | Symmetry | Area % |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 9.3    | 12658.1 | 481.6  | 0.3649 | 0.287    | 49.535 |
| 2 | 10.565 | 12895.9 | 499.7  | 0.3637 | 0.416    | 50.465 |



504.7

0.4497

0.311

97.834

10.597

16432.4



# 10: (5S,6R,10S)-ethyl 4,8-dioxo-3,10-diphenyl-2-thioxo-1,3-diazaspiro[4.5] decane-6-carboxylate

| # | Time   | Area   | Height | Width  | Symmetry | Area % |
|---|--------|--------|--------|--------|----------|--------|
| 1 | 10.361 | 3770.6 | 80.8   | 0.7773 | 0        | 50.022 |
| 2 | 12.863 | 3767.3 | 31.1   | 2.0212 | 0.481    | 49.978 |



| # | Time   | Area    | Height | Width  | Symmetry | Area % |
|---|--------|---------|--------|--------|----------|--------|
| 1 | 10.704 | 15581.3 | 367.6  | 0.6211 | 0.462    | 99.483 |
| 2 | 13.879 | 80.9    | 1.2    | 1.0847 | 0.715    | 0.517  |

### F: NMR Spectra of Products

7a: (5S,6S,10S)-ethyl 4,8-dioxo-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5]decane-6-carboxylate



7b: (5S,6S,10S)-ethyl 10-(2-fluorophenyl)-4,8-dioxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-6-carboxylate







#### 7d: (5S,6S,10S)-ethyl 10-(2-methoxyphenyl)-4,8-dioxo-3-phenyl-2-thioxo-1-thia-3-azaspiro [4.5]decane-6-carboxylate







# 7f: (5S,6S,10S)-ethyl 4,8-dioxo-3-phenyl-2-thioxo-10-p-tolyl-1-thia-3-azaspiro[4.5]decane-6-carboxylate



47

# 7g: (5R,6S,10S)-ethyl 4,8-dioxo-3-phenyl-10-(thiophen-2-yl)-2-thioxo-1-thia-3-azaspiro [4.5]decane-6-carboxylate





7h: (6S,10S)-diethyl 4,8-dioxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-6,10-dicarboxylate



7i:ethyl 4',5-dioxo-3'-phenyl-2'-thioxospiro[bicyclo[2.2.2]octane-2,5'-thiazolidine] -3-carboxylate







# 7k: (5S,6S,10S)-6-(4-bromophenyl)-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5]decane-4,8-dione







7m: (5S,6S,10S)-6-(4-nitrophenyl)-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5]decane-4,8-dione



# 7n: (5S,6S,10S)-6-(4-methoxyphenyl)-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-4,8-dione



70: (5S,6S,10S)-ethyl 4,8-dioxo-10-phenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-6-carboxylate















7s: (5S,6S,7R,10S)-ethyl 7-ethyl-4,8-dioxo-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-6-carboxylate



7t:(5S,6S,7R,10S)-10-(4-bromophenyl)-7-ethyl-3,6-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-4,8-dione



7u: (5S,6S,7R,10S)-ethyl 7-methyl-4,8-dioxo-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-6-carboxylate



7v:(5S,6S,7R,10S)-6-(4-fluorophenyl)-7-methyl-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro [4.5]decane-4,8-dione



7w: (5S,6S,7R,10S)-ethyl 7-methyl-4,8-dioxo-10-phenyl-2-thioxo-1-thia-3-azaspiro[4.5] decane-6-carboxylate



7x:(5S,6S,7R,10S)-ethyl 10-(furan-2-yl)-7-methyl-4,8-dioxo-2-thioxo-1-thia-3-azaspiro[4.5] decane-6-carboxylate







11:(Z)-ethyl 2-(2,4-dioxo-3-(3-oxo-1-phenylbutyl)thiazolidin-5-ylidene)acetate



 $12: (5S, 6S, 10S) \hbox{-} 6- (4-bromophenyl) \hbox{-} 3, 10-diphenyl \hbox{-} 1-thia \hbox{-} 3-azaspiro [4.5] decane-2, 4, 8-trione$ 



13:(5S,6S,7R,8R,10S)-ethyl 8-hydroxy-7-methyl-4-oxo-10-phenyl-2-thioxo-1-thia-3-azaspiro [4.5]decane-6-carboxylate

#### G: Absolute Configuration and X-Ray Analysis Data

7c: (5S,6S,10S)-ethyl 10-(4-bromophenyl)-4,8-dioxo-3-phenyl-2-thioxo-1 -thia-3-azaspiro[4.5]decane-6-carboxylate



Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012



Crystal data and structure refinement for 7c.

| Identification code                      | 7c                                                        |  |  |  |
|------------------------------------------|-----------------------------------------------------------|--|--|--|
| Empirical formula                        | $C_{23}H_{20}BrNO_4S_2$                                   |  |  |  |
| Formula weight                           | 518.43                                                    |  |  |  |
| Temperature                              | 293(2) K                                                  |  |  |  |
| Wavelength                               | 0.71073 Á                                                 |  |  |  |
| Crystal system                           | Monoclinic,                                               |  |  |  |
| Space group                              | P2(1)                                                     |  |  |  |
| Unit cell dimensions                     | $a = 9.9316(8)$ Å $\alpha = 90$ °.                        |  |  |  |
|                                          | $b = 8.1197(7)$ Å $\beta = 92.344(2)$ °.                  |  |  |  |
|                                          | $c = 14.0243(12) \text{ Å} \qquad \gamma = 90 \text{ °}.$ |  |  |  |
| Volume                                   | 1130.00(16) Å <sup>3</sup>                                |  |  |  |
| Ζ,                                       | 2                                                         |  |  |  |
| Calculated density                       | $1.524 \text{ Mg/m}^3$                                    |  |  |  |
| Absorption coefficient                   | $2.034 \text{ mm}^{-1}$                                   |  |  |  |
| F(000)                                   | 528                                                       |  |  |  |
| Crystal size                             | 0.281 x 0.269 x 0.157 mm <sup>3</sup>                     |  |  |  |
| $\theta$ range for data collection       | 2.05 to 26.00 °.                                          |  |  |  |
| Limiting indices                         | -10≤h≤12, -9≤k≤9, -17≤l≤13                                |  |  |  |
| Reflections collected / unique           | 5863 / 4267 [R <sub>int</sub> = 0.0178]                   |  |  |  |
| Completeness to $\theta = 26.00^{\circ}$ | 99.9 %                                                    |  |  |  |
| Absorption correction $(\mu)$            | Empirical                                                 |  |  |  |
| Max. and min. transmission               | 1.00000 and 0.59422                                       |  |  |  |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup>               |  |  |  |
| Data / restraints / parameters           | 4267 / 2 / 281                                            |  |  |  |
| Goodness-of-fit on F <sup>2</sup>        | 0.982                                                     |  |  |  |
| Final R indices $[I \ge 2\sigma(I)]$     | $R_1 = 0.0350, wR_2 = 0.0843$                             |  |  |  |
| R indices (all data)                     | $R_1 = 0.0404, wR_2 = 0.0867$                             |  |  |  |
| Absolute structure parameter             | 0.024(7)                                                  |  |  |  |
| Largest diff. peak and hole              | 0.387 and -0.437 e <sup>-</sup> . Å <sup>-3</sup>         |  |  |  |
|                                          |                                                           |  |  |  |