Supplementary Information

Light Harvesting Bi-component Hydrogel with Riboflavin Acceptor

Partha Bairi, Bappaditya Roy and Arun K. Nandi*

Polymer Science Unit,

Indian Association for the cultivation of Science,

Jadavpur, Kolkata-700 032, INDIA

Preparation of gel:

Melamine (M), 6, 7-dimethoxy-2, 4[1H, 3H]-quinazolinedione (**Q**) and riboflavin (**R**) were purchased from Aldrich, USA and was used as received. The pure **MQ** hydrogel was prepared by dissolving **M** and **Q** in double distilled water in a sealed gel tube followed by addition of few drops of DMSO to increase the solubility of Q. They were heated to make a homogeneous solution which on cooling to 30° C produced hydrogels. The co-assembled hydrogels were prepared by following the same procedure mentioned above with the addition of desired amount of **R** (mole %).

Microscopy:

Fluorescence micrographs of the pure MQ and co-assembled MQ gel were taken by a fluorescence microscope (Olympus, BX61) by exciting the gel sample with UV radiation ($\lambda = 300$ nm) using a FITC filter.

Wide-angle X-ray Diffraction study:

The wide-angle X-ray scattering (WAXS) experiments of the xerogel of MQ and MQ with R were performed using a high resolution X- Ray diffractometer model expert pro PANalytical. Samples were placed on glass slides and were scanned in the range of $2\theta = 4 - 60^{\circ}$.

Rheology:

To understand the mechanical property of the MQ gel rheological experiment was performed with an advanced rheometer (AR 2000, TA Instrument,USA) using cone plate geometry on a peltier plate. The diameter of the plate was 40nm and angle 4^0 with plate gap of 121µm and frequency sweep was performed

Spectroscopy:

The UV-vis spectra of the samples were recorded with a Hewlett-Packard UV-vis spectrophotometer (model 8453) using a cuvette of 0.1 cm path length. Fluorescence study of **MQ** and hybrid hydrogel samples prepared in a sealed cuvette were carried out in a Horiba Jobin Yvon Fluoromax 3 instrument. Each gel sample in a quartz cell of 1 cm path length was excited at 297 nm wavelength and emission scans were recorded from 320 to 700 nm using excitation slit width of 2 nm and emission slit is 5nm with a 1 nm wavelength increment having an integration time of 0.1 s. Fluorescence lifetimes were measured by using a time-correlated single photon counting fluoremeter (Fluorecule, Horiba Jobin Yvon). The system is excited with 295 nm nano LED of Horiba Jobin Yvon having λ_{max} at 368 nm with pulse duration <200 pico second. All the samples are prepared for room temperature measurement (30^{0} C) in double distilled water. Average fluorescence lifetimes ($<\tau_{f} >$) for exponential iterative fitting are calculated from the decay times (τ_{i}) and the relative amplitudes (a_{i}) using the following relation

$$< \tau_{\rm f} > = a_1 \tau_1 + a_2 \tau_2 + a_3 \tau_3 \dots (1)$$

Where a_1, a_2, a_3 are relative amplitudes and τ_1, τ_2, τ_3 are lifetime respectively. The percentage of energy transfer^{S1} from **MQ** to **R** was calculated from the equation:

$$E_{eff} = 1 - \tau_{DA} / \tau_{D}$$
(2)

Where $\tau_{DA \text{ and }} \tau_D$ are fluorescence lifetime of donor (**Q**) in presence and absence of acceptor (**R**), respectively. The energy transfer rate constant K_{ET} can be calculated¹ from the Stern-Volmer equation.

$$I_0 / I = 1 + K_{ET} \tau_0 [\mathbf{R}] \dots (3)$$

Where I_0 and I represent the fluorescence intensity of the donor in the absence and presence of acceptor respectively, [**R**] is the molar acceptor concentration and τ_0 is the fluorescence lifetime of the donor in the absence of acceptor.

Determination of rate constant by Avrami equation:

The Avrami equation¹³ is usually expressed as

1 - V (
$$t$$
) = exp (- kt^{n}).....1

Where V (*t*) is the fraction transformed, *k* is the rate constant, *t* is the time of transformation, and *n* is a constant whose value depends on the nature of the nucleation and growth process. The fraction transformed can be obtained from the fluorescence data SI fig. X. If the intensity at t = 0 is I_0 and at $t = \infty$ is I_{∞} , V (*t*) is equal to I_{∞} - I_t / I_{∞} - I_0 . Putting these values into equation 1, we obtain

$$\mathbf{I}_{\infty} - \mathbf{I}_{t} / \mathbf{I}_{\infty} - \mathbf{I}_{0} = \exp(-\mathbf{k}t^{n}).....2$$

Taking logarithms on both sides, the equation transforms to

$$\ln (-\ln I_{\infty} - I_t / I_{\infty} - I_0) = \ln k + n \ln t \dots 3$$

Thus, by plotting the left-hand side of eq 2 with ln t, straight lines are expected, and from the slope the Avrami exponent n can be obtained. The rate constant k of the process can be obtained from the intercept of the plot and for **MQ** gel k has been found $8.4 \times 10^{-4} \text{ min}^{-1}$.

Reference:

S1. S. Bhattacharyya, T. Sen, and A. Patra, J. Phys. Chem. C 2010, 114, 11787.

Table S1: Fluorescence life time and percent energy transfer of MQ hydrogel with different mole % of R at 30^{0} C.

Hydrogel	Mole % of R	Av. life time	% of
		(ns)	energy
			transfer
MQ (0.5% (w/v))	0	16.01	0
	0.25	5.25	67.2
	0.50	4.99	68.9
	0.71	3.77	76.6
	1.0	3.61	77.5
	1.25	2.76	82.8

Fig.S1 Uv-vis spectra of pure ${\bf Q}$ and ${\bf M}{\bf Q}$

hydrogel at 0.01% (v/w)

373nm.

Fig.S3 (a) pure MQ hydrogel, (b) under UV light ($\lambda = 300$ nm) showing blue fluorescence emission, fig.3c Fluorescence micrograph of MQ gel and fig. 3(d) MQ gel with 1 mole % of **R**, fig. 3(e) under uv light ($\lambda_{max} = 300$ nm) showing green fluorescence emission, fig. 3(f) Fluorescence micrograph of MQ gel with 1 mole % of **R** (scale bar 210 um) fig (g) and (h) are MQ xerogels in absect and present of 1 mole % of **R**, fig (I) and (j) after irridation of uv light ($\lambda_{max} = 300$ nm).

Fig.S4 Solid state fluorescence spectra of intimate mixture of M and Q, mixed MQ with different mole % R dried from DCM solution excited at 297nm.

Fig.S5 WAXS patterns of xerogel MQ and MQ with 1

mole % R.

Fig.S6 (a) Time dependent fluorescence spectra of MQ hydrogel at 30 0 C (E_x = 297nm). (b) Plot of fluorescence intensity vs time at 25 0 C (c) Avrami plot of the fluorescence intensity data of Figure b of MQ gel.

Fig.S7 The fluorescence intensity of donor **MQ** (10^{-3} M) decreases while that of **R** increases at solution phase with addition of acceptor **R** (10^{-3} M).

Fig.S8a Temperature dependent fluorescence spectra of MQ

gel in presence of 1 mole % R.

Fig.S8b Variation of fluorescence Intensity of donor and acceptor (1 mole % R) with temperature.

Fig.S8c Variation of fluorescence wavelength maxima of donor and acceptor (1 mole % R) with temperature.

Fig.S9 (a) Time dependent fluorescence spectra of MQ gel with 1 mole % R excited at 297nm.(b) intensity vs time plot (sigmoidal fit).

Fig.S10 pH dependent fluorescence spectra of MQ gel in presence of 1 mole % R.

Fig.S11 Storage modulus vs different mole % of R plot. Inset A representative plot of modulus (G', G'') vs. angular frequency plot of MQ gel in presence of 1 mole % of R.