Supporting Information

Sukdeb Saha,^a Prasenjit Mahato,^a Mithu Baidya,^b Sudip K. Ghosh,^b* and Amitava Das^a*

^aCSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat-364002, India.

^bDepartment of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal-721302, India.

Contents	Page No.
1. Synthetic methodology of L_1	2
2. ¹ H NMR spectra of L ₁	3
3. ¹³ C NMR spectra of L ₁	4
4. ESI-Ms spectra of L ₁	5
5. FTIR spectra of L ₁	6
6. Synthetic methodology for the receptor L_2	7
7. ¹ H NMR spectra of L₂	8
8. ¹³ C NMR spectra of L ₂	9
9. ESI-Ms spectra of L ₂	10
10. ¹³ C NMR of L_1 in absence and in presence of Hg ²⁺	11
11. Beneshi-Hildebrand plot of absorbance titration between L_1 and Hg ²⁺	12
12. Beneshi-Hildebrand plot of Emission titration between L_1 and Hg ²⁺	13
13. Equation used for energy transfer efficiency calculation	14
14. ESI-Ms spectra of L_1 in presence of Hg(ClO ₄) ₂ showing 1:1 binding	15
15. ¹ H NMR titration of L_1 as a function of Hg(ClO ₄) ₂	
16. Interference study of L_1 with Hg ²⁺ in presence of various metal ions	
17. Uv-Vis study for establishing the reversible binding of Hg^{2+} to $\mathrm{L_{1}}$	18
18. Change of Emission intensity of L_1 as a function of pH	19
19. FTIR Spectra of L_1 in presence of 5 equivalent of Hg(ClO ₄) ₂	
20. Bar diagram for changes in the absorbance intensity for L_1 with Metal ions	
21. Bar diagram for changes in the Emission intensity for L_1 with Metal ions	22
22. Job's plot for L_1 with Hg ²⁺ showing 1:1 stoichiometry	23
23. Absorption spectra of L_1 in presence of Hg ²⁺ at different pH	24
24. Emission spectra of L_1 in presence of Hg ²⁺ at different pH	
25. Confocal microscopic images of L_1 with Hg ²⁺ in MCF7 cells	
26. Fluorescence microscopic images of L_1 with Hg ²⁺	
27. Reversibility studies for binding of the L_{1} .Hg ²⁺ with KI with in the cells	28
28. MTT assay studies for evolution of cytotoxicity of the reagent L_1	29

Synthetic methodology for L₁:

Amino ethyl rhodamine (L) (200 mg, 0.413 mmole) was dissolved in 20 ml of dry Tetrahedrofuran (THF). To this, Et₃N (62µl, 0.454 mmole) was added and the resulting solution was kept under N₂ for 15 minutes. Then 4-bromomethyl-7-methoxy coumarin (111 mg, 0.413 mmole) was taken in 10 ml of dry THF and added into the stirring solution in drop wise fashion. It was kept under reflux condition with stirring for 10h until all the starting materials become consumed. After that, solvent was removed with rotary evaporator. Then it was dissolved in 20 ml of CHCl₃ and washed with 10 ml of water. The organic layer was collected and dried over anhydrous Na₂SO₄ before concentration. It was finally purified by column chromatography using silica gel as stationary phase and CHCl₃ as solvent to isolate an off-white solid L_1 in pure form with 87% yield (yield was calculated based on the starting reagents). ¹H NMR (500 MHz, CD₃CN, SiMe₄, J (Hz), δ ppm): 7.811 (1H, m, H₁₈), 7.512-7.483 (3H, m, H₁₇, H₁₉, H₂₀), 6.991 (1H, t, J= 3.5Hz, H₇), 6.857 (1H, s, H₉), 6.837(1H, d, J = 1.5 Hz, H₆), 6.398 (1H, s, H₂₇), 6.380 (1H, s, H₃₃), 6.329 (1H, d, J = 2.5 Hz, H_{30,24}), 6.306 (1H, s, H₃₁), 6.286 (1H, s, H₂₅), 6.091 (1H, s, H₂), 3.849 (3H, s, H₁₁), 3.55 (2H, s, H₁₂), 3.288 (8H, q, J= 7 Hz, H_{31, 40, 34, 36}), 3.208 (2H, t, J= 6Hz, H₁₄), 2.451 (2H, t, J=7 Hz, H₁₃), 1.069 (12H, t, J=7 Hz, H_{35,36,39,41}). ¹³C NMR (500 MHz, CD₃CN SiMe₄, δ ppm) : 167.637, 162.041, 160.458, 154.917, 154.139,153.417, 152.791, 148.437, 132.118, 130.710, 128.160, 128.011, 127.792, 123.017, 121.905, 116.900, 111.613, 111.218, 108.984, 107.789, 104.963, 100.355, 96.882, 64.166, 55.180, 47.924, 46.976, 39.247, 28.926, 11.358. ESI-MS (+ve mode, m/z): 673.36 (M + H⁺), Calc. for $C_{41}H_{44}N_4O_5$ is 672.33.

¹H NMR spectra of L₁ in CD₃CN:

SI Figure 1: ¹H NMR of L_1 in CD₃CN.

¹³C NMR spectra of L₁ in CD₃CN:

SI Figure 2: ¹³C NMR spectra of L_1 in CD₃CN.

ESI-Ms spectra of L₁:

SI Figure 3: ESI-Ms spectra of L1.

SI Figure 4: FTIR spectra of L1.

Synthetic methodology for the receptor 4-((benzylamino)methyl)-7-methoxy-2*H*-chromen-2-one L_2 :

Benzyl amine (0.26 mmole) was dissolved in 5 ml of dry Tetrahedrofuran (THF). To this, Et₃N (28µl) was added and the resulting solution was kept under N₂ for 15 minutes. Then 4-bromomethyl-7-methoxy coumarine (66.2 mg, 0.26 mmole) was taken in another 5 ml of dry THF and added into the stirring solution in drop wise fashion. It was kept at reflux temperature under N₂ atmosphere with stirring for 10h until all the starting materials become consumed. After that, solvent was removed with rotary evaporator. Then it was dissolved in 10 ml of CHCl₃ and washed with 5ml of water. The organic layer was collected and dried over anhydrous Na₂SO₄ before concentration. It was finally purified by column chromatography using silica gel as stationary phase and MeOH: CHCl₃ (1:49) as solvent to isolate yellow solid L₂ in pure form with 91% yield (yield was calculated based on the starting reagents). ¹H NMR (500 MHz,CD₃CN: CDCl₃,1:1, SiMe₄, *J* (Hz), δ ppm): 7.456 (1H, dd, J= 2.5 Hz), 7.380-7.320 (4H, m), 7.257 (1H, t, J= 7.5 Hz), 6.889-6.869 (3H), 6.337 (1H, s), 3.91 (2H), 3.861 (3H, s), 3.843 (2H, s). ¹³C NMR(500 MHz, CDCl₃, δ ppm): 50.605, 55.361, 57.579, 102.850, 112.425, 114.164, 126.950, 129.226, 130.006, 130.433, 141.244, 155.474, 157.470, 163.333, 164.423. ESI-MS (+ve mode, m/z): 296.42 (M + H⁺, 100%), Calc. for C₁₈H₁₇NO₃ is 295.33.

¹H NMR spectra of L₂ in CD₃CN/CDCl₃:

SI Figure 5: ¹H NMR of L_2 in CD₃CN/CDCl₃ (1:1, v/v).

¹³C NMR spectra of L₃ in CD₃CN/CDCl₃:

SI Figure 6: ¹³C NMR of L_2 in CD₃CN/CDCl₃ (1:1, v/v).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Saha et. al., ChemComm. DOI: 10.1039/c2cc34490d [Supporting Information]

ESI-Ms spectra of L₂.

SI Figure 7: ESI-Ms spectra of L2.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Saha et. al., ChemComm. DOI: 10.1039/c2cc34490d [Supporting Information]

SI Figure 8: ¹³C NMR of L_1 in absence and in presence of Hg²⁺ in CDCl₃/CD₃CN.

Beneshi-Hildebrand (B-H) plot obtained from the spectrophotometric titration of L_1 with Hg^{2+} :

SI Figure 9: Beneshi-Hildebrand (B-H) plot obtained from the spectrophotometric titration of L_1 with Hg²⁺ supported 1:1 binding stoichiometry (R²=0.99723).

Beneshi-Hildebrand (B-H) plot obtained from the emission titration of L₁ with Hg²⁺:

SI Figure 10: Beneshi-Hildebrand (B-H) plot obtained from the emission titration of L_1 with Hg²⁺ supported 1:1 binding stoichiometry (R²=0.994).

Equation used for calculation of Energy transfer efficiency (ETE %):

ETE % =	Quantum Yield of the acceptor fragment in the cassette excited at the donor	V 100
	Quantum Yield of the acceptor fragment in the cassette excited at the acceptor	

Reference:

C. Thivierge, J. Han, R. M. Jenkins and K. Burgess, J. Org. Chem., 2011, 76, 5219.

ESI-Ms spectral evidence for the 1:1 adducts formation of L_1 with Hg²⁺:

SI Figure 11: ESI-Ms spectral evidence for 1:1 adducts formation of L_1 with Hg²⁺.

Partial ¹H NMR titration of L_1 as a function of Hg(ClO₄)₂:

SI Figure 12: A plot of change in ¹H NMR spectral pattern for the receptor (i) L_1 ; (ii) L_1 with 0.5 eqv Hg²⁺; (iii) L_1 with 0.75 eqv Hg²⁺ and (iv) L_1 with 1 eqv. Hg²⁺ in CD₃CN medium.

Spectrophotometric interference study of L_1 with Hg²⁺ in presence of various metal ions:

SI Figure 13: Spectrophotometric interference study of $L_1(6.7 \times 10^{-6} \text{ M})$ with Hg²⁺ (1.2 x 10⁻³ M) in presence of various metal ions (6.0 x 10⁻⁴ M) in MeOH/ HEPES buffer(1:1, v/v).

Uv-Vis spectral studies for establishing the reversible binding of Hg²⁺ to the L₁:

SI Figure 14: Uv-Vis studies for establishing the reversible binding of Hg²⁺ (1.53 x 10⁻⁴ M) to $L_1(6.9 \times 10^{-5} \text{ M})$ in presence of EDTA²⁻(2 x 10⁻³ M) in MeOH-Water(1:1, v/v).

Change of Emission intensity of L₁ at 585 nm as a function of the solution pH:

SI Figure 15: Change in emission intensity at 585 nm with variation in pH of the MeOH-water (1:1, v/v) solution for L₁ (6.7 x 10⁻⁶ M).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Saha et. al., ChemComm. DOI: 10.1039/c2cc34490d [Supporting Information]

FTIR Spectra of L₁ in presence of 5 equivalent of Hg(ClO₄)₂:

SI Figure 16: FTIR spectra of L_1 in presence of 5 equivalent of $Hg(CIO_4)_2$.

FTIR spectra have been recorded to understand the binding mode of Hg^{2+} with L_1 in presence of 5 mole equivalent of $Hg(ClO_4)_2$. In L_1 , two carbonyl stretching were observed which are belong to coumarin C=O bond and amide carbonyl moiety from rhodamine unit. The peak appeared at the stretching frequency 1714 cm⁻¹ could be appeared from coumarine moiety while peak at 1682 cm⁻¹ could be appeared from amide carbonyl of rhodamine as amide stretching frequency should be lowered compared to the ester carbonyl frequency. The lowering of the stretching frequency of the amide carbonyl frequency. The lowering of the stretching frequency of the amide carbonyl from 1682 cm⁻¹ to 1661 cm⁻¹ indicated definite coordination of Hg^{2+} to the amide C=O bond. However, a slight increment in the stretching frequency of the ester C=O was due to lowering of overall electron density on the coumarin moiety after coordination to metal ions thus no participation of ester C=O in Hg^{2+} coordination.

SI Figure 17: Bar diagram for the changes in absorbance intensity of $L_1(6.7 \times 10^{-6} \text{ M})$ with metal ions(1.0 x $10^{-4} \text{ M})$.

SI Figure 18: Bar diagram for the changes in absorbance intensity of $L_1(6.7 \times 10^{-6} \text{ M})$ with metal ions(1.5 x 10⁻⁴ M).

SI Figure 19: Job's plot between L_1 and Hg^{2+} confirmed 1:1 adducts.

Absorption spectra of L_1 in presence of Hg^{2+} at different pH:

SI Figure 20: Absorption spectra for $L_1(6.9 \times 10^{-6} \text{ M})$ in presence of Hg²⁺(1.0 x 10⁻⁴ M) at different basic pH.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2012

Saha et. al., ChemComm. DOI: 10.1039/c2cc34490d [Supporting Information]

Emission spectra of L_1 in presence of Hg^{2+} at different pH:

SI Figure 21: Emission spectra for L₁ (6.9 x 10⁻⁵ M) in presence of Hg²⁺(1.0 x 10⁻⁴ M) at different basic pH (λ_{Ext} 320 nm).

Confocal microscopic images of L_1 in presence and in absence of Hg²⁺ in MCF7 cells:

SI Figure 22: Confocal microscopic images of L₁ (10 μ M) in absence and in presence of Hg²⁺ (2-10ppb) in MCF7 cells (λ_{Ext} 543nm).

Fluorescence microscopic images of L_1 in presence and in absence of Hg²⁺ in MCF7 cells:

SI Figure 23: Fluorescence microscopic images of L_1 (10 μ M) in absence and in presence of Hg²⁺ (2ppb) in MCF7 cells (λ_{Ext} 330-385nm).

Reversibility studies for binding of the reagent L_1 to Hg^{2+} present in the breast cancer cell (MCF7 cells) with subsequent treatment with KI:

SI Figure 24: Confocal dark field (A),Bright field (B), and overlay images(C) of MCF7 cells. (1) The cells were supplemented with Hg²⁺ (10ppb) and then were stained with 10 μ M of L₁ for 1.0 H at 37°C, (2) with Hg²⁺⁽10 ppb), 10 μ M L₁ and then KI(30 μ M) in the growth media for 1.0 h at 37 °C (λ_{ext} = 543 nm).

MTT assay studies for evolution of cytotoxicity of the reagent L_1 towards the breast cancer cell (MCF7 cells):

SI Figure 25: Check of viability of L_1 on the breast cancer cells (MCF7 cells). Here % of viability was calculated with respect to the growth considering 100% without L_1 .

Cell Cytotoxicity Assay

Cytotoxicity of L₁ on MCF7 cells was determined by conventional MTT assay (J. Natl. Cancer Inst., 1990, 8, 1113-1117). MCF7 cells in their exponential growth phase were trypsinised and seeded in 96-well flat-bottom culture plates at a density of 3 x 10³ cells per well in 100 µl DMEM complete medium (Himedia, India). The cells were allowed to adhere and grow for 24 hr at 37 °C in CO₂ incubator (New Brunswick Scientific, U.S.A.), and then the medium was replaced with 100 µl fresh incomplete medium containing various concentrations of L_1 (0 to 10 μ M). The assay was performed in quadruplet for each concentration. Cells were then incubated for 12h, after which the culture medium was removed, and 100 µl of 1 mg/ml MTT reagent in PBS was added to each well. Thereafter, it was incubated for 4 hrs; during this period active mitochondria of viable cells reduce MTT to purple formazan. Unreduced MTT were then discarded and DMSO (100 µl) was added into each well to dissolve the formazan precipitate, which was then measured spectrophotometrically using a microplate reader at 570 nm. The cytotoxic effect of each treatment was expressed as percentage of cell viability relative to the untreated control cells. [MTT= (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole].

Reference: L. V. Rubinstein, K. D. Paull, R. M. Simon, P. Skehan, D. A. Scudiero, A. Monks and M. R. Boyd, *J. Natl. Cancer Inst.*, 1990, **82**, 1113.