Supplementary Information

A Cascade Reactions on Azolopyrimidines. Synthesis of Unusual Indole and Aza-indole Derivatives

María Morón,^a Carolina Burgos,^a* Julio Alvarez-Builla,^a Antonio Salgado,^b Marta E. G. Mosquera,^c Juan J. Vaquero^a*

^a Departamento de Química Orgánica, ^c Departamento de Química Inorgánica Universidad de Alcalá, 28871-Alcalá de Henares, Madrid, Spain. Fax: 34-91-8854686; Tel: 34-91-885476; E-mail: juanjose.vaquero@uah.es ^bCentro Nacional de Investigaciones Oncológicas (CNIO), E-28029-Madrid, Spain

Table of contents

I. Experimental details and characterization data for compounds	S2-S19
II. Copies of selected NMR spectra for compounds	S20-S55
III. Single-Crystal X-ray Structure Determination of 7a	S56-S59

Experimental details and characterization data for compounds: 4g, 5e-g, 6, 7 and 8g

General information

Reagents were purchased of the highest commercial quality and used without further purification, unless otherwise stated. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates (60FS-254) using UV light as visualizing. Column chromatography was performed using silica gel (60 F254, 70-200 mm) as the stationary phase. All NMR spectra were recorded in a Bruker AVANCE 700 spectrometer, a Varian UNITY 500 spectrometer, or in a Bruker AVANCE II 300 spectrometer, respectively fitted with a QXI 700 MHz S4 probe (operating at 700.13 MHz, 176.05 MHz or 70.94 MHz as the 1 H, 13 C and 15 N frequencies), a PFG ATB probe (operating at 499.66 MHz or 125.65 MHz as the ¹H and ¹³C frequencies), and with a QNP 300 MHz S2 probe (operating at 300.13 MHz or 75.47 MHz as the ¹H and ¹³C frequencies). Chemical shifts are given as referred to external SiMe₄ (¹H and ¹³C, 0.00 ppm) or external liquid NH₃ (¹⁵N, 0.00 ppm). ¹⁵N chemical shifts were indirectly measured from ¹H-¹⁵N HMBC experiments. All spectra were recorded at 25°C unless otherwise stated. All melting points (mp) are uncorrected. The following compounds have been previously described: 4a, 4b and 4f, 6 4c, 4a,6b $4d^{4a,6,10}_{4a,6,10} 4e^{11}_{4a,6,10}$ and $4h^{12}_{4a,6,10}$

Synthesis of methyl pyrimido[1,6-*a*]indole-3-carboxylate (4g)

To a solution of **4b** (305 mg, 1 mmol) and lithium bromide (96 mg, 1.1 mmol) in 14 mL of AcOH were added H_2SO_4 (0.06 mL) and *N*-methyl pyrrole (201 mg, 0.22 mL, 2.48 mmol). The solution was heated to reflux for 30 min. Then, a saturated solution of NaHCO₃ was added and the aqueous phase was extracted with CH₂Cl₂. The combined organic phases were washed with brine and dried on Na₂SO₄. Purification by flash

chromatography [silica gel, hexane/EtOAc (30:70)] supplied pure compound **4g** (118 mg, 52%). Yellow solid; mp 201-203 °C; v_{max} (NaCl) /cm⁻¹ 3199, 2369, 1715, 1369; δ_{H} (500 MHz; CDCl₃; Me₄Si) 3.99 (3 H, s, OMe), 6.94 (1 H, s), 7.47 (2 H, m), 7.85 (1 H, d, *J* = 6.9 Hz), 8.04 (1 H, d, *J* = 8.2 Hz), 8.23 (1 H, s), 9.19 (1 H, s); δ_{C} (125 MHz, CDCl₃; Me₄Si) 52.8, 98.3, 110.8, 118.2, 121.6, 123.2, 125.1, 128.9, 130.2, 132.9, 133.8, 138.4, 165.4; HRMS (ESI-TOF) m/z calcd. for C₁₃H₁₁N₂O₂ [M+H]⁺ : 227.0815 found: 227.0824.

General procedure for the preparation of 6a-l, 7a-l, 5e-g and 8h.

A solution of corresponding azolopyrimidine 4 (1 mmol) in the required amine was refluxed until all the starting material could not be detected by TLC. The solvent was evaporated, and the residue was purified by flash chromatography on silica gel. When solid residues were obtained, compounds 6 and 7 were then crystallized from ethanol, yielding pure compounds.

Reaction of methyl 5-bromo-4-pyrido[3',2':4,5]pyrrolo[1,2-c]-pyrimidine-7carboxylate 4a and 2-methoxyethylamine: Synthesis of (5*E*)-3-(2-methoxyethyl)-2-(2-methoxyethylamino)-5-(1*H*-pyrrolo[2,3-b]pyridin-2-yl-methylene)-3,5dihydroimidazol-4-one (6a) and (5*E*)-3-(2-methoxyethyl)-5-[(2methoxyethylamino)-(1*H*-pyrrolo[2,3-b]pyridin-2-yl)-methylene]-3,5dihydroimidazol-4-one (7a).

The general procedure using 306 mg of **4a** as the starting material in 20.3 mL of 2methoxyethylamine gave, after 1h of reaction, a mixture of products. Separation by flash chromatography [silica gel, EtOAc/EtOH (90:10)] gave pure compounds **6a** (195 mg, 57%) and **7a** (117 mg, 34%). (5*E*)-3-(2-methoxyethyl)-2-(2-methoxyethylamino)-5-(1*H*-pyrrolo[2,3-*b*]pyridin-2yl-methylene)-3,5-dihydroimidazol-4-one (6a).

Orange oil; $\upsilon_{\text{max}}(\text{NaCl})$ /cm⁻¹ 3302, 2927, 1717, 1652; δ_{H} (300 MHz; Acetone- d_6 ; Me₄Si) 3.39 (6 Hs, s, 2 MeO), 3.60 (2 H, t, J = 4.8 Hz, CH₂), 3.68 (2 H, t, J = 5.0 Hz, CH₂), 3.78 (2 H, t, J = 5.0 Hz, CH₂), 3.83 (2 H, t, J = 4.8 Hz, CH₂), 6.59 (1 H, s, CH=C), 6.70 (1 H, s, C(3 arom)H), 7.03 (1 H, dd, J = 7.9, 4.6 Hz, C(5 arom)H), 7.27 (1 H, br s, NH), 7.96 (1 H, d, J = 7.9 Hz, C (4 arom)H), 8.21 (1 H, dd, J = 4.6, 1.3Hz, C(6 arom)H), 11.19 (1 H, br s, NH); δ_{C} (75 MHz, Acetone- d_6 , Me₄Si) 40.7, 42.2, 58.8, 59.0, 71.3, 72.1, 104.3, 104.6, 116.9, 121.6, 128.7, 137.1, 141.1, 144.6, 150.0, 159.6, 169.0; HRMS (APCI-TOF) m/z calcd. for C₁₇H₂₂N₅O₃ [M+H]⁺: 344.1723. found: 344.1710.

(5*E*)-3-(2-methoxyethyl)-5-[(2-methoxyethylamino)-(1*H*-pyrrolo[2,3-*b*]pyridin-2-yl)-methylene]-3,5-dihydroimidazol-4-one (7a).

Orange solid; mp 80–83 °C; υ_{max} (KBr) /cm⁻¹ 3127, 2931, 2886, 1639, 1274, 1117; δ_{H} (300 MHz; CDCl₃; Me₄Si) 3.33 (3 H, s, OMe), 3.48 (3 H, s, OMe), 3.56 (2 H, t, *J* = 5.1 Hz, CH₂), 3.70 (2 H, t, *J* = 5.3 Hz, CH₂), 3.84 (2 H, t, *J* = 5.1 Hz, CH₂), 3.90 (2 H, q, *J* = 5.3 Hz, CH₂), 7.07 (1 H dd, *J* = 7.9, 4.6 Hz, C(5 arom)H), 7.11 (s, 1H), 7.32 (s, 1H), 7.96 (1 H, dd, *J* = 7.9, 1.3 Hz, C(4 arom)H), 8.40 (1 H, dd, *J* = 4.6, 1.3 Hz, C(6 arom)H), 9.91 (1 H, br s, NH), 12.24 (1 H, br s, NH); δ_{C} (75 MHz, Acetone-*d*₆, Me₄Si) 40.5, 45.9, 57.9, 58.2, 70.4, 71.1, 107.7, 114.6, 116.8, 119.6, 129.3, 129.8, 138.6, 146.5,

147.2, 148.7, 166.5; HRMS (APCI-TOF) m/z calcd. for $C_{17}H_{22}N_5O_3 [M+H]^+$: 344.1723. found: 344.1732.

Reaction of methyl 5-bromo-4-pyrido[3',2':4,5]pyrrolo[1,2-*c*]-pyrimidine-7carboxylate 4a and isopropylamine: Synthesis of (5*E*)-3-isopropyl-2isopropylamino-5-(1*H*-pyrrolo[2,3-*b*]pyridin-2-yl-methylene)-3,5-dihydroimidazol-4-one (6b) and (5*E*)-3-isopropyl-5-[isopropylamino-(1*H*-pyrrolo[2,3-*b*]pyridin-2yl)-methylene]-3,5-dihydroimidazol-4-one (7b).

The general procedure using 306 mg of **4a** as the starting material in 20 mL of isopropylamine gave, after 2h of reaction, a mixture of products. Separation by flash chromatography [silica gel, hexano: EtOAc (50:50)] yielded pure compounds **6b** (59 mg, 19%) and **7b** (152 mg, 49%).

(5*E*)-3-isopropyl-2-isopropylamino-5-(1*H*-pyrrolo[2,3-*b*]pyridin-2-yl-methylene)-3,5-dihydroimidazol-4-one (6b)

Orange oil; v_{max} (NaCl) /cm⁻¹ 3334, 2973, 1646, 1575, 1337; δ_{H} (300 MHz; CDCl₃; Me₄Si) 1.38 (6 H, d, J = 6.6 Hz, 2 Me), 1.46 (6 H, d, J = 6.6 Hz, 2 Me), 4.28 (1 H, hept, J = 6.6 Hz, Me₂CH), 4.48 (1 H, m), 6.51 (1 H, s), 6.69 (2 H, m), 7.28 (s, 1H), 7.03 (1 H, dd, J = 7.9, 4.6 Hz, C(5 arom)H), 7.89 (1 H, dd, J = 7.9, 1.6 Hz, C(4 arom)H), 8.20 (1 H, dd, J = 4.6, 1.6 Hz, C(6 arom)H), 11.20 (1 H, br s, NH); δ_{C} (75 MHz, CDCl₃, Me₄Si) 20.6, 23.1, 43.8, 44.6, 104.4, 105.9, 116.2, 120.9, 128.4, 136.1, 139.1, 144.1, 149.3, 155.9, 168.8; HRMS (ESI-TOF) m/z calcd. for C₁₇H₂₁N₅O [M+H]⁺ : 312.1824. found: 312.1822.

(5*E*)-3-isopropyl-5-[isopropylamino-(1*H*-pyrrolo[2,3-*b*]pyridin-2-yl)-methylene]-3,5-dihydroimidazol-4-one (7b).

Orange solid; mp 194–195 °C; v_{max} (KBr) /cm⁻¹ 3127, 2970, 1622, 1281; δ_{H} (300 MHz; CDCl₃; Me₄Si) 1.40 (6 H, d, J = 6.6 Hz, 2 Me), 1.43 (6 H, d, J = 6.6 Hz, 2 Me), 4.39 (1 H, hept, J = 6.6 Hz, Me₂CH), 4.46 (1 H, m), 7.07 (1 H, s), 7.10 (1 H, dd, J = 8.1, 4.6 Hz, C(5 arom)H), 7.28 (s, 1H), 7.98 (1 H, dd, J = 8.1, 1.4 Hz, C(4 arom)H), 8.43 (1 H, dd, J = 4.6, 1.4 Hz, C(6 arom)H), 9.94 (1 H, d, J = 8.6 Hz), 12.52 (1 H, br s, NH); δ_{C} (75 MHz, CDCl₃, Me₄Si) 22.3, 24.1, 43.5, 47.2, 106.9, 115.2, 116.8, 119.7, 129.0, 130.0, 133.9, 146.7, 147.1, 148.5, 166.1; HRMS (ESI-TOF) m/z calcd. for C₁₇H₂₂N₅O [M+H]⁺: 312.1824. found: 312.1824.

Reaction of methyl 5-bromo-4-pyrido[3',2':4,5]pyrrolo[1,2-*c*]-pyrimidine-7carboxylate 4a and benzylamine: Synthesis of (5*E*)-3-benzyl-5-[benzylamino-(1*H*pyrrolo[2,3-*b*]pyridin-2-yl)-methylene]-3,5-dihydroimidazol-4-one (7c)

The general procedure using 306 mg of **4a** as the starting material in 25.4 mL of bezylamine gave, after 2.5 h of reaction, a crude product. Purification by flash chromatography [silica gel, hexane: EtOAc (30:70)] afforded pure compound **7c** (171 mg, 42%). Orange solid; mp 155–157 °C; υ_{max} (NaCl) /cm⁻¹ 3280, 3030, 2923, 1615, 1595, 1538; $\delta_{\rm H}$ (500 MHz; CDCl₃; Me₄Si) 4.86 (2 H, s, CH₂), 4.99 (2 H, d, *J* = 5.9 Hz, CH₂), 7.05 (1 H, s), 7.08 (1 H, dd, *J* = 7.9, 4.8 Hz, C(5 arom)H), 7.21 (1 H, s), 7.28 (3

H, m), 7.33 (3 H, m), 7.41 (4 H, m), 7.94 (1 H, dd, J = 7.9, 1.4 Hz, C(4 arom)H), 8.42 (1 H, dd, J = 4.8, 1.4 Hz, C(6 arom)H), 10.20 (1 H, br s, NH), 12.49 (1 H, br s, NH); $\delta_{\rm C}$ (75 MHz, CDCl₃, Me₄Si) 44.7, 50.2, 107.9, 115.0, 116.9, 119.6, 127.0, 127.7, 127.9, 128.0, 128.8, 128.9, 129.1, 130.3, 136.4, 136.8, 137.1, 146.9, 148.0, 148.6, 166.6; HRMS (APCI-TOF) m/z calcd. for C₂₅H₂₂N₅O [M+H]⁺: 408.1824. found: 408.1814.

Reaction of methyl 5-bromo-4-pyrido[3',2':4,5]pyrrolo[1,2-*c*]-pyrimidine-7carboxylate 4a and cyclohexylamine: Synthesis of (5*E*)-3-cyclohexyl-5-[cyclohexylamino-(1*H*-pyrrolo[2,3-*b*]pyridin-2-yl)-methylene]-3,5dihydroimidazol-4-one (7d).

The general procedure using 306 mg of **4a** as the starting material in 26.6 mL of cyclohexylamine gave, after 2.5 h of reaction, a crude product. Purification by flash chromatography [silica gel, hexane: EtOAc (50:50)] yielded pure compound **7d** (262 mg, 67%). Orange solid; mp 170–171°C; v_{max} (NaCl) /cm⁻¹ 3247, 2930, 2854, 1622, 1467, 1280; δ_{H} (300 MHz; CDCl₃; Me₄Si) 1.23 (2 H, m), 1.55 (12 H, m), 1.86 (4 H, m), 2.02 (2 H, m), 3.99 (1 H, m), 4.12 (1 H, m), 7.01 (1 H, s), 7.10 (1 H, dd, *J* = 7.9, 4.6 Hz, C(5 arom)H), 7.27 (1 H, s), 7.99 (1 H, dd, *J* = 7.9, 1.3 Hz, C(4 arom)H), 8.43 (1 H, dd, *J* = 4.6, 1.3 Hz, C(6 arom)H), 10.10 (1 H, d, *J* = 8.2 Hz), 12.52 (1 H, br s, NH); δ_{C} (75 MHz, CDCl₃, Me₄Si) 24.2, 25.3, 25.4, 25.6, 33.0, 33.9, 50.8, 53.6, 106.7, 115.1, 116.8, 119.6, 129.1, 129.9, 134.2, 146.7, 147.1, 148.5, 166.0; HRMS (ESI-TOF) m/z calcd. for C₂₃H₃₀N₅O [M+H]⁺: 392.2450. found: 392.2454.

Reaction of methyl 5-bromo-pyrimido[1,6-*a*]indole-3-carboxilate 4b and 2methoxyethylamine: Synthesis of (5E)-5-(1H-indol-2-yl-methylene)-3-(2-methoxyethyl)-2-(2-methoxyethylamino)-3,5-dihydroimidazol-4-one (6e) and (5*E*)-5-[(1H-indol-2-yl)-(2-methoxyethylamino)-methylene]-3-(2-methoxyethyl)-3,5dihydroimidazol-4-one (7e). The general procedure using 305 mg of **4b** as the starting material in 20.3 mL of 2methoxyethylamine gave, after 1h of reaction, a mixture of products. Separation by flash chromatography [silica gel, hexane: EtOAc (30:70)] yielded pure compounds **6e** (140 mg, 45%) and **7e** (154 mg, 41%).

(5*E*)-5-(1*H*-indol-2-yl-methylene)-3-(2-methoxyethyl)-2-(2-methoxyethylamino)-3,5-dihydroimidazol-4-one (6e).

Orange oil; $\upsilon_{max}(NaCl) / cm^{-1} 3330, 2929, 1716, 1651, 1589; \delta_H (700 MHz; DMSO-$ *d*₆; Me₄Si) 3.26 (3 H, s, OMe), 3.34 (3 H, s, OMe), 3.48 (2 H, t,*J*= 5.3 Hz, OC*H*₂), 3.61 (2 H, t,*J*= 5.6 Hz, OC*H*₂), 3.74 (2 H, m, NC*H*₂), 3.78 (2 H, t,*J*= 5.6 Hz, NC*H*₂), 6.54 (1 H, s, C(3 arom)H), 6.87 (1 H, s, C*H*=C), 6.98 (1 H, t,*J*= 7.5 Hz, C(5 arom)H), 7.11 (1 H, t,*J*= 7.6 Hz, C(6 arom)H), 7.46 (1 H, d,*J*= 7.2 Hz, C(7 arom)H), 7.51 (1 H, d,*J*= 7.3 Hz, C(4 arom)H), 7.75 (1 H, t,*J* $= 5.8 Hz, NH alq), 11.01 (1 H, s, NH arom); <math>\delta_C$ (175 MHz, DMSO-*d*₆; Me₄Si) 38.5 (NCH₂), 41.0 (NCH₂), 58.0 (OMe), 58.1 (OMe), 69.4 0 (OCH₂), 70.3 (OCH₂), 103.9 (C3 arom), 105.4 (*C*H=C), 111.5 (C7 arom), 119.4 (C5 arom), 120.1 (C4 arom), 122.2 (C6 arom), 128.1 (C3' arom), 135.2 (C2 arom), 136.9 (C7' arom), 138.8 (C5), 157.5 (C2), 168.6 (C=O); δ_N (70 MHz, DMSO-*d*₆) 77.2 (N alq), 132.6 (N arom), 142.5 (N1), 173.1 (N3); HRMS (APCI-TOF) m/z calcd. for C₁₈H₂₃N₄O₃ [M+H]⁺: 343.1770. found: 343.1780.

(5*E*)-5-[(1*H*-indol-2-yl)-(2-methoxyethylamino)-methylene]-3-(2-methoxyethyl)-3,5dihydroimidazol-4-one (7e).

Orange solid; mp 72–74 °C; v _{max}(KBr) /cm⁻¹ 3213, 2932, 1632, 1467, 111; $\delta_{\rm H}$ (700 MHz; DMSO- d_6 ; Me₄Si) 3.26 (3 H, s, OMe), 3.31 (3 H, s, OMe), 3.54 (2 H, t, J = 5.4 Hz, OCH₂), 3.57 (2 H, t, J = 5.0 Hz, OCH₂), 3.79 (4 H, m, 2 NCH₂), 7.08 (1 H, t, J = 7.4 Hz, C(5 arom)H), 7.13 (1 H, d, J = 2.0 Hz, 1H), 7.24 (1 H, m, C(6 arom)H), 7.47 (1 H, s, C(2)H), 7.58 (1 H, d, J = 8.2 Hz, C(7 arom)H), 7.66 (1 H, d, J = 7.9 Hz, C(4 arom)H), 9.74 (1 H, t, J = 5.4 Hz, NH ena), 11.87 (1 H, s, N arom); $\delta_{\rm C}$ (75 MHz, DMSO- d_6 ; Me₄Si) 40.1 (NCH₂), 45.3 (NCH₂), 57.9 (OMe), 58.2 (OMe), 69.9 (OCH₂), 70.8 (OCH₂), 108.2 (C3 arom), 112.3 (C7 arom), 114.1 (C5), 119.9 (C4 arom), 121.2 (C4 arom), 123.8 (C6 arom), 126.9 (C3' arom), 127.4 (C2 arom), 136.8 (C7' arom), 138.4 (C2), 149.0 (*C*=C), 166.1 (C=O); $\delta_{\rm N}$ (70 MHz, DMSO- d_6) 97.0 (N ena), 138.0 (N arom), 161.6 (N3), 239.8 (N1); HRMS (APCI-TOF) m/z calcd. for C₁₈H₂₃N₄O₃ [M+H]⁺ : 343.1770. found: 343.1760.

Reaction of methyl 5-bromo-pyrimido[1,6-*a*]indole-3-carboxilate 4b and butylamine: Synthesis of (5E)-3-butyl-2-butylamino-5-(1H-indol-2-yl-methylene)-3,5-dihydroimidazol-4-one (6f) and (5*E*)-3-butyl-2-butylamino-5-(1H-indol-2-yl-methylene)-3,5-dihydroimidazol-4-one (7f).

The general procedure using 305 mg of **4b** as the starting material in 23 mL of butylamine gave, after 3h of reaction, a mixture of products. Separation by flash chromatography [silica gel, hexane: EtOAc (30:70)] afforded pure compounds **6f** (74 mg, 22%) and **7f** (176 mg, 52%).

(5*E*)-3-butyl-2-butylamino-5-(1*H*-indol-2-yl-methylene)-3,5-dihydroimidazol-4-one (6f).

Orange solid; mp 151–153 °C; $v_{max}(NaCl) / cm^{-1} 3332$, 2958, 2931, 1648, 1588; δ_{H} (300 MHz; Acetone- d_{6} ; Me₄Si) 0.91 (3 H, t, J = 7.2 Hz, Me), 1.00 (3 H, t, J = 7.2 Hz, Me), 1.33 (2 H, m, CH_2), 1.49 (2 H, m, CH_2), 1.61 (2 H, m, CH_2), 1.74 (2 H, m, CH_2), 3.65 (4 H, m, 2 CH_2), 6.58 (1 H, s), 6.70 (1 H, s), 6.94 (1 H, br s, NH), 6.98 (1 H, at, J = 7.9 Hz), 7.10 (1 H, at, J = 7.9 Hz), 7.37 (1 H, d, J = 8.2 Hz), 7.53 (1 H, d, J = 7.9 Hz), 11.11 (1 H, br s, NH); δ_{C} (75 MHz, Acetone- d_6 ; Me₄Si) 13.1, 13.3, 19.6, 19.8, 30.7, 31.5, 38.5, 41.3, 104.2, 105.4, 111.0, 119.5, 120.4, 122.6, 128.6, 136.3, 137.5, 139.2, 157.5, 168.5; HRMS (APCI-TOF) m/z calcd. for C₂₀H₂₇N₄O [M+H]⁺: 339.2185 found: 339.2185.

(5*E*)-3-butyl-5-[butylamino-(1H-indol-2-yl)-methylene]-3,5-dihydroimidazol-4-one (7f).

Orange solid; mp 72–73 °C; υ_{max} (KBr) /cm⁻¹ 3228, 2956, 1622, 1463, 1274; δ_{H} (300 MHz; CDCl₃; Me₄Si) 0.96 (6 H, m, 2 Me), 1.37 (2 H, m, CH₂), 1.55 (2 H, m, CH₂), 1.69 (2 H, m, CH₂), 1.79 (2 H, m, CH₂), 3.70 (2 H, t, J = 7.2 Hz, CH₂), 3.81 (2 H, m, CH₂), 7.10 (1 H, at, J = 7.7 Hz), 7.15 (1 H, s), 7.21 (1 H, s), 7.29 (1 H, at, J = 8.2 Hz), 7.51 (1 H, d, J = 7.7 Hz), 10.09 (1 H, br s, NH), 12.38 (1 H, br s, NH);

 δ_{C} (75 MHz, CDCl₃; Me₄Si) 13.6, 13.8, 20.0, 20.1, 31.8, 32.0, 41.1, 46.3, 109.9, 112.2, 113.6, 120.5, 121.8, 125.1, 127.3, 128.7, 135.2, 137.2, 148.9, 165.8; HRMS (APCI-TOF) m/z calcd. for C₂₀H₂₇N₄O [M+H]⁺: 339.2185 found: 339.2185.

Reaction of methyl 5-bromo-pyrimido[1,6-*a*]indole-3-carboxilate 4b and isopropylamine: Synthesis of (5E)-5-(1H-indol-2-yl-methylene)-3-isopropyl-2-isopropylamino-3,5-dihydroimidazol-4-one (6g) and (5*E*)-5-[(1H-indol-2-yl)-isopropylamino-methylene]-3-isopropyl-3,5-dihydroimidazol-4-one (7g).

The general procedure using 305 mg of **4b** as the starting material in 20 mL of isopropylamine gave, after 2h of reaction, a mixture of products. Separation by flash chromatography [silica gel, hexane: EtOAc (50:50)] yielded pure compounds **6g** (74 mg, 24%) and **7g** (52 mg, 17%).

(5*E*)-5-(1H-indol-2-yl-methylene)-3-isopropyl-2-isopropylamino-3,5dihydroimidazol-4-one (6g).

Orange oil; v_{max} (NaCl) /cm⁻¹ 3352, 2973, 1698, 1645, 1576, 1367; δ_{H} (300 MHz; Acetone- d_{6} ; Me₄Si) 1.36 (6 H, d, J = 6.6 Hz, 2 Me), 1.46 (6 H, d, J = 6.9 Hz, 2 Me), 4.25 (1 H, m, CH), 4.48 (1 H, m, CH), 6.50 (1 H, br s, NH), 6.53 (1 H, s), 6.69 (1 H, s), 6.98 (1 H, at, J = 7.9 Hz), 7.10 (1 H, at, J = 8.2 Hz), 7.38 (1 H, d, J = 8.2 Hz), 7.52 (1 H, d, J = 7.9 Hz), 11.05 (1 H, br s, NH); δ_{C} (75 MHz, Acetone- d_{6} ; Me₄Si) 19.9, 22.6, 45.1, 45.1, 104.5, 106.0, 111.8, 120.1, 121.0, 123.2, 129.3, 136.9, 138.2, 139.9, 157.2, 169.6; HRMS (APCI-TOF) m/z calcd. for C₁₈H₂₃N₄O [M+H]⁺ : 311.1872 found: 311.1862.

(5E)-5-[(1H-indol-2-yl)-isopropylamino-methylene]-3-isopropyl-3,5-

dihydroimidazol-4-one (7g).

Orange oil; $v_{max}(NaCl) / cm^{-1} 3273$, 2973, 1623, 1532, 1469; δ_H (300 MHz; Acetone- d_6 ; Me₄Si) 1.40 (12 H, d, J = 6.9 Hz, 4 Me), 4.34 (1 H, m, CH), 4.54 (1 H, m, CH), 7.10 (1 H, at, J = 7.9 Hz), 7.27 (2 H, m), 7.55 (1 H, s), 7.59 (1 H, d, J = 8.2 Hz), 7.69 (1 H, d, J = 7.9 Hz), 10.00 (1 H, br s, NH), 12.26 (1 H, br s, NH); δ_C (75 MHz, Acetone- d_6 ; Me₄Si) 22.2, 24.3, 44.2, 47.6, 109.2, 112.9, 115.8, 121.1, 122.4, 125.3, 128.5, 129.5, 135.7, 138.0, 148.2, 166.9; HRMS (ESI-TOF) m/z calcd. for C₁₈H₂₃N₄O [M+H]⁺ : 311.1872 found: 311.1862.

Reaction of methyl 5-bromo-pyrimido[1,6-a]indole-3-carboxilate 4b and benzylamine: Synthesis of (5E)-3-benzyl-2-benzylamino-5-(1H-indol-2-yl-methylene)-3,5-dihydroimidazol-4-one (6h) and (5E)-3-benzyl-5-[benzylamino-(1H-indol-2-yl)-methylene]-3,5-dihydroimidazol-4-one (7h).

The general procedure using 305 mg of **4b** as the starting material in 25.4 mL of benzylamine gave, after 1h of reaction, a mixture of products. Separation by flash chromatography [silica gel, hexane: EtOAc (30:50)] afforded pure compounds **6h** (138 mg, 34%) and **7h** (170 mg, 42%).

(5*E*)-3-benzyl-2-benzylamino-5-(1*H*-indol-2-yl-methylene)-3,5-dihydroimidazol-4one (6h).

Orange oil; $\upsilon_{max}(NaCl)$ /cm⁻¹ 3328, 2920, 1646, 1581; δ_H (300 MHz; Acetone- d_6 ; Me₄Si) 4.80 (2 H, s, CH₂), 4.96 (2 H, s, CH₂), 6.68 (1 H, s), 6.73 (1 H, s), 6.98 (1 H, at, J = 7.7 Hz), 7.11 (1 H, at, J = 7.1 Hz), 7.33 (12 H, m), 7.52 (1 H, d, J = 7.7 Hz), 11.04 (1 H, br s, NH); δ_C (75 MHz, Acetone- d_6 ; Me₄Si) 42.8, 46.0, 106.4, 106.9, 112.0, 120.3, 121.3, 123.6, 127.6, 127.9, 128.3, 128.4, 129.2, 129.3, 129.5, 136.7, 137.3, 138.5, 139.4, 139.9, 157.9, 169.4; HRMS (APCI-TOF) m/z calcd. for C₂₆H₂₃N₄O [M+H]⁺: 407.1872 found: 407.1862.

(5*E*)-3-benzyl-5-[benzylamino-(1*H*-indol-2-yl)-methylene]-3,5-dihydroimidazol-4one (7h).

Yellow solid; mp 184–186 °C; υ_{max} (KBr) /cm⁻¹ 3188, 2919, 1607, 1272, 701; $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 4.88 (2 H, s, CH₂), 5.02 (2 H, d, *J* = 5.9 Hz, CH₂), 7.11 (1 H, at, *J* = 7.9 Hz), 7.15 (1 H, s), 7.20 (1 H, s), 7.38 (12 H, m), 7.63 (1 H, d, *J* = 7.9 Hz), 10.34 (1 H, br s, NH), 12.19 (1 H, br s, NH); $\delta_{\rm C}$ (75 MHz, CDCl₃; Me₄Si) 44.7, 50.3, 110.0, 112.2, 114.2, 120.6, 121.9, 125.2, 127.2, 127.3, 127.6, 127.8, 127.9, 128.4, 128.9, 129.1, 135.9, 136.5, 137.1, 137.3, 148.9, 166.2; HRMS (APCI-TOF) m/z calcd. for C₂₆H₂₃N₄O [M+H]⁺: 407.1872 found: 407.1863.

Reaction of methyl 5-bromo-pyrimido[1,6-a]indole-3-carboxilate 4b and cyclohexylamine: Synthesis of (5*E*)-3-cyclohexyl-2-cyclohexylamino-5-(1*H*-indol-2-yl-methylene)-3,5-dihydroimidazol-4-one (6i) and (5*E*)-3-cyclohexyl-2-cyclohexylamino-5-(1*H*-indol-2-yl-methylene)-3,5-dihydroimidazol-4-one (7i).

The general procedure using 305 mg of **4b** as the starting material in 26.6 mL of cyclohexylamine gave, after 1h of reaction, a mixture of products. Separation by flash

chromatography [silica gel, CH_2Cl_2] yielded pure compounds **6i** (129 mg, 33%) and **7i** (152 mg, 39%).

(5*E*)-3-cyclohexyl-2-cyclohexylamino-5-(1*H*-indol-2-yl-methylene)-3,5dihydroimidazol-4-one (6i).

Orange oil; v_{max} (NaCl) /cm⁻¹ 3334, 2930, 2854, 1645, 1575; $\delta_{\rm H}$ (300 MHz; Acetone- d_6 ; Me₄Si) 1.25, (4 H, m), 1.42, (4 H, m), 1.58 (2 H, m), 1.73 (2 H, m), 1.83 (4 H, m), 2.17 (2 H, m), 2.29 (2 H, m), 3.83 (1 H, m), 4.12 (1 H, m), 6.52 (1 H, s), 6.58 (1 H, d, J = 6.9 Hz), 6.70 (1 H, s), 6.98 (1 H, at, J = 7.9 Hz), 7.11 (1 H, at, J = 7.9 Hz), 7.36 (1 H, d, J = 8.2 Hz), 7.52 (1 H, d, J = 7.9 Hz), 11.11 (1 H, br s, NH); $\delta_{\rm C}$ (75 MHz, Acetone- d_6 ; Me₄Si) 25.7, 26.0, 26.4, 26.5, 33.6, 52.5, 52.6, 53.1, 104.5, 106.0, 111.8, 120.3, 121.2, 123.3, 129.4, 137.2, 138.2, 140.1, 157.3, 169.6; HRMS (ESI-TOF) m/z calcd. for C₂₄H₃₁N₄O [M+H]⁺: 391.2498 found: 391.2497.

(5*E*)-3-cyclohexyl-5-[cyclohexylamino-(1*H*-indol-2-yl)-methylene]-3,5dihydroimidazol-4-one (7i).

Orange solid; mp 167–168 °C; υ_{max} (NaCl) /cm⁻¹ 3242, 2931, 2854, 1625, 1533, 1467; $\delta_{\rm H}$ (300 MHz; Acetone- d_6 ; Me₄Si) 1.26 (2 H, m), 1.43 (8 H, m), 1.67 (4 H, m), 1.95 (6 H, m), 3.95 (1 H, m), 4.26 (1 H, m), 7.09 (1 H, at, J = 8.4 Hz), 7.26 (2 H, m), 7.52 (1 H, s), 7.59 (1 H, d, J = 8.4 Hz), 7.69 (1 H, d, J = 7.7 Hz), 10.15 (1 H, br s, NH), 12.26 (1 H, br s, NH); $\delta_{\rm C}$ (75 MHz, CDCl₃; Me₄Si) 24.3, 25.3, 25.4, 25.7, 33.1, 33.8, 50.8, 53.6, 108.7, 112.2, 114.2, 120.5, 121.7, 124.9, 127.4, 128.5, 133.2, 137.0, 148.0, 165.5; HRMS (ESI-TOF) m/z calcd. for $C_{24}H_{31}N_4O [M+H]^+$: 391.2498 found: 391.2498.

Reaction of methyl 5-bromo-4-methoxypyrido[3',2':4,5]pyrrolo[1,2-*c*]-pyrimidine 7-carboxylate 4c and 2-methoxyethylamine: Synthesis of (5*E*)-3-(2-methoxyethyl)-2-(2-methoxyethylamino)-5-(4-methoxy-1*H*-pyrrolo[2,3-*b*]pyridin-2-yl-methylene)-3,5-dihydroimidazol-4-one (6k) and (5*E*)-3-(2-methoxyethyl)-5-[(2methoxyethylamino)-(4-methoxy-1*H*-pyrrolo[2,3-*b*]pyridin-2-yl)-methylene]-3,5dihydroimidazol-4-one (7k).

The general procedure using 336 mg of 4c as the starting material in 20.3 mL of 2methoxyethylamine gave, after 1h of reaction, a mixture of products. Separation by flash chromatography [silica gel, EtOAc/EtOH (90:10)] yielded pure compounds 6k(101 mg, 27%) and 7k (261 mg, 70%).

(5*E*)-3-(2-methoxyethyl)-2-(2-methoxyethylamino)-5-(4-methoxy-1*H*-pyrrolo[2,3*b*]pyridin-2-yl-methylene)-3,5-dihydroimidazol-4-one (6k).

Orange oil; v_{max} (NaCl) /cm⁻¹ 3300, 2923, 2361, 1721, 1656, 1338; δ_{H} (300 MHz; Acetone- d_{6} ; Me₄Si) 3.39 (6 H, s, 2 MeO), 3.59 (2 H, t, J = 5.0 Hz), 3.66 (2 H, t, J = 5.0 Hz), 3.76 (2 H, t, J = 5.0 Hz), 3.82 (2 H, t, J = 5.0 Hz), 3.99 (3 H, s, OMe), 6.58 (1 H, s), 6.61 (1 H, d, J = 5.6 Hz, C(5 arom)H), 7.03 (1 H, d, J = 1.5 Hz), 7.21 (1 H, br s, NH), 8.14 (1 H, d, J = 5.6 Hz, C(6 arom)H), 11.15 (1 H, br s, NH); δ_{C} (75 MHz, Acetone- d_{6} ; Me₄Si) 40.7, 42.3, 55.8, 58.7, 59.0, 71.3, 72.1, 98.9, 102.0, 105.1, 111.9, 135.0, 140.3, 146.8, 151.8, 159.3, 160.3, 168.9; HRMS (ESI-TOF) m/z calcd. for C₁₈H₂₄N₅O₄ [M+H]⁺: 374.1823 found: 374.1785. (5*E*)-3-(2-methoxyethyl)-5-[(2-methoxyethylamino)-(4-methoxy-1*H*-pyrrolo[2,3b]pyridin-2-yl)-methylene]-3,5-dihydroimidazol-4-one (7k).

Orange solid; mp 117–119 °C; υ_{max} (NaCl) /cm⁻¹ 3538, 3407, 2963, 1625,1514, 1261; δ_{H} (300 MHz; Acetone- d_6 ; Me₄Si) 3.32 (3 H, s, OMe), 3.42 (3 H, s, OMe), 3.60(2 H, t, J = 5.1 Hz), 3.75 (2 H, t, J = 5.1 Hz), 3.85 (2 H, t, J = 5.3 Hz), 4.00 (2 H, q, J = 5.3 Hz), 4.04 (3 H, s, OMe), 6.70 (1 H, d, J = 5.6 Hz, C(5 arom)H), 7.27 (1 H, s), 7.47 (1 H, s), 8.27 (1 H, d, J = 5.6 Hz, C(6 arom)H), 10.08 (1 H, br s, NH), 12.60 (1 H, br s, NH); δ_{C} (75 MHz, Acetone- d_6 ; Me₄Si) 41.3, 46.7, 56.1, 58.7, 58.9, 71.2, 71.8, 99.0. 106.0, 111.3, 115.0, 127.9, 138.9, 148.0, 149.6, 151.3, 161.5, 167.1; HRMS (APCI-TOF) m/z calcd. for C₁₈H₂₄N₅O₄ [M+H]⁺ : 374.1823 found: 378.1814.

Reaction of methyl 5-bromo-4-chloropyrido[3',2':4,5]pyrrolo[1,2-*c*]-pyrimidine 7carboxylate 4d and 2-methoxyethylamine: Synthesis of (5*E*)-5-[(4-chloro-1*H*pyrrolo[2,3-*b*]pyridin-2-yl)-(2-methoxyethylamino)-methylene]-3-(2methoxyethyl)-3,5-dihydroimidazol-4-one (7l).

The general procedure using 340 mg of **4d** as the starting material in 20.3 mL of 2methoxyethylamine gave, after 3h of reaction, a crude product. Purification by flash chromatography [silica gel, hexane: EtOAc (50:50)] yielded pure compound **7l** (155 mg, 41%). Orange solid; mp 83–85 °C; υ_{max} (NaCl) /cm⁻¹ 3538, 2926, 1635, 1470, 1277, 1119; δ_{H} (300 MHz; Acetone- d_6 ; Me₄Si) 3.32 (3 H, s, OMe), 3.42 (3 H, s, OMe), 3.60 (2 H, t, *J* = 5.3 Hz), 3.73 (2 H, t, *J* = 5.0 Hz), 3.86 (2 H, t, *J* = 5.3 Hz), 4.00 (2 H, q, *J* = 5.0 Hz), 7.25(1 H, d, *J* = 5.1 Hz, C(5 arom)H), 7.30 (1 H, s), 7.50 (1 H, s), 8.22 (1 H, d, *J* = 5.1 Hz, C(6 arom)H), 9.95 (1 H, br s, NH), 12.70 (1 H, br s, NH); δ_{C} (75 MHz, Acetone- d_6 ; Me₄Si) 41.3, 46.6, 58.7, 58.9, 71.2, 71.9, 105.8, 115.9, 117.4, 119.6, 130.9, 137.0, 139.9, 140.9, 147.5, 149.9, 167.4; HRMS (APCI-TOF) m/z calcd. for $C_{17}H_{21}CIN_5O_3[M+H]^+$: 378.1327 found: 378.1317.

Reaction of methyl pyrrolo[1,2-*c*]pyrimidine-3-carboxylate, 4e and 2methoxyethylamine: Synthesis of pyrrolo[1,2-*c*]pyrimidine-3-carboxylic acid (2metoxyethyl)amide (5e).

The general procedure using 176 mg of **4e** as the starting material in 20.3 mL of 2methoxyethylamine gave, after 7 h of reaction, a crude product. Purification by flash chromatography [silica gel, hexane: EtOAc (30:70)] yielded pure compound **5e** (153 mg, 63%). Brown solid; mp 90-92 °C; v_{max} (NaCl) /cm⁻¹ 3321, 2929, 1645, 1196; δ_{H} (300 MHz; CDCl₃; Me₄Si) 3.36 (3 H, s, OMe), 3.53 (2 H, d, *J* = 4.7 Hz), 3.62 (2 H, m), 6.64 (1 H, d, *J* = 3.7 Hz), 6.90 (1 H, dd, *J* = 2.5, 3.7 Hz), 7.44 (1 H, m), 8.02 (1 H, br s), 8.14 (1 H, s), 8.67 (1 H, s); δ_{C} (50 MHz, CDCl₃; Me₄Si) 39.2, 58.9, 71.3, 104.1, 112.6, 113.8, 117.5, 131.3, 132.9, 136.9, 164.3; HRMS (APCI-TOF) m/z calcd. for C₁₁H₁₃N₃O₂ [M+H]⁺ 220.1086 found: 220.1091.

Reaction of methyl 3-bromo-2-methyl-pyrazolo[1,5-*c*]pyrimidine-5-carboxylate 4f and 2-methoxyethylamine: Synthesis of 3-bromo-2-methyl-pyrazolo[1,5-*c*]pyrimidine-5-carboxylic acid (2-methoxyethyl)amide (5f).

The general procedure using 270 mg of **4f** as the starting material in 20.3 mL of 2methoxyethylamine gave, after 2 h of reaction, a crude product. Purification by flash chromatography [silica gel, hexane: EtOAc (50:50)] yielded pure compound **5f** (138 mg, 53%). White solid; mp 193-194 °C; ν max(NaCl) /cm⁻¹ 3295, 2918, 2358, 1661, 1548; $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 2.49 (3 H, s, Me), 3.36 (3 H, s, OMe), 3.56 (2 H, d, J = 4.9 Hz), 3.62 (2 H, q, J = 4.9 Hz), 8.12 (1 H, br s), 8.22 (1 H, s), 8.99 (1 H, s); $\delta_{\rm C}$ (75 MHz, CDCl₃; Me₄Si) 12.7, 39.4, 58.9, 71.1, 89.4, 110.7, 139.28, 139.33, 139.4, 154.9, 162.8; HRMS (APCI-TOF) m/z calcd. for C₁₁H₁₄⁷⁹BrN₄O₂ [M+H]⁺ 313.0295 found: 313.0280.

Reaction of methyl pyrimido[1,6-*a*]indole-3-carboxylate 4g and 2methoxyethylamine: Synthesis of pyrimido[1,6-*a*]indole-3-carboxylic acid (2metoxyethyl)amide (5g).

The general procedure using 226 mg of **4g** as the starting material in 20.3 mL of 2methoxyethylamine gave, after 1h of reaction, a crude product. Purification by flash chromatography [silica gel, hexane: EtOAc (30:70)] yielded pure compound **5g** (153 mg, 57%). Yellow solid; mp 140-142 °C; v_{max} (NaCl) /cm⁻¹ 3404, 2929, 1660, 1505; δ_{H} (300 MHz; CDCl₃; Me₄Si) 3.41 (3 H, s, OMe), 3.58 (2 H, t, *J* = 4.9 Hz), 3.68 (2 H, q, *J* = 4.9 Hz), 6.87 (1 H, s), 7.44 (2 H, m), 7.82 (1 H, d, *J* = 7.3 Hz), 7.99 (1 H, d, *J* = 7.6 Hz), 8.15 (1 H, br s), 8.20 (1 H, s), 9.10 (1 H, s); δ_{C} (125 MHz, CDCl₃; Me₄Si) 39.3, 58.9, 71.3, 97.3, 110.5, 113.8, 121.4, 122.6, 124.9,128.8, 130.4, 133.7, 136.2, 137.4, 163.9; HRMS (ESI-TOF) m/z calcd. for C₁₅H₁₆N₃O₂ [M+H]⁺ : 270.1237 found: 270.1228.

Reaction of methyl 5-phenyl-pyrimido[1,6-*a*]indole-3-carboxylate 4h and 2methoxyethylamine: Synthesis of 1-(2-methoxyethylamino)-5-phenyl-pyrimido[1,6*a*]indole-3-carboxylic acid (2-metoxyethyl)amide (8h).

The general procedure using 302 mg of **4h** as the starting material in 20.3 mL of 2methoxyethylamine gave, after 4h of reaction, a crude product. Purification by flash chromatography [silica gel, cyclohexane: EtOAc (80:20)] afforded pure compound **8h** (58 mg, 14%). Yellow solid; mp 193–194°C; v_{max} (NaCl) /cm⁻¹ 3303, 2926, 2360, 1715, 1647, 1587; δ_{H} (700 MHz; Acetone- d_{6} ; Me₄Si) 3.43 (3 H, s, OMe), 3.44 (3 H, s, OMe), 3.63 (2 H, t, *J* = 4.9 Hz, OC*H*₂), 3.71 (2 H, t, *J* = 5.3 Hz, OC*H*₂), 3.85 (4 H, m, 2 NC*H*₂), 6.76 (1 H, s, C(4)H), 7.09 (1 H, t, *J* = 7.5 Hz, C(7)H), 7.20 (1 H, s, NH), 7.22 (1 H, t, *J* = 7.6 Hz, C(8)H), 7.41 (1 H, t, *J* = 7.3 Hz, C(4 Ph)H), 7.50 (1 H, d, *J* = 8.2 Hz, C(9)H), 7.57 (2 H, *J* = 7.7 Hz, C(3,5 Ph)H), 7.61 (2 H, d, *J* = 6.8 Hz, C(2,4 Ph)H), 7.66 (1 H, d, *J* = 8.1 Hz, C(6)H), 11.40 (1 H, s, NH); δ_{C} (75 MHz, Acetone- d_{6} ; Me₄Si) 39.9 (NCH₂), 41.2 (NCH₂), 58.1 (OMe), 70.3 (OCH₂), 71.2 (OCH₂), 102.7 (C(4)), 111.4 (C(9)), 118.9 (C(6)), 119.7 (C(7)), 120.1 (C(1 Ph)), 122.7 (C(8)), 127.3 (C(4 Ph)), 127.6 (C(5')), 129.6 (C(3,5 Ph)), 130.7 (C(2,4 Ph)), 133.4 (C5), 137.5 (C(9')), 159.1 (C1), 168.7 (C=O); HRMS (ESI-TOF) m/z calcd. for C₂₄H₂₆N₄O₃ [M+H]⁺ : 419.2083 found: 419.2086.

as110711_02/2 as110711_02 cmpd MMG 11-3 1st eluting, acetone SEF 700 MHz 34 5 mm probe head 700 MHz, 298 K pulprog 29 p1 18.33 us (0.0 dB)

Ö

8h

OMe

Figure 2. X-ray crystal structure of 7a

Single-Crystal X-ray Structure Determination of 7a.

Details of the X-ray experiment, data reduction, and final structure refinement calculations are summarized in Table 3. Suitable single crystals of **7a** for the X-ray diffraction study were selected. Data collection was performed at 200(2) K, with the crystals covered with perfluorinated ether oil. The crystals were mounted on a Bruker-Nonius Kappa CCD single crystal diffractometer equipped with a graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). Multiscan¹³ absorption correction procedures were applied to the data. The structures were solved, using the WINGX package,¹⁴ by direct methods (SHELXS-97) and refined using full-matrix least-squares against F² (SHELXL-97).¹⁵ All non-hydrogen atoms were anisotropically refined. Hydrogen atoms on C9, N4 and N3. Full-matrix least-squares refinements were carried out by minimizing $\Sigma w(F_o^2-F_c^2)^2$ with the SHELXL-97 weighting scheme and stopped at shift/err < 0.001. The final residual electron density maps showed no remarkable features.

Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-884402 (**7a**). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44)1223-336-033; e-mail: <u>deposit@ccdc.cam.ac.uk</u>).

	7a
Formula	$C_{17}H_{21}N_5O_{38}$
FW	343.39
Color/habit	Orange/prism
Cryst dimensions (mm ³)	0.45 x 0.35 x 0.20
Cryst syst	Monoclinic
Space group	$P2_{1}/c$
<i>a</i> , Å	11.542(10)
b, Å	14.112(11)
<i>c</i> , Å	10.758(11)

Table 3.	Crystallographic	Data for 7a.
----------	------------------	--------------

β , (deg)	94.60(11)	
V, Å ³	1747(3)	
Z	4	
<i>Т</i> , К	200	
$ ho_{ m calcd}$, g cm ⁻³	1.306	
μ , mm ⁻¹	0.093	
F(000)	728	
θ range, deg	3.39 to 25.39	
no. of rflns collected	10245	
no. of indep rflns / R_{int}	3171/0.1424]	
no. of data/restraints/params	3171/0/239	
$R1/wR2 (I > 2\sigma(I))^{a}$	0.0776 / 0.1853	
R1/wR2 (all data) ^a	0.1448/0.2330	
Extinction coefficient	0.013(5)	
GOF (on F^2) ^a	1.038	
Largest diff peak / hole (e Å ⁻³)	0.269/-0.266	
$\overline{{}^{a}R1 = \Sigma(F_{o} - F_{c})/\Sigma F_{o} ; wR2 = \{\Sigma[w(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma[w(F_{o}^{2})^{2}]\}^{1/2}; GOF = \{\Sigma[w(F_{o}^{2} - F_{c}^{2})^{2}]/(n-p)\}^{1/2}}$		

 Table 4.
 Selected bond lengths [Å] and angles [deg] for 7a.

Bond lengths [Å]	Angles[deg]
O(1)-C(1) 1.255(5)	C(2)-N(1)-C(3) 104.6(3)
N(1)-C(2) 1.321(6)	C(6)-O(3)-C(7) 111.3(4)
N(1)-C(3) 1.430(5)	C(16)-O(2)-C(17) 112.5(3)
O(3)-C(6) 1.412(6)	C(12)-N(5)-C(11) 112.6(4)
O(3)-C(7) 1.440(6)	C(2)-N(2)-C(1) 107.6(3)
O(2)-C(16) 1.432(5)	C(2)-N(2)-C(15) 126.7(4)
O(2)-C(17) 1.438(6)	C(1)-N(2)-C(15) 125.5(3)
N(5)-C(12) 1.339(6)	C(11)-N(4)-C(8) 108.9(4)
N(5)-C(11) 1.359(6)	C(9)-C(8)-N(4) 109.0(4)
N(2)-C(2) 1.374(6)	C(9)-C(8)-C(4) 133.3(4)
N(2)-C(1) 1.410(5)	N(4)-C(8)-C(4) 117.7(4)
N(2)-C(15) 1.468(5)	C(4)-N(3)-C(5) 129.9(4)
N(4)-C(11) 1.365(6)	N(5)-C(11)-N(4) 123.9(4)
N(4)-C(8) 1.401(5)	N(5)-C(11)-C(10) 127.9(4)
C(8)-C(9) 1.387(6)	N(4)-C(11)-C(10) 108.2(4)
C(8)-C(4) 1.478(6)	N(3)-C(4)-C(3) 117.0(4)
N(3)-C(4) 1.368(5)	N(3)-C(4)-C(8) 121.0(4)
N(3)-C(5) 1.456(6)	C(3)-C(4)-C(8) 122.0(3)

C(11)-C(10) 1.420(6)	C(4)-C(3)-N(1) 126.1(4)
C(4)-C(3) 1.401(6)	C(4)-C(3)-C(1) 123.9(4)
C(3)-C(1) 1.427(6)	N(1)-C(3)-C(1) 109.8(4)
C(5)-C(6) 1.527(6)	O(1)-C(1)-N(2) 124.5(4)
	O(1)-C(1)-C(3) 131.2(4)
	N(2)-C(1)-C(3) 104.3(3)
	N(1)-C(2)-N(2) 113.8(4)
	N(3)-C(5)-C(6) 110.0(4)
	C(8)-C(9)-C(10) 106.8(4)
	O(3)-C(6)-C(5) 107.9(4)

References

- 10 A. Baeza, J. Mendiola, C. Burgos, J. Alvarez-Builla and J. J. Vaquero, *Tetrahedron Lett.*, 2008, **49**, 4073.
- 11 M. Suzuki and N. Yoneda, J. Org. Chem., 1976, 41, 1482.
- 12 J. Mendiola, I. Castellote, J. Alvarez-Builla, J. Fernandez-Gadea, A. Gomez and J. J. Vaquero, *J. Org. Chem.*, 2006, **71**, 1254.
- 13 R. H. Blessing, SORTAV, Acta Cryst., 1995, A51, 33.
- 14 L. J. Farrugia, J. Appl. Cryst., 1999, 32, 837.
- 15 G. M. Sheldrick, Acta Crystallogr. Sect.A 2008, A64, 112.