## A Copper(I)-Catalyzed Reaction of 2-(2-Ethynylphenyl)oxirane, Sulfonyl Azide, with 2-Isocyanoacetate

Shaoyu Li<sup>†</sup> and Jie Wu<sup>\*,†,‡</sup>

<sup>†</sup> Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China <sup>‡</sup> State

Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

jie\_wu@fudan.edu.cn

## **Supporting Information**

- 1. General experimental methods (S2).
- 2. General experimental procedure and characterization data (S2-S10).
- 3. <sup>1</sup>H and <sup>13</sup>C NMR spectra of compounds **4** (S11–S42).
- 4. X-ray structure of compounds **4e** and **5a** (S43-S44)

## **General experimental methods:**

Unless otherwise stated, all commercial reagents were used as received. All solvents were dried and distilled according to standard procedures. Flash column chromatography was performed using silica gel (60-Å pore size, 32–63µm, standard grade). Analytical thin-layer chromatography was performed using glass plates pre-coated with 0.25 mm 230-400 mesh silica gel impregnated with a fluorescent indicator (254 nm). Thin layer chromatography plates were visualized by exposure to ultraviolet light. Organic solutions were concentrated on rotary evaporators at ~20 Torr at 25–35°C. Nuclear magnetic resonance (NMR) spectra are recorded in parts per million from internal tetramethylsilane on the  $\delta$  scale. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded in CDCl<sub>3</sub> on a Bruker DRX-400 spectrometer operating at 400 MHz and 100 MHz, respectively. All chemical shift values are quoted in ppm and coupling constants quoted in Hz. High resolution mass spectrometry (HRMS) spectra were obtained micrOTOF The on а Π Instrument. starting material 2-(2-ethynylphenyl)oxiranes 1 were synthesized according to the reference (R. J. Madhushaw, M.-Y. Lin, S. M. A. Sohel, R.-S. Liu, J. Am. Chem. Soc. 2004, 126, 6895.) and the detailed characterizations of the starting materials are available from the above reference.

General experimental procedure for the copper-catalyzed reaction of 2-(2-ethynylphenyl)oxirane 1, sulfonyl azide 2, and 2-isocyanoacetate 3.

$$R^{1} \xrightarrow{[l]{}} R^{2} + \frac{R^{4} - SO_{2}N_{3}}{R^{5} - NC} \xrightarrow{CuCl (10 \text{ mol }\%)}_{iPr_{2}NEt, 1,4-dioxane} R^{1} \xrightarrow{[l]{}} O SO_{2}R^{4}$$

Diisopropylethylamine (58 mg, 0.45 mmol) was added to a solution of 2-(2-ethynylphenyl)oxirane **1** (0.3 mmol), sulfonyl azide **2** (0.36 mmol), and copper(I) chloride (3 mg, 0.03 mmol) in 1,4-dioxane (1.5 mL). The resulting mixture was stirred at room temperature for 2 hours under N<sub>2</sub> atmosphere, then 2-isocyanoacetate **3** (0.45 mmol) was added to the reaction mixture through a syringe. After completion

of the reaction as indicated by TLC, the mixture was diluted with  $CH_2Cl_2$  (10 mL), and filtered through a thin layer of silica gel. The solvent was evaporated and the residue was purified by column chromatography on silica gel (eluted with PE/EA = 4:1) to provide the pure products **4**.



Ethyl

4-phenyl-3'-tosyl-3',5'-dihydro-1*H*-spiro[benzo[*d*]oxepine-2,4'-imidazole]-5'-carboxyl ate (**4a**). 8h. White solid; melting point: 168.1–169.0 °C. Yield: 63%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.88 (t, *J* = 6.8 Hz, 3H), 2.22 (s, 3H), 3.41-3.47 (m, 1H), 3.77-3.81 (m, 1H), 3.92 (d, *J* = 16.0 Hz, 1H), 4.08 (d, *J* = 16.0 Hz, 1H), 4.58 (s, 1H), 6.15 (s, 1H), 6.96-7.03 (m, 5H), 7.08-7.12 (m, 3H), 7.16-7.22 (m, 3H), 7.71 (d, *J* = 7.2 Hz, 2H), 7.86 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.4, 21.6, 43.0, 62.0, 98.3, 105.3, 126.1, 126.2, 127.5, 127.8, 128.4, 129.8, 130.4, 131.5, 131.6, 134.0, 136.5, 137.5, 144.8, 146.3, 152.0, 167.3. HRMS (ESI) calcd for C<sub>28</sub>H<sub>26</sub>N<sub>2</sub>O<sub>5</sub>S: 503.1635 (M+H<sup>+</sup>), found: 503.1643.



Ethyl 3'-tosyl-3',5'-dihydro-1*H*-spiro[benzo[*d*]oxepine-2,4'-imidazole]-5'-carboxylate (**4b**). 6h. White solid; melting point: 155.8–156.8 °C. Yield: 50%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.87 (t, *J* = 6.8 Hz, 3H), 2.44 (s, 3H), 3.40-3.42 (m, 1H), 3.73-3.81 (m, 3H), 4.37 (s, 1H), 5.52 (d, *J* = 8.0 Hz, 1H), 5.83 (d, *J* = 8.0 Hz, 1H), 6.94 (d, *J* = 7.2 Hz, 1H), 7.04-7.09 (m, 2H), 7.16-7.20 (m, 1H), 7.34 (d, *J* = 7.2 Hz, 2H), 7.70 (s, 1H), 7.81 (d, *J* = 7.2 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.4, 21.7, 42.2, 62.0, 77.6, 98.7, 106.7, 126.1, 127.4, 127.6, 129.1, 129.8, 131.5, 132.2, 133.9, 137.4, 137.5,

145.0, 151.6, 167.4. HRMS (ESI) calcd for  $C_{22}H_{22}N_2O_5S$ : 427.1322 (M+H<sup>+</sup>), found: 427.1327.



Ethyl

4-methyl-3'-tosyl-3',5'-dihydro-1*H*-spiro[benzo[*d*]oxepine-2,4'-imidazole]-5'-carboxyl ate (**4c**). 6h. White solid; melting point: 183.0–184.0 °C. Yield: 70%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.69 (t, *J* = 7.2 Hz, 3H), 1.49 (s, 3H), 2.45 (s, 3H), 3.41-3.43 (m, 1H), 3.75-3.81 (m, 3H), 4.42 (s, 1H), 5.48 (s, 1H), 6.92 (d, *J* = 6.8 Hz, 1H), 6.99-7.03 (m, 2H), 7.14-7.17 (m, 1H), 7.35 (d, *J* = 7.6 Hz, 2H), 7.76 (s, 1H), 7.83 (d, *J* = 7.6 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.4, 21.7, 22.3, 42.3, 61.9, 77.5, 98.0, 103.8, 125.3, 127.3, 127.6, 128.9, 129.8, 131.4, 131.4, 134.4, 137.8, 144.8, 146.0, 151.7, 167.4. HRMS (ESI) calcd for C<sub>23</sub>H<sub>24</sub>N<sub>2</sub>O<sub>5</sub>S: 441.1479 (M+H<sup>+</sup>), found: 441.1476.



Ethyl

4-isopropyl-3'-tosyl-3',5'-dihydro-1*H*-spiro[benzo[*d*]oxepine-2,4'-imidazole]-5'-carbo xylate (**4d**). 6h. White solid; melting point: 161.0–162.0 °C. Yield: 70%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.70 (d, *J* = 6.4 Hz, 3H), 0.85-0.88 (m, 6H), 1.94-1.97 (m, 1H), 2.43 (s, 3H), 3.36-3.40 (m, 1H), 3.66-3.83 (m, 3H), 4.43 (s, 1H), 5.48 (s, 1H), 6.87 (d, *J* = 7.2 Hz, 1H), 6.97-7.03 (m, 2H), 7.12-7.15 (m, 1H), 7.34 (d, *J* = 7.2 Hz, 2H), 7.79 (s, 1H), 7.82 (d, *J* = 7.2 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.4, 20.5, 21.1, 21.6, 34.7, 42.3, 61.9, 76.9, 97.4, 101.4, 125.4, 127.3, 127.4, 129.5, 129.9, 131.3, 134.3, 137.8, 144.8, 151.7, 154.4, 167.5. HRMS (ESI) calcd for C<sub>25</sub>H<sub>28</sub>N<sub>2</sub>O<sub>5</sub>S: 469.1792 (M+H<sup>+</sup>), found: 469.1788.



Ethyl

4-propyl-3'-tosyl-3',5'-dihydro-1*H*-spiro[benzo[*d*]oxepine-2,4'-imidazole]-5'-carboxyl ate (**4e**). 6h. White solid; melting point: 143.0–144.0 °C. Yield: 80%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.70 (t, *J* = 6.8 Hz, 3H), 0.89 (t, *J* = 6.8 Hz, 3H), 0.98-1.03 (m, 2H), 1.61-1.79 (m, 2H), 2.45 (s, 3H), 3.40-3.42 (m, 1H), 3.75-3.86 (m, 3H), 4.42 (s, 1H), 5.48 (s, 1H), 6.92 (d, *J* = 7.2 Hz, 1H), 7.00-7.02 (m, 2H), 7.13-7.17 (m, 1H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.78 (s, 1H), 7.82 (d, *J* = 8.0 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.4, 13.5, 20.9, 21.6, 38.5, 42.5, 61.9, 77.2, 97.7, 103.6, 125.4, 127.3, 127.5, 129.2, 129.8, 131.4, 131.5, 134.3, 138.0, 144.7, 149.3, 151.8, 167.4. HRMS (ESI) calcd for C<sub>25</sub>H<sub>28</sub>N<sub>2</sub>O<sub>5</sub>S: 469.1792 (M+H<sup>+</sup>), found: 469.1799.



Ethyl

5-methyl-4-propyl-3'-tosyl-3',5'-dihydro-1*H*-spiro[benzo[*d*]oxepine-2,4'-imidazole]-5' -carboxylate (**4f**). 6h. White solid; melting point: 158.1–159.0 °C. Yield: 60%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.90 (t, *J* = 7.2 Hz, 3H), 1.13 (t, *J* = 7.2 Hz, 3H), 1.45-1.52 (m, 2H), 2.07 (s, 3H), 2.31-2.36 (m, 1H), 2.44 (s, 3H), 2.52-2.57 (m, 1H), 2.84 (d, *J* = 14.0 Hz, 1H), 3.81 (d, *J* = 14.0 Hz, 1H), 3.99-4.09 (m, 2H), 4.47 (s, 1H), 6.82 (d, *J* = 7.2 Hz, 1H), 7.04-7.05 (m, 1H), 7.27-7.32 (m, 4H), 7.72-7.76 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.8, 13.9, 17.8, 20.9, 21.7, 34.7, 35.5, 61.6, 80.6, 107.0, 117.3, 125.7, 126.6, 127.0, 127.5, 129.2, 130.0, 132.7, 137.4, 140.9, 144.7, 150.6, 168.4. HRMS (ESI) calcd for C<sub>26</sub>H<sub>30</sub>N<sub>2</sub>O<sub>5</sub>S: 483.1948 (M+H<sup>+</sup>), found: Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

483.1956.





7-methyl-4-propyl-3'-tosyl-3',5'-dihydro-1*H*-spiro[benzo[*d*]oxepine-2,4'-imidazole]-5' -carboxylate (**4g**). 5h. White solid; melting point: 154.4–155.2 °C. Yield: 75%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.69 (t, *J* = 6.8 Hz, 3H), 0.90 (t, *J* = 6.8 Hz, 3H), 0.98-1.03 (m, 2H), 1.60-1.77 (m, 2H), 2.26 (s, 3H), 2.45 (s, 3H), 3.44-3.48 (m, 1H), 3.71-3.77 (m, 3H), 4.41 (s, 1H), 5.43 (s, 1H), 6.81-6.83 (m, 3H), 7.34 (d, *J* = 7.6 Hz, 2H), 7.78 (s, 1H), 7.81 (d, *J* = 7.6 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.3, 13.5, 20.9, 20.9, 21.6, 38.6, 42.1, 62.0, 77.2, 97.8, 103.6, 126.2, 127.5, 128.6, 129.8, 131.3, 134.1, 136.8, 138.0, 144.7, 149.2, 151.8, 167.4. HRMS (ESI) calcd for C<sub>26</sub>H<sub>30</sub>N<sub>2</sub>O<sub>5</sub>S: 483.1948 (M+H<sup>+</sup>), found: 483.1959.



Ethyl

8-methoxy-4-propyl-3'-tosyl-3',5'-dihydro-1*H*-spiro[benzo[*d*]oxepine-2,4'-imidazole]-5'-carboxylate (**4h**). 4h. White solid; melting point: 108.3–109.2 °C. Yield: 81%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.68 (t, *J* = 7.2 Hz, 3H), 0.91-0.99 (m, 5H), 1.57-1.74 (m, 2H), 2.45 (s, 3H), 3.46-3.49 (m, 1H), 3.70-3.84 (m, 6H), 4.45 (s, 1H), 5.41 (s, 1H), 6.50 (s, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 6.94 (d, *J* = 8.0 Hz, 1H), 7.34 (d, *J* = 7.6 Hz, 2H), 7.77 (s, 1H), 7.81 (d, *J* = 7.6 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.4, 13.5, 20.8, 21.6, 38.4, 42.9, 55.3, 61.8, 77.0, 97.5, 103.1, 113.1, 116.5, 127.2, 127.5, 129.7, 130.5, 132.9, 138.0, 144.7, 147.3, 151.8, 157.4, 167.6. HRMS (ESI) calcd for C<sub>26</sub>H<sub>30</sub>N<sub>2</sub>O<sub>6</sub>S: 499.1897 (M+H<sup>+</sup>), found: 499.1906.



Ethyl

7-chloro-4-propyl-3'-tosyl-3',5'-dihydro-1*H*-spiro[benzo[*d*]oxepine-2,4'-imidazole]-5'carboxylate (**4i**). 8h. White solid; melting point: 188.0–189.0 °C. Yield: 61%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.70 (t, *J* = 6.8 Hz, 3H), 0.95 (t, *J* = 6.8 Hz, 3H), 0.99-1.05 (m, 2H), 1.61-1.79 (m, 2H), 2.46 (s, 3H), 3.46-3.49 (m, 1H), 3.76-3.81 (m, 3H), 4.39 (s, 1H), 5.40 (s, 1H), 6.86 (d, *J* = 8.0 Hz, 1H), 6.98-7.01 (m, 2H), 7.35 (d, *J* = 7.6 Hz, 2H), 7.78 (s, 1H), 7.81 (d, *J* = 7.6 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ 13.4, 13.5, 20.8, 21.6, 38.6, 42.0, 62.2, 77.2, 97.7, 102.4, 125.1, 127.4, 128.6, 129.8, 129.9, 132.7, 133.1, 136.1, 137.8, 144.8, 150.9, 151.8, 167.3. HRMS (ESI) calcd for C<sub>25</sub>H<sub>27</sub>ClN<sub>2</sub>O<sub>5</sub>S: 503.1402 (M+H<sup>+</sup>), found: 503.1402.



Ethyl

7-fluoro-4-propyl-3'-tosyl-3',5'-dihydro-1*H*-spiro[benzo[*d*]oxepine-2,4'-imidazole]-5'carboxylate (**4j**). 8h. White solid; melting point: 180.0–181.0 °C. Yield: 62%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.70 (t, *J* = 7.2 Hz, 3H), 0.95 (t, *J* = 6.8 Hz, 3H), 1.00-1.05 (m, 2H), 1.61-1.79 (m, 2H), 2.45 (s, 3H), 3.47-3.52 (m, 1H), 3.77-3.83 (m, 3H), 4.39 (s, 1H), 5.41 (s, 1H), 6.71 (d, *J* = 8.0 Hz, 2H), 6.86-6.90 (m, 1H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.78-7.82 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.4, 13.5, 20.8, 21.6, 38.6, 41.7, 62.1, 77.3, 97.8, 102.6, 112.1 (d, <sup>2</sup>*J*<sub>CF</sub> = 21.0 Hz), 115.0 (d, <sup>2</sup>*J*<sub>CF</sub> = 21.9 Hz), 127.3 (d, *J*<sub>CF</sub> = 1.9 Hz), 127.4, 129.8, 133.0 (d, <sup>3</sup>*J*<sub>CF</sub> = 8.6 Hz), 136.4 (d, <sup>3</sup>*J*<sub>CF</sub> = 7.7 Hz), 137.9, 144.8, 150.7, 151.8, 162.1 (d,  ${}^{1}J_{CF}$  = 244.1 Hz), 167.3 (d,  $J_{CF}$  = 4.7 Hz). HRMS (ESI) calcd for C<sub>25</sub>H<sub>27</sub>ClN<sub>2</sub>O<sub>5</sub>S: 487.1697 (M+H<sup>+</sup>), found: 487.1696.



Methyl

4-propyl-3'-tosyl-3',5'-dihydro-1*H*-spiro[benzo[*d*]oxepine-2,4'-imidazole]-5'-carboxyl ate (**4k**). 6h. White solid; melting point: 150.5–151.5 °C. Yield: 75%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.69 (t, *J* = 7.2 Hz, 3H), 0.99-1.02 (m, 2H), 1.62-1.77 (m, 2H), 2.46 (s, 3H), 3.20 (s, 3H), 3.70-3.82 (m, 2H), 4.43 (s, 1H), 5.48 (s, 1H), 6.93 (d, *J* = 7.2 Hz, 1H), 7.02-7.06 (m, 2H), 7.14-7.17 (m, 1H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.79 (s, 1H), 7.82 (d, *J* = 8.0 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.5, 20.9, 21.7, 38.5, 42.7, 52.7, 77.1, 97.6, 103.6, 125.4, 127.4, 127.5, 129.2, 129.8, 131.3, 131.4, 134.2, 137.9, 144.8, 149.3, 151.9, 167.7. HRMS (ESI) calcd for C<sub>24</sub>H<sub>26</sub>N<sub>2</sub>O<sub>5</sub>S: 455.1635 (M+H<sup>+</sup>), found: 455.1627.



Ethyl

3'-(phenylsulfonyl)-4-propyl-3',5'-dihydro-1*H*-spiro[benzo[*d*]oxepine-2,4'-imidazole]-5'-carboxylate (**4**I). 6h. White solid; melting point: 135.0–136.0 °C. Yield: 80%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.68 (t, *J* = 6.8 Hz, 3H), 0.90 (t, *J* = 6.8 Hz, 3H), 0.97-1.01 (m, 2H), 1.55-1.77 (m, 2H), 3.40-3.44 (m, 1H), 3.69-3.87 (m, 3H), 4.43 (s, 1H), 5.48 (s, 1H), 6.93 (d, *J* = 7.2 Hz, 1H), 7.01 (d, *J* = 7.2 Hz, 2H), 7.14-7.18 (m, 1H), 7.55-7.58 (m, 2H), 7.64-7.66 (m, 1H), 7.81 (s, 1H), 7.95 (d, *J* = 7.2 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.4, 13.5, 20.8, 38.4, 42.6, 62.0, 77.2, 97.7, 103.7, 125.4, 127.3, 127.4, 129.2, 131.4, 133.6, 134.3, 140.9, 149.2, 151.6, 167.3. HRMS (ESI) calcd for  $C_{24}H_{26}N_2O_5S$ : 455.1635 (M+H<sup>+</sup>), found: 455.1633.



Ethyl

3'-(4-bromophenylsulfonyl)-4-propyl-3',5'-dihydro-1*H*-spiro[benzo[*d*]oxepine-2,4'-im idazole]-5'-carboxylate (**4m**). 6h. White solid; melting point: 150.1–152.0 °C. Yield: 82%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.74 (t, *J* = 6.8 Hz, 3H), 0.89 (t, *J* = 6.8 Hz, 3H), 0.98-1.04 (m, 2H), 1.58-1.80 (m, 2H), 3.40-3.44 (m, 1H), 3.69-3.79 (m, 3H), 4.43 (s, 1H), 5.49 (s, 1H), 6.94 (d, *J* = 6.8 Hz, 1H), 7.01-7.05 (m, 2H), 7.15-7.18 (m, 1H), 7.70 (d, *J* = 7.2 Hz, 2H), 7.78-7.81 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.4, 13.6, 20.9, 38.5, 42.6, 62.0, 77.2, 97.7, 103.8, 125.5, 127.4, 128.8, 128.9, 129.3, 131.3, 131.4, 132.5, 134.1, 139.9, 149.0, 151.4, 167.3. HRMS (ESI) calcd for C<sub>24</sub>H<sub>25</sub>BrN<sub>2</sub>O<sub>5</sub>S: 533.0740 (M+H<sup>+</sup>), found: 533.0732.



Ethyl

3'-(4-methoxyphenylsulfonyl)-4-propyl-3',5'-dihydro-1*H*-spiro[benzo[*d*]oxepine-2,4'-i midazole]-5'-carboxylate (**4n**). 6h. White solid; melting point: 128.0–129.0 °C. Yield: 80%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.71 (t, *J* = 6.8 Hz, 3H), 0.89 (t, *J* = 6.8 Hz, 3H), 1.01-1.08 (m, 2H), 1.70-1.82 (m, 2H), 3.40-3.42 (m, 1H), 3.75-3.82 (m, 3H), 3.88 (s, 3H), 4.42 (s, 1H), 5.49 (s, 1H), 6.92-7.02 (m, 5H), 7.14-7.18 (m, 1H), 7.77 (s, 1H), 7.87 (d, *J* = 8.0 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.4, 13.5, 20.9, 38.7, 42.6, 55.8, 55.8, 61.9, 77.2, 97.7, 103.6, 114.3, 125.4, 127.3, 129.2, 129.7, 131.4, 131.5, 134.3, 149.3, 151.9, 163.8, 167.4. HRMS (ESI) calcd for  $C_{25}H_{28}N_2O_6S$ : 485.1741

(M+H<sup>+</sup>), found: 485.1738.





3'-(4-nitrophenylsulfonyl)-4-propyl-3',5'-dihydro-1*H*-spiro[benzo[*d*]oxepine-2,4'-imid azole]-5'-carboxylate (**4o**). 8h. Yellow solid; melting point: 169.3–170.3 °C. Yield: 40%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.67 (t, *J* = 7.2 Hz, 3H), 0.90 (t, *J* = 7.2 Hz, 3H), 0.95-1.02 (m, 2H), 1.55-1.77 (m, 2H), 3.40-3.44 (m, 1H), 3.74-3.81 (m, 3H), 4.46 (s, 1H), 5.51 (s, 1H), 6.93 (d, *J* = 7.2 Hz, 1H), 7.03-7.07 (m, 2H), 7.16-7.20 (m, 1H), 7.81 (s, 1H), 8.15 (d, *J* = 7.6 Hz, 2H), 8.41 (d, *J* = 7.6 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.4, 20.8, 38.4, 42.5, 62.2, 67.1, 77.2, 97.9, 104.2, 124.4, 125.7, 127.5, 128.8, 129.4, 131.0, 131.4, 134.0, 146.3, 148.7, 150.5, 150.8, 167.1. HRMS (ESI) calcd for C<sub>24</sub>H<sub>25</sub>N<sub>3</sub>O<sub>7</sub>S: 500.1486 (M+H<sup>+</sup>), found: 500.1482.



4-Methyl-*N*-((Z)-4-propylbenzo[*d*]oxepin-2(1*H*)-ylidene)benzenesulfonamide (**5a**). 2h. White solid; melting point: 158.0–159.0 °C. Yield: 64%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.90 (s, 3H), 1.50 (m, 2H), 2.32-2.38 (m, 5H), 3.55 (s, 2H), 6.23 (s, 1H), 7.17-7.23 (m, 2H), 7.24 (d, *J* = 7.2 Hz, 2H), 7.25-7.31 (m, 2H), 7.79 (d, *J* = 7.2 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.5, 20.5, 21.6, 36.9, 40.7, 111.7, 127.3, 127.7, 128.3, 128.9, 129.1, 129.3, 130.1, 132.4, 138.4, 143.5, 152.8, 164.8. HRMS (ESI) calcd for C<sub>20</sub>H<sub>21</sub>NO<sub>3</sub>S: 356.1315 (M+H<sup>+</sup>), found: 356.1314.













































![](_page_32_Figure_1.jpeg)

![](_page_33_Figure_1.jpeg)

![](_page_34_Figure_1.jpeg)

![](_page_35_Figure_1.jpeg)

![](_page_36_Figure_1.jpeg)

![](_page_37_Figure_1.jpeg)

![](_page_38_Figure_1.jpeg)

![](_page_39_Figure_1.jpeg)

![](_page_40_Figure_1.jpeg)

![](_page_41_Figure_1.jpeg)

![](_page_42_Figure_1.jpeg)

![](_page_43_Figure_1.jpeg)