Chemical Communications

Host–Guest Association Prior to Threading in the Formation of Pseudorotaxanes from Bis(dialkylammonium ion)s and a Molecular Cage

Chun-Ju Chuang, Ming-Liang Yen, Chien-Chen Lai, Yi-Hung Liu, Shie-Ming Peng, and Sheng-Hsien Chiu*

SUPPORTING INFORMATION

	Page
Experimental procedures and characterization data for new compounds	
¹ H and ¹³ C NMR spectra of the threadlike salts [2–7-H ₂][2PF ₆]	S5–S16
¹ H and ¹³ C NMR spectra of compound S1	S17–S18
2D HSQC NMR spectra of the threadlike salt [5-H ₂][2PF ₆]	819
2D COSY and NOESY NMR spectra of the complex	
$[1 \supset (2-4) - H_2][2PF_6]$ and $[1 \supset 6 - H_2][2PF_6]$	S20–S31
Kinetic data for the passage of the aromatic termini of the face-to-face	
complexed $[1 \supset (2-6)-H_2][2PF_6]$ into the Molecular Cage 1	S32–S37

Experimental Section

General synthetic procedure for the threadlike salts [2–6-H₂][2PF₆]

Scheme S1. Synthesis of the threadlike salts [2–6-H₂][2PF₆].

4-Å Molecular sieves (0.3 g mmol⁻¹ of diamine), K₂CO₃ (2.4 equiv), and the pertinent para-substituted benzaldehyde (2.1 equiv) were added to a solution of 1,6-diaminohexane (0.1 M) in MeOH. The mixture was heated under reflux for 16 h, before being cooled to room temperature and filtered. NaBH₄ (5 equiv) was added to the filtrate and then the mixture was heated under reflux for 6 h. After concentration, the residue was taken up in CH₂Cl₂ (100 mL) and washed with water (2 × 50 mL). The organic phase was dried (MgSO₄) and concentrated. The residue was dissolved in MeOH (15 mL) and the solution acidified using 6 N HCl_(aq). The white precipitate was filtered, washed with CH₂Cl₂ (10 mL), dissolved in MeOH (15 mL), and treated NH₄PF_{6(aq)} (20 mL). The organic solvent was evaporated under reduced pressure; the precipitate was filtered, washed with water (5 mL), and dried.

[2-H₂][2PF₆]: 22 %; mp 260 °C (dec); ¹H NMR (400 MHz, CD₃CN, 298 K): δ =1.31–1.37 (m, 4H), 1.59–1.67 (m, 4H), 3.00 (t, J = 8 Hz, 4H), 4.13 (s, 4H), 7.38 (d, J = 8 Hz, 4H), 7.64 (d, J = 8 Hz, 4H); ¹³C NMR (100 MHz, CD₃CN, 298 K): δ = 26.8, 49.2, 52.3, 125.0, 131.3, 133.6, 133.7 (one aliphatic carbon signal was missing possibly because of signals overlapping); HRMS (ESI): m/z calcd for [2-H₂][PF₆]⁺ C₂₀H₂₈Br₂F₆N₂P⁺ 599.0261, found m/z 599.0295.

[**3**-H₂][2PF₆]: 80 %; mp 237–239 °C; ¹H NMR (400 MHz, CD₃CN, 298 K): δ = 1.31–1.38 (m, 4H), 1.58–1.68 (m, 4H), 2.36 (s, 6H), 2.99 (t, J = 8 Hz, 4H), 4.10 (s, 4H), 7.27 (d, J = 8 Hz, 4H), 7.33 (d, J = 8 Hz, 4H); ¹³C NMR (100 MHz, CD₃CN, 298 K): δ =21.3, 26.3, 26.4, 48.7, 52.4, 128.6, 130.7, 131.1, 141.0; HRMS (ESI): m/z calcd for [**3**-H₂][PF₆]⁺ C₂₂H₃₄F₆N₂P⁺ 471.2364, found m/z 471.2391.

 $[4-H_2][2PF_6]: 60 \%; mp 240-241 °C; ^1H NMR (400 MHz, CD_3CN, 298 K): \delta =$

1.29–1.42 (m, 4H), 1.58–1.70 (m, 4H), 2.98 (t, J = 7 Hz, 4H), 3.81 (s, 6H), 4.09 (s, 4H), 6.44–6.81 (br, 4H), 6.98 (d, J = 9 Hz, 4H), 7.37 (d, J = 9 Hz, 4H); ¹³C NMR (100 MHz, CD₃CN, 298 K): $\delta = 26.7$, 26.7, 48.8, 52.5, 56.4, 115.6, 123.5, 132.9, 161.8; HRMS (ESI): m/z calcd for [4-H₂][PF₆]⁺ C₂₂H₃₄F₆N₂O₂P⁺ 503.2262, found m/z 503.2288.

[**5**-H₂][2PF₆]: 64 %; mp 250 °C (dec); ¹H NMR (400 MHz, CD₃CN, 298 K): δ = 1.31–1.37 (m, 4H), 1.58–1.67 (m, 4H), 2.96–3.05 (m, 4H), 4.15 (t, *J* = 6 Hz, 4H), 6.55–6.86 (br, 4H), 7.22 (dd, *J* = 9, 9 Hz, 4H), 7.50 (dd, *J* = 6, 9 Hz, 4H); ¹³C NMR (100 MHz, CD₃CN, 298 K): δ = 26.8, 26.8, 49.2, 52.3, 117.4 (³*J*_{CF} = 22 Hz), 128.2 (⁴*J*_{CF} = 3 Hz), 134.0 (²*J*_{CF} = 9 Hz), 164.9 (¹*J*_{CF} = 246 Hz); HRMS (ESI): *m/z* calcd for [**5**-H₂][PF₆]⁺ C₂₀H₂₈F₈N₂P⁺ 479.1862, found *m/z* 479.1844.

[**6**-H₂][2PF₆]: 6 %; mp 257 °C (dec); ¹H NMR (400 MHz, CD₃CN, 298 K): δ = 1.28–1.43 (m, 4H), 1.57–1.72 (m, 4H), 3.00 (t, J = 8 Hz, 4H), 4.15 (s, 4H), 7.40–7.57 (m, 10H); ¹³C NMR (100 MHz, CD₃CN, 298 K): δ = 26.8, 26.8, 49.2, 53.1, 130.6, 131.2, 131.5, 132.1; HRMS (ESI): m/z calcd for [**6**-H₂][PF₆]⁺ C₂₀H₃₀F₆N₂P⁺ 443.2045, found m/z 443.2050.

N-(4-*tert*-Butylbenzyl)-1,6-diaminohexane (S1)

Scheme S2. Synthesis of N-(4-tert-butylbenzyl)-1,6-diaminohexane

4-Å Molecular sieves (0.3 g), K_2CO_3 (0.3 g), and 4-*tert*-butylbenzaldehyde (0.14 g, 0.9 mmol) were added to a solution of 1,6-diaminohexane (0.50 g, 4.3 mmol) in MeOH (50 mL) and the mixture was heated under reflux for 16 h, before being cooled to room temperature and filtered. NaBH₄ (43 mg, 1.12 mmol) was added to the filtrate and then the mixture was heated under reflux for 6 h. After concentration, the residue was partitioned between CH₂Cl₂ (30 mL) and water (100 mL) and then the aqueous layer was extracted with CH₂Cl₂ (2 × 30 mL). The combined organic phases were dried (MgSO₄) and concentrated. The residue was purified

chromatographically (SiO₂; MeOH/CH₂Cl₂, 5:95 to 10:90) to afford a yellow liquid (0.12 g, 53%); ¹H NMR (400 MHz, CDCl₃, 298 K): δ 1.09–1.67 (m, 17H), 2.62 (t, *J* = 7 Hz, 2H), 2.66 (t, *J* = 7 Hz, 2H), 3.73 (s, 2H), 7.22 (d, *J* = 8 Hz, 2H), 7.32 (d, *J* = 8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, 298 K): δ 26.8, 27.2, 30.0, 31.4, 33.7, 34.4, 42.1, 49.5, 53.7, 125.3, 127.8, 137.4, 149.8; HRMS (ESI): calcd for [**S1** + H]⁺ C₁₇H₃₁N₂⁺ *m*/*z* 263.2487, found *m*/*z* 263.2466.

The synthesis of threadlike salt [7-H₂][2PF₆]

4-Å Molecular sieves (0.21 g), K₂CO₃ (0.21 g), and 4-methylbenzaldehyde (0.09 g, 0.8 mmol) were added to a solution of S1 (0.18 g, 0.7 mmol) in MeOH (4 mL) and the mixture was heated under reflux for 16 h, before being cooled to room temperature and filtered. NaBH₄ (0.03 g, 0.8 mmol) was added to the filtrate and then the mixture was heated under reflux for 6 h. After concentration, the residue was taken up in CH₂Cl₂ (100 mL) and washed with water (2×50 mL). The organic phase was dried (MgSO₄) and concentrated. The residue was dissolved in MeOH (15 mL) and the solution acidified using 6N $HCl_{(aq)}$. The white precipitate was filtered, washed with CH₂Cl₂ (10 mL), dissolved in MeOH (15 mL), and treated with saturated $NH_4PF_{6(aq)}$ (20 mL). The organic solvent was evaporated under reduced pressure; the precipitate was filtered, washed with water (5 mL), and dried to afford thread [7-H₂][2PF₆] as a white solid (0.32 g, 70 %). mp 241 °C (dec); ¹H NMR (400 MHz, CD_3CN , 298 K): $\delta = 1.29-1.42$ (m, 13H), 1.57-1.72 (m, 4H), 2.37 (s, 3H), 2.93-3.11 (m, 4H), 4.12 (s, 2H), 4.13 (s, 2H), 6.48–6.87 (br, 4H), 7.28 (d, J = 8 Hz, 2H), 7.35 (d, J = 8 Hz, 2H), 7.39 (d, J = 8 Hz, 2H), 7.52 (d, J = 8 Hz, 2H); ¹³C NMR (100 MHz, CD₃CN, 298 K): δ =21.7, 26.7, 26.8, 31.9, 35.9, 49.1, 49.2, 52.7, 52.8, 127.5, 129.0, 129.0, 131.2, 131.3, 131.5, 141.5, 154.4 (two aliphatic signals are missing possibly because of signals overlapping); HRMS (ESI): m/z calcd for $[7-H_2][PF_6]^+$ C₂₅H₄₀F₆N₂P⁺ 513.2833, found *m/z* 513.2869.

S5

0

ppm

29-diPCB-1.94-

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013 110321-diPMB-19.4-1H

21-diPMB-1.94

i alkalan, dan saya kili la Akilah panakan ya Tan ya kata pangangan dari king t		ins allowed of transitional participance of operatory	ter a dal filmeni dintenne dan Internetip yanan sa katanan	an dining an ang ang ang ang ang ang ang ang an		n for for all found to block	age of the state o	a di jama ani katakan kasata per temperapan perapanan per	k Misery, da a tyrk fylt kan Jone, dae an ny angelegy yn yw ar yn yg i byr	ten direkt en jelen vers all i den etallen Vergenaagt register opgevening ister der	ad Maria di Balanca dina di Asmandria a Bara Maria yang ang kana di Asmandria yang mang kana yang kana di Ka Maria yang kana di Kana	an in a star water and the second	an a		ter di anatala engli dan baska. Anggan anang para ta taganaga	, sa de altre a tratta d'ant a se constituir e se a sub- nes gen Canagani Sagaren e se nes generations d'an par e para	 Nu kingtaka salah
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	 ppm

diPHB-1H

329-tBCB-1.94-

Figure S1. HSQC spectrum (400 MHz, CD₃CN, 298 K) of the threadlike salt [5-H][2PF₆].

The aromatic carbon signals of the threadlike salt [5-H][2PF₆] were identified based on the C–F couplings and cross signals appeared in 13 C NMR and HSQC spectra, respectively. The signals of the aliphatic protons were identified from their chemical shifts and cross signals appeared in HSQC spectra.

Figure S2. COSY spectrum [400 MHz, CDCl₃/CD₃CN (1:1), 298 K] of the complex $[1 \supset \cdot 2 - H_2][2PF_6]$, recorded after mixing the molecular cage 1 and the threadlike salt $[2-H_2][2PF_6]$ at 298 K for 13 h.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Figure S3. NOESY spectrum [400 MHz, CDCl₃/CD₃CN (1:1), 298 K] of the complex $[1 \supset \cdot 2 - H_2][2PF_6]$, recorded after mixing the molecular cage 1 and the threadlike salt $[2-H_2][2PF_6]$ at 298 K for 13.5 h.

Assignment of Signals in ¹H NMR Spectra of the Complex [1⊃·2-H₂][2PF₆] Based on Its 2D COSY and NOESY Spectra

From NOESY

- $H_a (\delta = 4.62) \rightarrow H_\beta (\delta = 7.74) \rightarrow H_\alpha (\delta = 7.63) \text{ and } -(OCH_2CH_2O)- \text{[protons of the tri(ethylene glycol) chains of host 1; } \delta = 3.54-4.19\text{]}$
- $H_{\beta'}$ ($\delta = 6.08$) $\rightarrow H_{\alpha'}$ ($\delta = 6.64$) and $H_{a'}$ [$\delta = 4.14-4.19$, overlapped with -(OCH₂CH₂O)-]
- H_a was the characteristic signal for benzylic protons adjacent to an $^+NH_2$ center threaded through the cavity of DB24C8.
- $H_{\beta'}$ was shielded strongly by the aromatic moiety of the molecular cage and shifted upfield significantly.

From COSY

$$\begin{split} H_{\beta} &(\delta = 7.74) \rightarrow H_{\alpha} (\delta = 7.63) \\ H_{\beta'} &(\delta = 6.08) \rightarrow H_{\alpha'} (\delta = 6.64) \\ H_{a} &(\delta = 4.62) \rightarrow {}^{+}NH_{2} (\delta = 7.05 - 7.18, \text{ threaded}) \rightarrow H_{b} (\delta = 1.59 - 1.67) \\ {}^{+}NH_{2} &(\delta = 6.90 - 7.01, \text{ face-to-face complexed}) \rightarrow H_{a'} (\delta = 4.14 - 4.19) \text{ and } H_{b'} (\delta = 2.00 - 2.08) \end{split}$$

The threaded ⁺NH₂ center may experience stronger [⁺N–H····O] hydrogen bonding interactions, thereby shifting it further downfield relative to the face-to-face complexes one.

$$H_b$$
 (δ = 1.59–1.67) → H_c (δ = 0.87–0.97) → H_d (δ = -0.62 to -0.50) → $H_{d'}$ (δ = -0.44
to -0.33) → $H_{c'}$ (δ = -0.04 to +0.11) → $H_{b'}$ (δ = 2.00–2.08)

Figure S4. COSY spectrum [400 MHz, CDCl₃/CD₃CN (1:1), 298 K] of the complex $[1 \supset \cdot 3 - H_2][2PF_6]$, recorded after mixing the molecular cage 1 and the threadlike salt $[3-H_2][2PF_6]$ at 298 K for 3.3 days.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

after mixing the molecular cage 1 and the threadlike salt $[3-H_2][2PF_6]$ at 298 K for 3.3 days.

Assignment of Signals in ¹H NMR Spectra of the Complex [1⊃·3-H₂][2PF₆] Based on Its 2D COSY and NOESY Spectra From NOESY

 $H_a (\delta = 4.56) \rightarrow H_\beta (\delta = 7.66) \rightarrow H_\alpha (\delta = 7.28)$ and -(OCH₂CH₂O)- [protons of the

tri(ethylene glycol) chains of host 1; $\delta = 3.51-4.42$, overlapped with H_a']

 $H_{\alpha} (\delta = 7.28) \rightarrow H_m (\delta = 2.39);$ (so $H_{m'}$ was known)

 H_a was the characteristic signal for benzylic protons adjacent to an $^+NH_2$ center threaded through the cavity of DB24C8.

From COSY

 $H_a (\delta = 4.56, t, J = 7 Hz, 2H) \rightarrow {}^+NH_2 (\delta = 6.74-7.03; overlapped with H_{\alpha'}, H_{\beta'}, and H_{Ar1-4})$

From NOESY

 $H_{m'}$ ($\delta = 2.31$) $\rightarrow H_{\alpha'}$ ($\delta = 6.99$)

From COSY

 $H_{\alpha'}$ ($\delta = 6.99$) $\rightarrow H_{\beta'}$ ($\delta = 6.89$)

From NOESY

 $H_{\beta'}$ ($\delta = 6.89$) $\rightarrow H_{a'}$ ($\delta = 4.56$) $\rightarrow H_{b'}$ ($\delta = 2.04-2.22$, overlapped with signal for water)

 $H_{\alpha'}$ and $H_{\beta'}$ were shielded strongly by the aromatic moiety of the molecular cage and shifted upfield significantly.

From COSY

 $H_{b'}$ (δ = 2.04–2.22, overlapped with signal for water) → $H_{c'}$ (δ = 0.75–0.88) → $H_{d'}$ (δ = -0.50 to -0.36) → H_d (δ = -0.63 to -0.50) → H_c (δ = 1.49–1.55) → H_b (δ = 1.64–1.81; overlapped with the signals for the aliphatic protons of the molecular cage)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Figure S6. COSY spectrum [400 MHz, CDCl₃/CD₃CN (1:1), 298 K] of the complex $[1 \supset \cdot 4 - H_2][2PF_6]$, recorded after mixing the molecular cage 1 and the threadlike salt $[4-H_2][2PF_6]$ at 298 K for 2.4 days.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Figure S7. NOESY spectrum [400 MHz, $CDCl_3/CD_3CN$ (1:1), 298 K] of the complex $[1 \supset \cdot 4 - H_2][2PF_6]$, recorded after mixing the molecular cage 1 and the threadlike salt $[4-H_2][2PF_6]$ at 298 K for 2.4 days.

Assignment of Signals in ¹H NMR Spectra of the Complex [1⊃·4-H₂][2PF₆] Based on Its 2D COSY and NOESY Spectra

From NOESY

 $H_a (\delta = 4.52) \rightarrow H_\beta (\delta = 7.73) \rightarrow H_\alpha (\delta = 7.00)$, and $-(OCH_2CH_2O)-$ [protons of the

tri(ethylene glycol) chains of host 1; $\delta = 3.50-4.40$]

 $H_{\alpha} (\delta = 7.00) \rightarrow H_m (\delta = 3.84)$

 $H_a (\delta = 4.52, t, J = 7 Hz, 2H) \rightarrow H_b (\delta = 1.57 - 1.66) \rightarrow H_c (\delta = 0.73 - 0.88)$

 H_a was the characteristic signal for benzylic protons adjacent to an $^+NH_2$ center threaded through the cavity of DB24C8.

From COSY

$$H_c$$
 (δ = 0.73–0.88) → H_d (δ = -0.67 to -0.52) → $H_{d'}$ (δ = -0.43 to -0.26) → $H_{c'}$ (δ = 0.07–0.23) → $H_{b'}$ (δ = 1.99–2.06)

From NOESY

 $H_{b'}$ ($\delta = 1.99-2.06$) $\rightarrow H_{a'}$ ($\delta = 4.16$) $\rightarrow H_{\beta'}$ ($\delta = 6.63$)

From COSY

 $H_{\beta'} (\delta = 6.63) \rightarrow H_{\alpha'} (\delta = 6.44)$

 $H_{\alpha'}$ and $H_{\beta'}$ were shielded strongly by the aromatic moiety of the molecular cage and shifted upfield significantly.

From NOESY

 $H_{\alpha'}$ ($\delta = 6.44$, d, J = 9 Hz, 2H) $\rightarrow H_{m'}$ ($\delta = 3.74$)

H_{m'} was shielded by the aromatic moiety of the molecular cage and shifted upfield to

a greater extent than was H_m).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Figure S8. COSY spectrum [400 MHz, CDCl₃/CD₃CN (1:1), 298 K] of the complex $[1 \supset \cdot 6 - H_2][2PF_6]$, recorded after mixing the molecular cage 1 and the threadlike salt $[6-H_2][2PF_6]$ at 298 K for 8 h.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Figure S9. NOESY spectrum [400 MHz, $CDCl_3/CD_3CN$ (1:1), 298 K] of the complex $[1 \supset \cdot 6 - H_2][2PF_6]$, recorded after mixing the molecular cage 1 and the threadlike salt $[6-H_2][2PF_6]$ at 298 K for 8 h.

Assignment of Signals in ¹H NMR Spectra of the Complex [1⊃·6-H₂][2PF₆] Based on Its 2D COSY and NOESY Spectra

From NOESY

- $H_a (\delta = 4.59) \rightarrow H_\beta (\delta = 7.79) \rightarrow H_\alpha (\delta = 7.32-7.58)$, overlapped with $H_{\alpha'}$, $H_{\beta'}$, H_m , and $H_{m'}$) and –(OCH₂CH₂O)– [protons of the tri(ethylene glycol) chains of host **1**; $\delta = 3.40-4.19$]
- $H_a \ (\delta = 4.59) \rightarrow H_b \ (\delta = 1.75-1.81; \text{ overlapped with the aliphatic signals of the molecular cage 1})$
- H_a was the characteristic signal for benzylic protons adjacent to an ⁺NH₂ center threaded through the cavity of DB24C8.

From COSY

 H_b ($\delta = 1.75-1.81$, overlapped with the aliphatic signals of the molecular cage 1) \rightarrow

 H_c (δ = 0.73–0.92) → H_d (δ = -0.44 to -0.32) → $H_{d'}$ (δ = -0.58 to -0.44) → $H_{c'}$ (δ = 0.07–0.20) → $H_{b'}$ (δ = 1.86–1.92, overlapped with the aliphatic signals of the molecular cage **1**)

From NOESY

 $H_{b'}$ ($\delta = 1.86-1.92$) \rightarrow ⁺NH₂ ($\delta = 6.43-6.69$) $\rightarrow H_{a'}$ [$\delta = 4.55-4.65$, overlapped with the tri(ethylene glycol) signals of the molecular cage **1**] $\rightarrow H_{\beta'}$ ($\delta = 7.32-7.58$, overlapped with H_{α} , $H_{\alpha'}$, H_m , and $H_{m'}$)

 $H_{\alpha'}$ and $H_{\beta'}$ were shielded by the aromatic moiety of the molecular cage and shifted upfield.

Table S1. Kinetic data for threading of the face-to-face–complexed aromatic termini of $[1 \supset \cdot x-H_2][2PF_6]$ into the DB24C8-like opening of the molecular cage 1 to form completely threaded complexes $[1 \supset \neg x-H_2][2PF_6]$

Common former a d ^[a]	Terminal	1_{r} (-1)[b,c]	$\Delta G^{\ddagger[c,d]}$	$\Delta \mathrm{H}^{\ddagger[e]}$	$\Delta S^{\ddagger[e]}$	
Complex formed ¹	substituent	K (S)	(kcal mol ⁻¹)	(kcal mol ⁻¹)	$(cal mol^{-1} K^{-1})$	
[1 ⊃⊃ 2 -H ₂][2PF ₆]	Br	$(2.2 \pm 0.2) \ge 10^{-7}$	26.5 ± 0.1	11.4 ±6.1	-50.2 ± 19.6	
[1 ⊃⊃ 3 -H ₂][2PF ₆]	CH ₃	$(8.6 \pm 0.9) \ge 10^{-8}$	27.1 ± 0.1	19.7 ± 0.8	-24.6 ± 2.6	
$[1 \supset 4 - H_2][2PF_6]$	OCH ₃	$(1.4 \pm 0.1) \ge 10^{-7}$	26.8 ± 0.1	18.3 ± 1.9	-28.6 ± 6.1	
[1 ⊃⊃ 5 -H ₂][2PF ₆]	F	$(6.2 \pm 0.9) \ge 10^{-6}$	24.5 ± 0.1	9.2 ±3.9	-51.6 ± 12.6	
[1 ⊃⊃ 6 -H ₂][2PF ₆]	Н	$(1.7 \pm 0.3) \ge 10^{-6}$	25.3 ± 0.1	20.3 ± 1.2	-16.6 ± 3.8	

[a] Experiments were performed using an equimolar mixture (4.00 mM) of the molecular cage 1 and the threadlike salt. The 90% confidence limits for k, ΔG^{\ddagger} , ΔH^{\ddagger} and ΔS^{\ddagger} were evaluated by the least-squarets method. [b] Value of k were obtained either from the slope of the straight line in the plot of $\ln([A_0]/[A_t])$ against t {using the relationship of $\ln([A_0]/[A_t]) = kt$ }. [c] Calculated at 298 K. [d] Value of ΔG^{\ddagger} were calculated using the relationship $\Delta G^{\ddagger} = -RT \ln(kh/k_BT)$, where R, h, and k_B correspond to the gas, Plank, and Boltzmann constants, respectively. [e] Value of ΔH^{\ddagger} and ΔS^{\ddagger} were obtained from the intercept and slope of the straight line in the plot of $\Delta G^{\ddagger} = \Delta H^{\ddagger} - T\Delta S^{\ddagger}$).

Experiments were performed using an equimolar (4 mM) mixture of molecular cage **1** and the threadlike salt in $\text{CDCl}_3^{[\text{S-a}]} / \text{CD}_3\text{CN}$ (1:1) The rate constant (*k*) for the threading process were determined from the slope of the straight line in the plot of $\ln([A_0]/[A_t])$ against t, measured at five temperatures. The value of $[A_0] = [A_t] + [P_t]$ and $[A_t]$ were determined from the reciprocal of the molar ratio of the face-to-face complex to the completely threaded pseudorotaxane in the solution, measured from the integrated signals in ¹H NMR spectra: [1/4 integral of H_β[,] (4H) + 1/2 integral of H_β[,] (2H)] / [1/2 integral of H_β[,] (2H)]. The value of ΔG^{\ddagger} (kcal mol⁻¹) were calculated using the relationship

$\Delta G^{\ddagger} = -RT \ln(kh/k_{\rm B}T)$

where *R*, *h* and $k_{\rm B}$ correspond to the gas, Plank and Boltzmann constants, respectively. The value of ΔH^{\ddagger} (kcal mol⁻¹) and ΔS^{\ddagger} (cal mol⁻¹) were obtained from the intercept and slope, respectively, of the straight lines in the plots of ΔG^{\ddagger} against T, using the relationship

$$\Delta G^{\ddagger} = \Delta H^{\ddagger} - \mathrm{T} \Delta S^{\ddagger}$$

[S-a] To avoid possible disruptive effects caused by Cl⁻ anion or by the decomposition of PF_6^- into PF_5 and F^- in CDCl₃, the deuterated solvent used in kinetic experiments was treated with K₂CO₃ and Na₂S₂O₃ and distilled prior to performing these studies.

X = Br and $[1 \supset 2 - H_2][2PF_6]$ was the product formed.

In these experiments, $[A_t]$ and $[P_t]$ were determined by integration of the signals at δ 7.73 (d, J = 8 Hz, 2H) and δ 7.86 (d, J = 5 Hz, 4H), respectively.

 $X = CH_3$ and $[1 \supset 3 - H_2][2PF_6]$ was the product formed.

In these experiments, [A_t] and [P_t] were determined by integration of the signals at δ 7.64 (d, *J* = 8 Hz, 2H) and δ 7.81 (d, *J* = 8 Hz, 4H), respectively.

 $X = OCH_3$ and $[1 \supset 4-H_2][2PF_6]$ was the product formed.

In these experiments, $[A_t]$ and $[P_t]$ were determined by integration of the signals at δ 7.70 (d, J = 9 Hz, 2H) and δ 7.86 (d, J = 9 Hz, 4H), respectively.

X = F and $[1 \supset 5 - H_2][2PF_6]$ was the product formed.

In these experiments, $[A_t]$ and $[P_t]$ were determined by integration of the signals at δ 7.82 (dd, J = 6, 8 Hz, 2H) and δ 7.96 (dd, J = 6, 8 Hz, 4H), respectively.

X = H and $[1 \supset 6 - H_2][2PF_6]$ was the product formed.

In these experiments, [A_t] and [P_t] were determined by integration of the signals at δ 7.79 (d, *J* = 7 Hz, 2H) and δ 7.96 (d, *J* = 7 Hz, 4H), respectively.

