Chemical
 Communications

Host-Guest Association Prior to Threading in the Formation ofPseudorotaxanes from Bis(dialkylammonium ion)s and a Molecular
Cage
Chun-Ju Chuang, Ming-Liang Yen, Chien-Chen Lai, Yi-Hung Liu, Shie-Ming Peng, and Sheng-Hsien Chiu*
SUPPORTING INFORMATION
Page
Experimental procedures and characterization data for new compounds S2-S4
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the threadlike salts $\left[2-7-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$ S5-S16
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{S} 1$ S17-S18
2D HSQC NMR spectra of the threadlike salt $\left[5-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$ S19
2D COSY and NOESY NMR spectra of the complex
$\left[\mathbf{1} \supset \cdot(\mathbf{2}-\mathbf{4})-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$ and $\left[\mathbf{1} \supset \cdot \mathbf{6}-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$ S20-S31
Kinetic data for the passage of the aromatic termini of the face-to-face complexed $\left[\mathbf{1} \supset \cdot(\mathbf{2}-\mathbf{6})-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$ into the Molecular Cage $\mathbf{1}$ S32-S37

Experimental Section

General synthetic procedure for the threadlike salts [2-6- $\left.\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$

Scheme S1. Synthesis of the threadlike salts $\left[\mathbf{2}-\mathbf{6}-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$.
$4-\AA$ Molecular sieves ($0.3 \mathrm{~g} \mathrm{mmol}^{-1}$ of diamine), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.4 equiv), and the pertinent para-substituted benzaldehyde (2.1 equiv) were added to a solution of 1,6 -diaminohexane $(0.1 \mathrm{M})$ in MeOH . The mixture was heated under reflux for 16 h , before being cooled to room temperature and filtered. NaBH_{4} (5 equiv) was added to the filtrate and then the mixture was heated under reflux for 6 h . After concentration, the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and washed with water $(2 \times 50 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was dissolved in $\mathrm{MeOH}(15 \mathrm{~mL})$ and the solution acidified using $6 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq})}$. The white precipitate was filtered, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, dissolved in MeOH (15 mL), and treated with saturated $\mathrm{NH}_{4} \mathrm{PF}_{6(\mathrm{aq})}(20 \mathrm{~mL})$. The organic solvent was evaporated under reduced pressure; the precipitate was filtered, washed with water (5 mL), and dried.
$\left[2-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]: 22 \% ; \mathrm{mp} 260{ }^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$): δ $=1.31-1.37(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.67(\mathrm{~m}, 4 \mathrm{H}), 3.00(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 4.13(\mathrm{~s}, 4 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}$ $=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$): $\delta=26.8$, $49.2,52.3,125.0,131.3,133.6,133.7$ (one aliphatic carbon signal was missing possibly because of signals overlapping); HRMS (ESI): m/z calcd for $\left[\mathbf{2}-\mathrm{H}_{2}\right]\left[\mathrm{PF}_{6}\right]^{+}$ $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{P}^{+}$599.0261, found $\mathrm{m} / \mathrm{z} 599.0295$.
$\left[3-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]: 80 \% ; \mathrm{mp} 237-239{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$): $\delta=$ $1.31-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.68(\mathrm{~m}, 4 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}), 2.99(\mathrm{t}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 4.10(\mathrm{~s}$, 4 H), 7.27 (d, $J=8 \mathrm{~Hz}, 4 \mathrm{H}$), 7.33 (d, $J=8 \mathrm{~Hz}, 4 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298$ K): $\delta=21.3,26.3,26.4,48.7,52.4,128.6,130.7,131.1,141.0 ;$ HRMS (ESI): m/z calcd for $\left[3-\mathrm{H}_{2}\right]\left[\mathrm{PF}_{6}\right]^{+} \mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{P}^{+} 471.2364$, found $\mathrm{m} / \mathrm{z} 471.2391$.
$\left[4-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]: 60 \% ; \mathrm{mp} 240-241{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$): $\delta=$
$1.29-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.70(\mathrm{~m}, 4 \mathrm{H}), 2.98(\mathrm{t}, J=7 \mathrm{~Hz}, 4 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}), 4.09(\mathrm{~s}$, 4H), 6.44-6.81 (br, 4H), 6.98 (d, $J=9 \mathrm{~Hz}, 4 \mathrm{H}$), 7.37 (d, $J=9 \mathrm{~Hz}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$): $\delta=26.7,26.7,48.8,52.5,56.4,115.6,123.5,132.9$, 161.8; HRMS (ESI): m / z calcd for $\left[4-\mathrm{H}_{2}\right]\left[\mathrm{PF}_{6}\right]^{+} \mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}^{+} 503.2262$, found m / z 503.2288 .
[5- $\left.\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]: 64 \% ; \operatorname{mp} 250{ }^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$): $\delta=$ $1.31-1.37(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.67(\mathrm{~m}, 4 \mathrm{H}), 2.96-3.05(\mathrm{~m}, 4 \mathrm{H}), 4.15(\mathrm{t}, J=6 \mathrm{~Hz}, 4 \mathrm{H})$, 6.55-6.86 (br, 4H), 7.22 (dd, $J=9,9 \mathrm{~Hz}, 4 \mathrm{H}$), $7.50(\mathrm{dd}, J=6,9 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$): $\delta=26.8,26.8,49.2,52.3,117.4\left({ }^{3} J_{\mathrm{CF}}=22 \mathrm{~Hz}\right.$), 128.2 $\left({ }^{4} J_{\mathrm{CF}}=3 \mathrm{~Hz}\right), 134.0\left({ }^{2} J_{\mathrm{CF}}=9 \mathrm{~Hz}\right), 164.9\left({ }^{1} J_{\mathrm{CF}}=246 \mathrm{~Hz}\right)$; HRMS (ESI): m/z calcd for $\left[5-\mathrm{H}_{2}\right]\left[\mathrm{PF}_{6}\right]^{+} \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~F}_{8} \mathrm{~N}_{2} \mathrm{P}^{+} 479.1862$, found $\mathrm{m} / \mathrm{z} 479.1844$.
$\left[6-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]: 6 \% ; \mathrm{mp} 257{ }^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$): $\delta=$ $1.28-1.43$ (m, 4H), 1.57-1.72 (m, 4H), $3.00(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 4.15$ (s, 4H), 7.40-7.57 ($\mathrm{m}, 10 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$): $\delta=26.8,26.8,49.2,53.1,130.6$, 131.2, 131.5, 132.1; HRMS (ESI): m / z calcd for $\left[6-\mathrm{H}_{2}\right]\left[\mathrm{PF}_{6}\right]^{+} \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{P}^{+} 443.2045$, found $m / z 443.2050$.
N-(4-tert-Butylbenzyl)-1,6-diaminohexane (S1)

Scheme S2. Synthesis of N-(4-tert-butylbenzyl)-1,6-diaminohexane
$4-\AA \AA$ Molecular sieves $(0.3 \mathrm{~g}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.3 \mathrm{~g})$, and 4-tert-butylbenzaldehyde $(0.14 \mathrm{~g}$, $0.9 \mathrm{mmol})$ were added to a solution of 1,6 -diaminohexane ($0.50 \mathrm{~g}, 4.3 \mathrm{mmol}$) in $\mathrm{MeOH}(50 \mathrm{~mL})$ and the mixture was heated under reflux for 16 h , before being cooled to room temperature and filtered. $\mathrm{NaBH}_{4}(43 \mathrm{mg}, 1.12 \mathrm{mmol})$ was added to the filtrate and then the mixture was heated under reflux for 6 h . After concentration, the residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$ and then the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified
chromatographically $\left(\mathrm{SiO}_{2} ; \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 5: 95\right.$ to $\left.10: 90\right)$ to afford a yellow liquid ($0.12 \mathrm{~g}, 53 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 1.09-1.67(\mathrm{~m}, 17 \mathrm{H}), 2.62(\mathrm{t}, \mathrm{J}=$ $7 \mathrm{~Hz}, 2 \mathrm{H}), 2.66$ (t, $J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.73$ (s, 2H), 7.22 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32$ (d, $J=8$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 26.8,27.2,30.0,31.4,33.7,34.4$, 42.1, 49.5, 53.7, 125.3, 127.8, 137.4, 149.8; HRMS (ESI): calcd for [S1 + H] ${ }^{+}$ $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{~N}_{2}{ }^{+} \mathrm{m} / \mathrm{z} 263.2487$, found $m / z 263.2466$.

The synthesis of threadlike salt $\left[7-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$

Scheme S4. Synthesis of $\left[7-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$

4- \AA Molecular sieves $(0.21 \mathrm{~g}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.21 \mathrm{~g})$, and 4-methylbenzaldehyde $(0.09 \mathrm{~g}$, $0.8 \mathrm{mmol})$ were added to a solution of $\mathbf{S} 1(0.18 \mathrm{~g}, 0.7 \mathrm{mmol})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ and the mixture was heated under reflux for 16 h , before being cooled to room temperature and filtered. $\mathrm{NaBH}_{4}(0.03 \mathrm{~g}, 0.8 \mathrm{mmol})$ was added to the filtrate and then the mixture was heated under reflux for 6 h . After concentration, the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and washed with water $(2 \times 50 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was dissolved in $\mathrm{MeOH}(15 \mathrm{~mL})$ and the solution acidified using $6 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq})}$. The white precipitate was filtered, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, dissolved in $\mathrm{MeOH}(15 \mathrm{~mL})$, and treated with saturated $\mathrm{NH}_{4} \mathrm{PF}_{6(\text { aq) }}(20 \mathrm{~mL})$. The organic solvent was evaporated under reduced pressure; the precipitate was filtered, washed with water $(5 \mathrm{~mL})$, and dried to afford thread $\left[7-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$ as a white solid ($0.32 \mathrm{~g}, 70 \%$). mp $241{ }^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right): \delta=1.29-1.42(\mathrm{~m}, 13 \mathrm{H}), 1.57-1.72(\mathrm{~m}, 4 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.93-3.11$ $(\mathrm{m}, 4 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 6.48-6.87(\mathrm{br}, 4 \mathrm{H}), 7.28(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}$, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right): \delta=21.7,26.7,26.8,31.9,35.9,49.1,49.2,52.7,52.8,127.5,129.0$, $129.0,131.2,131.3,131.5,141.5,154.4$ (two aliphatic signals are missing possibly because of signals overlapping); HRMS (ESI): m / z calcd for $\left[7-\mathrm{H}_{2}\right]\left[\mathrm{PF}_{6}\right]^{+}$ $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{P}^{+}$513.2833, found $m / z 513.2869$.

$\left[2-\mathrm{H}_{2}\left[2 \mathrm{PF}_{6}\right]\right.$

Electronic Supplementary Material (ESI) for Chemical Communications

$\left[3-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$

29-diPCB-1.94

Electronic Supplementary Material (ESI) for Chemical Communications

Electronic Supplementary Material (ESI) for Chemical Communications

21-diPMB-1.94.

N	$\stackrel{\text { n }}{\text { n }}$	\bigcirc
$\xrightarrow[\square]{\square}$	$\stackrel{\text { m }}{\sim}$	

-•••••

$\left.4-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$

$\left[5-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

$\left[6-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$

diPHB-1H

$\left[6-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$

150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

Figure S1

Figure S1. HSQC spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ of the threadlike salt $[5-\mathrm{H}]\left[2 \mathrm{PF}_{6}\right]$.

The aromatic carbon signals of the threadlike salt $[5-\mathrm{H}]\left[2 \mathrm{PF}_{6}\right]$ were identified based on the $\mathrm{C}-\mathrm{F}$ couplings and cross signals appeared in ${ }^{13} \mathrm{C}$ NMR and HSQC spectra, respectively. The signals of the aliphatic protons were identified from their chemical shifts and cross signals appeared in HSQC spectra.

Figure S2

Figure S2. COSY spectrum [400 MHz, $\left.\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{CN}(1: 1), 298 \mathrm{~K}\right]$ of the complex $\left[\mathbf{1} \supset \cdot \mathbf{2}-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$, recorded after mixing the molecular cage $\mathbf{1}$ and the threadlike salt $\left[2-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$ at 298 K for 13 h .

Figure S3
NOESY of [1د•2- H_{2}][2PF ${ }_{6}$]

Figure S3. NOESY spectrum [400 MHz, $\left.\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{CN}(1: 1), 298 \mathrm{~K}\right]$ of the complex $\left[\mathbf{1} \supset \cdot \mathbf{2}-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$, recorded after mixing the molecular cage 1 and the threadlike salt $\left[2-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$ at 298 K for 13.5 h .

Assignment of Signals in ${ }^{1} \mathrm{H}$ NMR Spectra of the Complex $\left[1 \supset \cdot 2-H_{2}\right]\left[2 P_{6}\right]$ Based on Its 2D COSY and NOESY Spectra

From NOESY

$\mathrm{H}_{\mathrm{a}}(\delta=4.62) \rightarrow \mathrm{H}_{\beta}(\delta=7.74) \rightarrow \mathrm{H}_{\alpha}(\delta=7.63)$ and $-\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)-$ [protons of the
tri(ethylene glycol) chains of host $\mathbf{1} ; \delta=3.54-4.19]$
$\mathrm{H}_{\beta^{\prime}}(\delta=6.08) \rightarrow \mathrm{H}_{a^{\prime}}(\delta=6.64)$ and $\mathrm{H}_{\mathrm{a}^{\prime}} \quad[\delta=4.14-4.19$, overlapped with $-\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)-$]
H_{a} was the characteristic signal for benzylic protons adjacent to an ${ }^{+} \mathrm{NH}_{2}$ center threaded through the cavity of DB24C8.
$H_{\beta^{\prime}}$ was shielded strongly by the aromatic moiety of the molecular cage and shifted upfield significantly.

From COSY

$\mathrm{H}_{\beta}(\delta=7.74) \rightarrow \mathrm{H}_{\alpha}(\delta=7.63)$
$\mathrm{H}_{\beta^{\prime}}(\delta=6.08) \rightarrow \mathrm{H}_{\alpha^{\prime}}(\delta=6.64)$
$\mathrm{H}_{\mathrm{a}}(\delta=4.62) \rightarrow{ }^{+} \mathrm{NH}_{2}(\delta=7.05-7.18$, threaded $) \rightarrow \mathrm{H}_{\mathrm{b}}(\delta=1.59-1.67)$
${ }^{+} \mathrm{NH}_{2}(\delta=6.90-7.01$, face-to-face complexed $) \rightarrow \mathrm{H}_{\mathrm{a}^{\prime}}(\delta=4.14-4.19)$ and $\mathrm{H}_{\mathrm{b}^{\prime}}(\delta=$ 2.00-2.08)

The threaded ${ }^{+} \mathrm{NH}_{2}$ center may experience stronger $\left[{ }^{+} \mathrm{N}-\mathrm{H} \cdots \mathrm{O}\right.$] hydrogen bonding interactions, thereby shifting it further downfield relative to the face-to-face complexes one.
$\mathrm{H}_{\mathrm{b}}(\delta=1.59-1.67) \rightarrow \mathrm{H}_{\mathrm{c}}(\delta=0.87-0.97) \rightarrow \mathrm{H}_{\mathrm{d}}(\delta=-0.62$ to -0.50$) \rightarrow \mathrm{H}_{\mathrm{d}^{\prime}}(\delta=-0.44$ to -0.33$) \rightarrow \mathrm{H}_{\mathrm{c}^{\prime}}(\delta=-0.04$ to +0.11$) \rightarrow \mathrm{H}_{\mathrm{b}^{\prime}}(\delta=2.00-2.08)$

Figure S4

Figure S4. COSY spectrum [$\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{CN}(1: 1), 298 \mathrm{~K}\right]$ of the complex $\left[1 \supset \cdot 3-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$, recorded after mixing the molecular cage $\mathbf{1}$ and the threadlike salt $\left[3-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$ at 298 K for 3.3 days.

Figure S5 NOESY of $\left[1 \supset \cdot 3-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$

$\left[1 \supset \cdot 3-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$

Figure S5. NOESY spectrum [$\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{CN}(1: 1), 298 \mathrm{~K}\right]$ of the complex $\left[\mathbf{1} \supset \cdot \mathbf{3}-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$, recorded after mixing the molecular cage $\mathbf{1}$ and the threadlike salt $\left[3-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$ at 298 K for 3.3 days.

Assignment of Signals in ${ }^{1} \mathrm{H}$ NMR Spectra of the Complex

 $\left[1 \supset \cdot 3-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$ Based on Its 2D COSY and NOESY Spectra

 $\left[1 \supset \cdot 3-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$ Based on Its 2D COSY and NOESY Spectra}

From NOESY

$\mathrm{H}_{\mathrm{a}}(\delta=4.56) \rightarrow \mathrm{H}_{\beta}(\delta=7.66) \rightarrow \mathrm{H}_{\alpha}(\delta=7.28)$ and $-\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)-$ [protons of the
tri(ethylene glycol) chains of host $\mathbf{1} ; \delta=3.51-4.42$, overlapped with $\mathrm{H}_{\mathbf{a}^{\prime}}$]
$\mathrm{H}_{\alpha}(\delta=7.28) \rightarrow \mathrm{H}_{\mathrm{m}}(\delta=2.39)$; (so H_{m} ' was known)
H_{a} was the characteristic signal for benzylic protons adjacent to an ${ }^{+} \mathrm{NH}_{2}$ center threaded through the cavity of DB24C8.

From COSY

$\mathrm{H}_{\mathrm{a}}(\delta=4.56, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}) \rightarrow{ }^{+} \mathrm{NH}_{2}\left(\delta=6.74-7.03\right.$; overlapped with $\mathrm{H}_{\alpha^{\prime}}, \mathrm{H}_{\beta}$, and $\mathrm{H}_{\mathrm{Ar} 1-4)}$

From NOESY

$\mathrm{H}_{\mathrm{m}^{\prime}}(\delta=2.31) \rightarrow \mathrm{H}_{\alpha^{\prime}}(\delta=6.99)$

From COSY

$\mathrm{H}_{\alpha^{\prime}}(\delta=6.99) \rightarrow \mathrm{H}_{\beta^{\prime}}(\delta=6.89)$

From NOESY

$\mathrm{H}_{\beta^{\prime}}(\delta=6.89) \rightarrow \mathrm{H}_{\mathrm{a}^{\prime}}(\delta=4.56) \rightarrow \mathrm{H}_{\mathrm{b}^{\prime}}(\delta=2.04-2.22$, overlapped with signal for water)
$\mathrm{H}_{\alpha^{\prime}}$ and $\mathrm{H}_{\beta^{\prime}}$ were shielded strongly by the aromatic moiety of the molecular cage and shifted upfield significantly.

From COSY

$\mathrm{H}_{\mathrm{b}^{\prime}}(\delta=2.04-2.22$, overlapped with signal for water $) \rightarrow \mathrm{H}_{\mathrm{c}^{\prime}}(\delta=0.75-0.88) \rightarrow \mathrm{H}_{\mathrm{d}^{\prime}}(\delta$ $=-0.50$ to -0.36$) \rightarrow \mathrm{H}_{\mathrm{d}}(\delta=-0.63$ to -0.50$) \rightarrow \mathrm{H}_{\mathrm{c}}(\delta=1.49-1.55) \rightarrow \mathrm{H}_{\mathrm{b}}(\delta=$ 1.64-1.81; overlapped with the signals for the aliphatic protons of the molecular cage)

Figure S6
COSY of $\left[1 \supset \cdot 4-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$

$\left[1 \supset \cdot 4-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right.$]

Figure S6. COSY spectrum [$\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{CN}(1: 1), 298 \mathrm{~K}\right]$ of the complex $\left[\mathbf{1} \supset \cdot \mathbf{4}-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$, recorded after mixing the molecular cage 1 and the threadlike salt $\left[4-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$ at 298 K for 2.4 days.

Figure $\mathrm{S7}$
NOESY of $\left[1 \supset \cdot 4-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$

Figure S7. NOESY spectrum [400 MHz, $\left.\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{CN}(1: 1), 298 \mathrm{~K}\right]$ of the complex $\left[\mathbf{1} \supset \cdot \mathbf{4}-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$, recorded after mixing the molecular cage $\mathbf{1}$ and the threadlike salt $\left[4-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$ at 298 K for 2.4 days.

Assignment of Signals in ${ }^{1} \mathrm{H}$ NMR Spectra of the Complex $\left[1 \supset \cdot 4-H_{2}\right]\left[2 \mathrm{PF}_{6}\right]$ Based on Its 2D COSY and NOESY Spectra

From NOESY

$\mathrm{H}_{\mathrm{a}}(\delta=4.52) \rightarrow \mathrm{H}_{\beta}(\delta=7.73) \rightarrow \mathrm{H}_{\alpha}(\delta=7.00)$, and $-\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)-$ [protons of the tri(ethylene glycol) chains of host $\mathbf{1} ; \delta=3.50-4.40$]
$\mathrm{H}_{a}(\delta=7.00) \rightarrow \mathrm{H}_{\mathrm{m}}(\delta=3.84)$
$\mathrm{H}_{\mathrm{a}}(\delta=4.52, \mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}) \rightarrow \mathrm{H}_{\mathrm{b}}(\delta=1.57-1.66) \rightarrow \mathrm{H}_{\mathrm{c}}(\delta=0.73-0.88)$
H_{a} was the characteristic signal for benzylic protons adjacent to an ${ }^{+} \mathrm{NH}_{2}$ center threaded through the cavity of DB24C8.

From COSY

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{c}}(\delta=0.73-0.88) \rightarrow \mathrm{H}_{\mathrm{d}}(\delta=-0.67 \text { to }-0.52) \rightarrow \mathrm{H}_{\mathrm{d}^{\prime}}(\delta=-0.43 \text { to }-0.26) \rightarrow \mathrm{H}_{\mathrm{c}^{\prime}}(\delta= \\
& \quad 0.07-0.23) \rightarrow \mathrm{H}_{\mathrm{b}^{\prime}}(\delta=1.99-2.06)
\end{aligned}
$$

From NOESY

$\mathrm{H}_{\mathrm{b}^{\prime}}(\delta=1.99-2.06) \rightarrow \mathrm{H}_{\mathrm{a}^{\prime}}(\delta=4.16) \rightarrow \mathrm{H}_{\beta^{\prime}}(\delta=6.63)$

From COSY

$\mathrm{H}_{\beta^{\prime}}(\delta=6.63) \rightarrow \mathrm{H}_{\alpha^{\prime}}(\delta=6.44)$
$\mathrm{H}_{\alpha^{\prime}}$ and $\mathrm{H}_{\beta^{\prime}}$ were shielded strongly by the aromatic moiety of the molecular cage and shifted upfield significantly.

From NOESY

$\mathrm{H}_{\alpha^{\prime}}(\delta=6.44, \mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}) \rightarrow \mathrm{H}_{\mathrm{m}^{\prime}}(\delta=3.74)$
$\mathrm{H}_{\mathrm{m}^{\prime}}$ was shielded by the aromatic moiety of the molecular cage and shifted upfield to a greater extent than was H_{m}).

Figure S8

Figure S8. COSY spectrum [400 MHz, $\left.\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{CN}(1: 1), 298 \mathrm{~K}\right]$ of the complex $\left[\mathbf{1} \supset \cdot \mathbf{6}-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$, recorded after mixing the molecular cage $\mathbf{1}$ and the threadlike salt $\left[6-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$ at 298 K for 8 h .

Figure S9 NOESY of [1 $\left.\supset \cdot 6-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right.$]

Figure S9. NOESY spectrum [$\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{CN}(1: 1), 298 \mathrm{~K}\right]$ of the complex $\left[\mathbf{1} \supset \cdot \mathbf{6}-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$, recorded after mixing the molecular cage $\mathbf{1}$ and the threadlike salt $\left[6-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$ at 298 K for 8 h .

Assignment of Signals in ${ }^{\mathbf{1}} \mathrm{H}$ NMR Spectra of the Complex $\left[1 \supset \cdot 6-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$ Based on Its 2D COSY and NOESY Spectra

From NOESY

$\mathrm{H}_{\mathrm{a}}(\delta=4.59) \rightarrow \mathrm{H}_{\beta}(\delta=7.79) \rightarrow \mathrm{H}_{\alpha}\left(\delta=7.32-7.58\right.$, overlapped with $\mathrm{H}_{\alpha^{\prime}}, \mathrm{H}_{\beta^{\prime}}, \mathrm{H}_{\mathrm{m}}$, and H_{m}) and $-\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)-$ [protons of the tri(ethylene glycol) chains of host $\mathbf{1}$; $\delta=3.40-4.19]$
$\mathrm{H}_{\mathrm{a}}(\delta=4.59) \rightarrow \mathrm{H}_{\mathrm{b}}(\delta=1.75-1.81$; overlapped with the aliphatic signals of the molecular cage 1)
H_{a} was the characteristic signal for benzylic protons adjacent to an ${ }^{+} \mathrm{NH}_{2}$ center threaded through the cavity of DB24C8.

From COSY

$\mathrm{H}_{\mathrm{b}}(\delta=1.75-1.81$, overlapped with the aliphatic signals of the molecular cage $\mathbf{1}) \rightarrow$ $\mathrm{H}_{\mathrm{c}}(\delta=0.73-0.92) \rightarrow \mathrm{H}_{\mathrm{d}}(\delta=-0.44$ to -0.32$) \rightarrow \mathrm{H}_{\mathrm{d}^{\prime}}(\delta=-0.58$ to -0.44$) \rightarrow \mathrm{H}_{\mathrm{c}^{\prime}}(\delta$ $=0.07-0.20) \rightarrow \mathrm{H}_{\mathrm{b}^{\prime}}(\delta=1.86-1.92$, overlapped with the aliphatic signals of the molecular cage 1)

From NOESY

$\mathrm{H}_{\mathrm{b}^{\prime}}(\delta=1.86-1.92) \rightarrow{ }^{+} \mathrm{NH}_{2}(\delta=6.43-6.69) \rightarrow \mathrm{H}_{\mathrm{a}^{\prime}}[\delta=4.55-4.65$, overlapped with the tri(ethylene glycol) signals of the molecular cage 1$] \rightarrow \mathrm{H}_{\beta^{\prime}}(\delta=7.32-7.58$, overlapped with $\mathrm{H}_{\alpha}, \mathrm{H}_{\alpha^{\prime}}, \mathrm{H}_{\mathrm{m}}$, and $\mathrm{H}_{\mathrm{m}^{\prime}}$)
$\mathrm{H}_{\alpha^{\prime}}$ and $\mathrm{H}_{\beta^{\prime}}$ were shielded by the aromatic moiety of the molecular cage and shifted upfield.

Table S1. Kinetic data for threading of the face-to-face-complexed aromatic termini of $\left[\mathbf{1} \supset \cdot \mathbf{x}-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$ into the DB24C8-like opening of the molecular cage $\mathbf{1}$ to form completely threaded complexes [1 $\left.\supset \supset \mathbf{x}-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right.$]

Complex formed ${ }^{[\mathrm{ad]}}$	Terminal substituent	$\mathrm{k}\left(\mathrm{s}^{-1}\right)^{[\mathrm{b}, \mathrm{c}]}$	$\Delta \mathrm{G}^{\ddagger[\mathrm{cc,d]}}$ $\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$	$\Delta \mathrm{H}^{\ddagger[\mathrm{ec}]}$ $\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$	$\Delta \mathrm{S}^{\ddagger[\mathrm{ce]}}$ $\left(\mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$
$\left[\mathbf{1} \supset \supset \mathbf{2}-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$	Br	$(2.2 \pm 0.2) \times 10^{-7}$	26.5 ± 0.1	11.4 ± 6.1	-50.2 ± 19.6
$\left[\mathbf{1} \supset \supset \mathbf{3}-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$	CH_{3}	$(8.6 \pm 0.9) \times 10^{-8}$	27.1 ± 0.1	19.7 ± 0.8	-24.6 ± 2.6
$\left[\mathbf{1} \supset \supset \mathbf{4}-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$	OCH_{3}	$(1.4 \pm 0.1) \times 10^{-7}$	26.8 ± 0.1	18.3 ± 1.9	-28.6 ± 6.1
$\left[\mathbf{1} \supset \supset \mathbf{5}-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$	F	$(6.2 \pm 0.9) \times 10^{-6}$	24.5 ± 0.1	9.2 ± 3.9	-51.6 ± 12.6
$\left[\mathbf{1} \supset \supset \mathbf{6}-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right]$	H	$(1.7 \pm 0.3) \times 10^{-6}$	25.3 ± 0.1	20.3 ± 1.2	-16.6 ± 3.8

[a] Experiments were performed using an equimolar mixture (4.00 mM) of the molecular cage $\mathbf{1}$ and the threadlike salt. The 90% confidence limits for $k, \Delta G^{\ddagger}, \Delta H^{\ddagger}$ and ΔS^{\ddagger} were evaluated by the least-squarets method. [b] Value of k were obtained either from the slope of the straight line in the plot of $\ln \left(\left[\mathrm{A}_{0}\right] /\left[\mathrm{A}_{t}\right]\right)$ against t using the relationship of $\left.\ln \left(\left[\mathrm{A}_{0}\right] /\left[\mathrm{A}_{t}\right]\right)=k t\right\}$. [c] Calculated at 298 K . [d] Value of ΔG^{\ddagger} were calculated using the relationship $\Delta G^{\ddagger}=-R T \ln \left(k h / k_{\mathrm{B}} T\right)$, where R, h, and k_{B} correspond to the gas, Plank, and Boltzmann constants, respectively. [e] Value of ΔH^{\ddagger} and ΔS^{\ddagger} were obtained from the intercept and slope of the straight line in the plot of ΔG^{\ddagger} against T (using the relationship $\left.\Delta G^{\ddagger}=\Delta H^{\ddagger}-T \Delta S^{\ddagger}\right)$.

Experiments were performed using an equimolar (4 mM) mixture of molecular cage $\mathbf{1}$ and the threadlike salt in $\mathrm{CDCl}_{3}{ }^{[\mathrm{S}-\mathrm{a}]} / \mathrm{CD}_{3} \mathrm{CN}(1: 1)$ The rate constant (k) for the threading process were determined from the slope of the straight line in the plot of $\ln \left(\left[A_{0}\right] /\left[A_{t}\right]\right)$ against t, measured at five temperatures. The value of $\left[A_{0}\right]=\left[A_{\mathrm{t}}\right]+\left[P_{\mathrm{t}}\right]$ and $\left[A_{\mathrm{t}}\right]$ were determined from the reciprocal of the molar ratio of the face-to-face complex to the completely threaded pseudorotaxane in the solution, measured from the integrated signals in ${ }^{1} \mathrm{H}$ NMR spectra: [$1 / 4$ integral of H_{β} " $(4 \mathrm{H})+1 / 2$ integral of $\left.H_{\beta},(2 \mathrm{H})\right] /\left[1 / 2\right.$ integral of $\left.\mathrm{H}_{\beta},(2 \mathrm{H})\right]$. The value of $\Delta G^{\ddagger}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$ were calculated using the relationship

$$
\Delta G^{\ddagger}=-R \mathrm{~T} \ln \left(k h / k_{\mathrm{B}} \mathrm{~T}\right)
$$

where R, h and k_{B} correspond to the gas, Plank and Boltzmann constants, respectively. The value of $\Delta H^{\ddagger}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$ and $\Delta S^{\ddagger}\left(\mathrm{cal} \mathrm{mol}^{-1}\right)$ were obtained from the intercept and slope, respectively, of the straight lines in the plots of ΔG^{\ddagger} against T , using the relationship

$$
\Delta G^{\ddagger}=\Delta H^{\ddagger}-\mathrm{T} \Delta S^{\ddagger}
$$

[S-a] To avoid possible disruptive effects caused by Cl^{-}anion or by the decomposition of $\mathrm{PF}_{6}{ }^{-}$into PF_{5} and F^{-}in CDCl_{3}, the deuterated solvent used in kinetic experiments was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and distilled prior to performing these studies.

$$
\mathrm{X}=\mathrm{Br} \text { and }\left[\mathbf{1} \supset \supset \mathbf{2}-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right] \text { was the product formed. }
$$

In these experiments,. $\left[A_{\mathrm{t}}\right]$ and $\left[P_{\mathrm{t}}\right]$ were determined by integration of the signals at $\delta 7.73(\mathrm{~d}, J=8$ $\mathrm{Hz}, 2 \mathrm{H})$ and $\delta 7.86(\mathrm{~d}, J=5 \mathrm{~Hz}, 4 \mathrm{H})$, respectively.

$$
\mathrm{X}=\mathrm{CH}_{3} \text { and }\left[\mathbf{1} \supset \supset \mathbf{3}-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right] \text { was the product formed. }
$$

In these experiments.. $\left[\mathrm{A}_{\mathrm{t}}\right]$ and $\left[\mathrm{P}_{\mathrm{t}}\right]$ were determined by integration of the signals at $\delta 7.64(\mathrm{~d}, \mathrm{~J}=8$ $\mathrm{Hz}, 2 \mathrm{H})$ and $\delta 7.81(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H})$, respectively.

$\mathrm{k}=(4.6 \pm 1.1) \times 10^{-7}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=27.4 \pm 0.1\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$

$$
\mathrm{k}=(7.5 \pm 1.0) \times 10^{-7}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=27.6 \pm 0.1\left(\mathrm{kcal} \mathrm{~mol}^{-1}\right)
$$

$\mathrm{k}=(8.6 \pm 0.9) \times 10^{-8}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=27.1 \pm 0.1\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$

$\Delta H^{\ddagger}=$ intercept $=19.7 \pm 0.8\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$, $\Delta S^{\ddagger}=-$ slope $=-24.6 \pm 2.6\left(\mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$

$$
\mathrm{X}=\mathrm{OCH}_{3} \text { and }\left[\mathbf{1} \supset \supset \mathbf{4}-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right] \text { was the product formed. }
$$

In these experiments.. $\left[\mathrm{A}_{\mathrm{t}}\right]$ and $\left[\mathrm{P}_{\mathrm{t}}\right]$ were determined by integration of the signals at $\delta 7.70(\mathrm{~d}, J=9$ $\mathrm{Hz}, 2 \mathrm{H})$ and $\delta 7.86(\mathrm{~d}, J=9 \mathrm{~Hz}, 4 \mathrm{H})$, respectively.

$\mathrm{k}=(2.2 \pm 0.6) \times 10^{-7}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=27.0 \pm 0.1\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$

$\mathrm{k}=(5.9 \pm 0.6) \times 10^{-7}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=27.3 \pm 0.1\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$

$\mathrm{k}=(1.4 \pm 0.1) \times 10^{-7}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=26.8 \pm 0.1\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$

$\mathrm{k}=(1.1 \pm 0.1) \times 10^{-6}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=27.3 \pm 0.1\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$

$\mathrm{k}=(3.8 \pm 0.4) \times 10^{-7}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=27.1 \pm 0.1\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$

$\Delta H^{\ddagger}=$ intercept $=18.3 \pm 1.9\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$,
$\Delta S^{\ddagger}=-$ slope $=-28.6 \pm 6.1\left(\mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$

$$
\mathrm{X}=\mathrm{F} \text { and }\left[\mathbf{1} \supset \supset \mathbf{5}-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right] \text { was the product formed. }
$$

In these experiments,. $\left[\mathrm{A}_{\mathrm{t}}\right]$ and $\left[\mathrm{P}_{\mathrm{t}}\right]$ were determined by integration of the signals at $\delta 7.82(\mathrm{dd}, J=6$, $8 \mathrm{~Hz}, 2 \mathrm{H}$) and $\delta 7.96(\mathrm{dd}, J=6,8 \mathrm{~Hz}, 4 \mathrm{H})$, respectively.

$\mathrm{k}=(6.4 \pm 1.5) \times 10^{-6}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=24.9 \pm 0.1\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$

$$
\mathrm{k}=(8.5 \pm 0.7) \times 10^{-6}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=25.3 \pm 0.1\left(\mathrm{kcal} \mathrm{~mol}^{-1}\right)
$$

$\mathrm{k}=(1.3 \pm 0.2) \times 10^{-5}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=25.3 \pm 0.1\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$

$\mathrm{k}=(1.7 \pm 0.1) \times 10^{-5}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=25.6 \pm 0.1\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$

$\mathrm{k}=(6.2 \pm 0.9) \times 10^{-6}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=24.5 \pm 0.1\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$

$\Delta H^{\ddagger}=$ intercept $=9.2 \pm 3.9\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$,

$$
\Delta S^{\ddagger}=- \text { slope }=-51.6 \pm 12.6\left(\mathrm{cal} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)
$$

$$
\mathrm{X}=\mathrm{H} \text { and }\left[\mathbf{1} \supset \supset \mathbf{6}-\mathrm{H}_{2}\right]\left[2 \mathrm{PF}_{6}\right] \text { was the product formed. }
$$

In these experiments.. $\left[\mathrm{A}_{\mathrm{t}}\right]$ and $\left[\mathrm{P}_{\mathrm{t}}\right]$ were determined by integration of the signals at $\delta 7.79(\mathrm{~d}, J=7$ $\mathrm{Hz}, 2 \mathrm{H})$ and $\delta 7.96(\mathrm{~d}, J=7 \mathrm{~Hz}, 4 \mathrm{H})$, respectively.

$\mathrm{k}=(3.3 \pm 0.9) \times 10^{-6}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=25.3 \pm 0.1\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$

$\mathrm{k}=(9.8 \pm 0.6) \times 10^{-6}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=25.5 \pm 0.1\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$

$\mathrm{k}=(1.7 \pm 0.3) \times 10^{-6}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=25.3 \pm 0.1\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$

$\mathrm{k}=(1.6 \pm 0.3) \times 10^{-5}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=25.6 \pm 0.1\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$

$\mathrm{k}=(5.5 \pm 0.6) \times 10^{-6}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=25.4 \pm 0.1\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$

$\Delta H^{\ddagger}=$ intercept $=20.3 \pm 1.2\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$,
$\Delta S^{\ddagger}=-$ slope $=-16.6 \pm 3.8\left(\mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$

