Electronic Supplementary Information

Synthesis of Hierarchical Ag₂ZnGeO₄ Hollow Spheres for Enhanced Photocatalytic Property

Ning Zhang,^{a, b} Shuxin Ouyang,^b Tetsuya Kako,^{a, b} and Jinhua Ye *^{a, b,c}

^a Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan. Fax:

(+81)-29-860-4958; E-mail: Jinhua.Ye@nims.go.jp

^b Research Unit for Environmental Remediation Materials and International Center for Materials

Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki,

Tsukuba, Ibaraki, Japan.

^c TU-NIMS Joint Research Center, School of Materials Science and Engineering, Tianjin University,

92 Weijin Road, Nankai District, Tianjin, P. R. China.

Experimental Section

Materials: The Na₂GeO₃ powders were prepared by solid state reaction way that stoichiometric mixture of Na₂CO₃ and GeO₂ were heated at 900 °C for 10 h. The ZnAg₂GeO₄ were prepared by ions exchange in aqueous solution. In a typical process, 0.0025 mol Zn(CH₃COO)₂·2H₂O was dissolved in 50 mL deionized water to form a clear solution. 0.0025 mol as-prepared Na₂GeO₃ was dissolved in 50 mL deionized water to form a transparent colloidal suspension of Na₂GeO₃ hydrates. The Na₂GeO₃ hydrates colloidal suspension was added dropwise to the Zn(CH₃COO)₂ solution and white suspension was formed immediately. The suspension was stirred for about 1 min and then 100 mL AgNO₃ solution (100g L⁻¹) was added. After stirred for about 30 min at room temperature, the mixture was put into an oil bath reactor with magnetic stirring at 70°C for 2 to 12 hrs. After the reaction, the red precipitate was separated and washed by centrifugation and filtration with distilled water. Finally, the powders were dried at 70 °C for 4 h.

Photocatalytic Activity Test: A 300WXe arc lamp was employed as the light source of photocatalytic reactions. Before reaching the reactor, the irradiated light beam was passed through a UV-light cutoff filter (L42, $\lambda > 420$ nm) and a water filter (removing the infrared ray irradiation). The intensity of the light was about 9.5 mW/cm². About 0.3 g photocatalyst was suspended in 100 mL dye solution in a Pyrex glass reactor. The initial dye concentrations of these solutions were all about 16.0 mg/L. Before irradiation, the suspensions were magnetically stirred in the dark for about 20 min to ensure an adsorption-desorption equilibrium of dye on the sample surface. During irradiation, the reactor was located in a cooling water bath to maintain the solution temperature at 11-19°C. The intensity of incident light was measured by a spectroradiometer (Ushio, USR- 40, Japan).

Characterizations: X-ray diffraction patterns (XRD) were recorded by a RIGAKU Rint-2000 X-ray diffractometer equipped with graphite monochromatized Cu-K α radiation (λ =1.54178Å). Scanning Transmission Electron Microscopy (STEM), and energy-dispersive X-ray elemental mapping (EDS mapping) were performed with a JEOL 2100F field emission transmission electron microscope operated at 200 kV. Scanning electron microscopy (SEM) images and energy-dispersive X-ray spectroscopy (EDS) patterns were recorded with a JEOL 6700F field emission scanning electron microscopy. UV-visible diffuse reflectance spectrum was recorded with a Shimadzu UV-2500 Spectrophotometer. Brunauer-Emmett-Teller (BET) measurements were carried out in a BELSORP II Surface Area Analyzer.

Figures and Captions

Fig. S1 (a) XRD pattern of the Zn_2GeO_4 prepared at reaction time of 1 min and 12 h; (b) SEM image of the Zn_2GeO_4 at reaction time of 1 min in large scale; (c) EDS pattern of Zn_2GeO_4 at reaction time of 1 min taken from the red square in (b); the set in (c) is the atom percentage of O, Zn, and Ge.

Descriptions: The XRD pattern in Fig. S1a shows that the Zn_2GeO_4 prepared at 1 min is amorphous phase, which can be converted to the well crystallized Zn_2GeO_4 with elongation of reaction time to 12 h at room temperature. Fig. S1b is the SEM image of the Zn_2GeO_4 prepared at 1 min, which reflects the powders in large scale.

The EDS spectrum in Fig. S1 c is taken from the red square marked in Fig. S1b, which shows that the ratio among the elements of Zn, Ge, and O is about 2: 1: 4.

Fig. S2 XRD patterns of the product prepared by 0, 20, 50, and 100 gL^{-1} AgNO₃ for 12 h.

Fig. S3 XRD patterns of the product prepared by $100 \text{ gL}^{-1} \text{ AgNO}_3$ for (a) 2 h and (b) 12 h.

Fig. S4 The SEM image of the Ag_2ZnGeO_4 product prepared by 100 gL⁻¹ AgNO₃ for 2 h.

Fig. S5 The SEM image of observed core-shell structure in the product prepared by 100 gL^{-1}

AgNO₃ for 12 h.

Fig. S6 UV-visible diffuse reflectance spectrum of hierarchichal Ag_2ZnGeO_4 and referenced Ag_2ZnGeO_4 . Insets are the calculation diagram of their band-gaps.

Samples	Element Content (percentages			BET surface areas
	among Ag, Zn, and Ge, at. %)			
Ag ₂ ZnGeO ₄ (12 h)	49	24	26	$1.3 \text{ m}^2\text{g}^{-1}$
Ref-Ag ₂ ZnGeO ₄	50	25	24	$0.06 \text{ m}^2\text{g}^{-1}$

Table S1 Characterizations of the Ag₂ZnGeO₄ samples

Descriptions: To find out composition difference between the Ag_2ZnGeO_4 hollow spheres and referenced Ag_2ZnGeO_4 , the elemental composition was analyzed by ICP-OES, which was shown in Table 1. The ratio of Ag/Zn for the Ag_2ZnGeO_4 hollow spheres and referenced Ag_2ZnGeO_4 was about 2.04 and 2.00 respectively.

The elemental substitution of Zn by Ag caused the decrease of band gaps from ~4.6 eV of Zn_2GeO_4 precursor to ~2.3 eV of $ZnAg_2GeO_4$ material. The bottom of conduction band is composed of hybridized orbitals of Ag 5*s*5*p*, O 2*p*, and Ge 4*s*4*p*.^[1] The valence band is composed orbitals of Ag 4*d* and O 2*p*.^[1] The larger Ag/Zn ratio contribute to the lower bottom of conduction band and subsequently induced the narrower band gap for the hierarchical Ag₂ZnGeO₄ hollow spheres.

Fig. S7 The nitrogen adsorption-desorption isotherms of (upside) the hierarchical Ag_2ZnGeO_4 hollow spheres prepared at 12 h and (bottom) referenced bulk Ag_2ZnGeO_4 show that the BET surface areas are about 1.3 m²g⁻¹ and 0.06 m²g⁻¹, respectivly.

Fig. S8 XRD pattern of (a) Ag_2ZnGeO_4 product prepared by 100 gL⁻¹ AgNO₃ for 12 h and (b) the

ref-Ag₂ZnGeO₄.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Refernce

[1] X. Li, S. Ouyang, N. Kikugawa and J. Ye, Appl. Catal. A-General, 2008, 334, 51.