Electronic Supplementary Information:

Au₂₅ Nanocluster-Catalyzed Ullmann-Type Homocoupling Reaction of Aryl Iodides

Gao Li, ^a Chao Liu, ^a Yu Lei ^b and Rongchao Jin*^a

^a Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA;

^b Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue, ES/362, Argonne, IL,

60439, USA.

*E-mail: rongchao@andrew.cmu.edu

1. Experimental

Synthesis of $Au_{25}(SR)_{18}$ ($R=CH_2CH_2Ph$) nanoclusters. HAuCl₄·3H₂O (0.2 mmol,

dissolved in 5 ml nanopure water) and tetraoctylammonium bromide (TOAB, 0.24 mmol,

dissolved in 10 ml toluene) were combined in a 25 ml tri-neck round bottom flask. The

solution was vigorously stirred for 15 min, and the aqueous was then removed. Thiol

(HSCH₂CH₂Ph, 0.6 mmol) was added to the flask, and stirring was reduced to a very low

speed (50 rpm). After the solution turned to clear (2 h), NaBH₄ (2 mmol, in 5 ml cold

aqueous solution) was rapidly added all at once. After aging overnight, methanol was added

to separate the nanocluster product from TOAB and other side-products. The Au₂₅(SR)₁₈

nanoclusters were collected after removing the supernatant.

Preparation of Au₂₅(SR)₁₈/oxide catalyst. 1 mg Au₂₅ clusters were dissolved in 5 ml

dichloromethane (DCM), and 100 mg oxide were added. After stirring for 12h at r.t., the

supernatant became faint yellow. The Au₂₅/oxides catalysts were collected by centrifugation

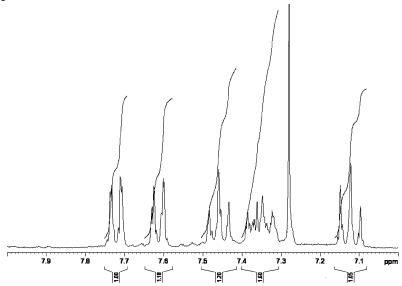
and dried in vacuum at r.t.

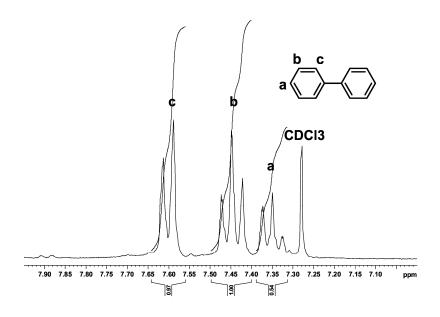
Procedure for homocoupling reaction. In a typical homocoupling reaction, iodobenzene

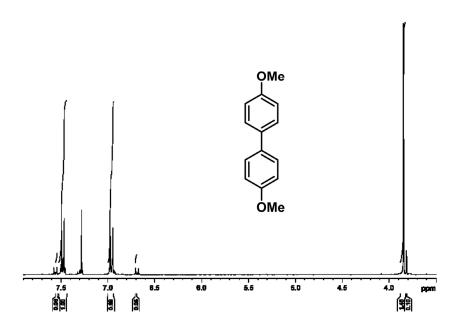
(0.2 mmol), base (K₃PO₄ or K₂CO₃, 0.6 mmol), Au₂₅/oxide (100 mg) and 1 mL solvent were

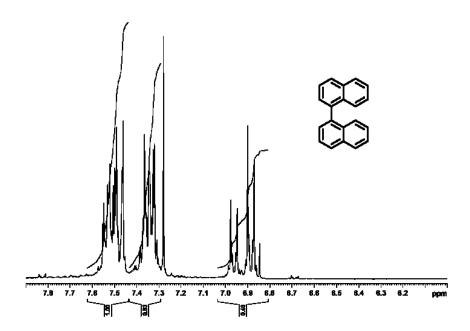
added to a 6 mL round-bottom flask. The mixture was stirred under a N2 atmosphere at 130

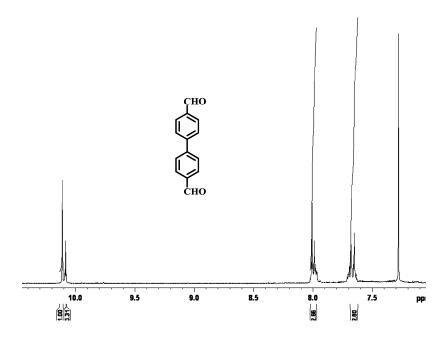
°C for 48h as indicated in Table 1. After the reaction, 5 mL water was added to the flask,

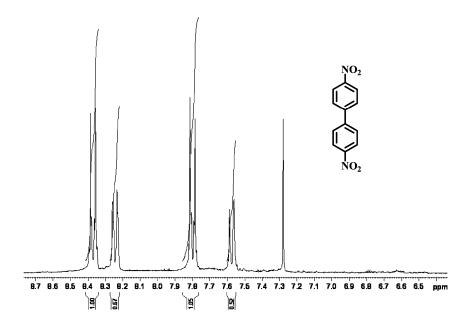

followed by extraction with ethyl acetate (EtOAc). The catalytic reaction product was

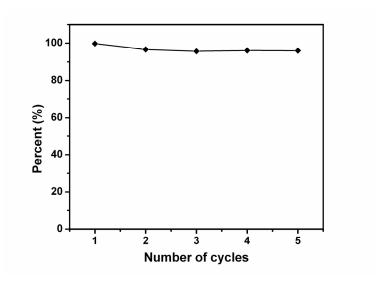

obtained after removal of EtOAc in the extracted solution. The conversion of iodobenzene


S1


was determined by ¹H NMR (300 MHz) analysis. For the recyclability test, the Au₂₅/oxide catalyst was separated by centrifugation, washed with water to remove the base and then further washed with EtOAc, and dried in vacuum at r.t. prior to its re-use in the next round of reaction.


2. ¹H NMR spectra:





3. Recyclability of the $Au_{25}(SR)_{18}/CeO_2$ catalysts. The conversion of iodobenzene is shown again the cycle number:

