Supporting Information for

Highly Enantioselective Friedel–Crafts Alkylation of Indole and Pyrrole With β, γ-Unsaturated α-Ketoester Catalyzed by Heteroarylidene-tethered Bis(oxazoline) Copper Complexes

Lei Liu, Hongli Ma, Yumei Xiao, Fengpei Du, Zhaohai Qin, Nan Li and Bin Fu*

Department of Applied Chemistry, China Agricultural University Beijing 100193, P. R. China fubinchem@cau.edu.cn

Contents of supporting information

1 The F-C alkylation procedures and spectroscopic datas of indoles and pyrrole with β,γ	unsaturated
α-ketoesters	S2
2. HPLC chromatograms for indole adducts	
2. HPLC chromatograms for pyrrole adducts	
3. ¹ HNMR and ¹³ CNMR spectra for F-C alkylation adducts	
4. The structure of pyrrole adduct 8e determined by X-ray analysis	S84

Experimental Section

NMR spectra were recorded with a Bruker Avance DPX300 spectrometer with tetramethylsilane as the internal standard. Infrared spectra were obtained on a Nicolet AVATAR 330 FT-IR spectrometer. Mass spectra were obtained on Bruker APEX II FT-ICRMS mass spectrometer. Optical rotations were measured on a Perkin–Elmer 341 LC polarimeter. The enantiomeric excesses of (*R*)- and (*S*)-enantiomer were determined by HPLC analysis over a chiral column (Daicel Chiralcel OD-H, AD-H and AS-H; eluted with hexane-isopropyl alcohol; UV detector). The absolute configuration of the major enantiomer was assigned by comparison with literatures or by XRA analysis. Solvents were purified and dried by standard procedures.

The F-C alkylation of indole derivatives with β, γ-unsaturated α-keto butyric acid methyl esters

To a Schlenk tube $Cu(OTf)_2$ (0.0125mmol) and ligand **3a** (0.014mmol) were added in a solvent of dichloromethane (1.2 mL) under N₂, after the solution was stirred for 2 h at room temperature, γ -phenyl β , γ -unsaturated α -keto butyric methyl ester (0.25 mmol) was added, subsequently, the resulting mixture was cooled to -78 °C and stirred for 15 min, indoles (0.25 mmol) was finally added. After stirring for 10 min to 10 hours at -78 °C. the reactant was directly purified by flash column chromatography on silica gel (eluted with ethyl acetate/petroleum ether (1/4 or 1/3, v/v) to afford the desired indole product.

The F-C alkylation of pyrrole with β , γ -unsaturated α -keto butyric acid methyl esters

To a Schlenk tube Cu(OTf)₂ (0.0125mmol) and ligand **3a** (0.014mmol) were added in a solvent of dichloromethane (1.2 mL) under N₂, after the solution was stirred for 2 h at room temperature, γ -phenyl β , γ -unsaturated α -keto butyric acid methyl ester (0.25mmol) was added. The resulting mixture was cooled to -78 °C and stirred for 15 min, pyrrole (0.75mmol) was finally added. After stirring for 5~30 min at -78 °C, the reactant was directly purified by flash column chromatography on silica gel (eluted with ethyl acetate/petroleum ether (1/5 or 1/3, v/v) to afford the desired pyrrole product.

(+)-4-(1H-Indol-3-yl)-2-oxo-4-phenylbutyric acid methyl ester

White solid; 99% yield; Mp:95-97 °C; $[\alpha]^{23}_{D} = +17.8$ (c = 0.42, CHCl₃); 99.7 ee%, determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (minor) = 13.41 min, t

(major)= 15.84 min]; ¹H NMR (300 MHz, CDCl₃): δ 8.00 (br s, 1H), 7.42 (d, *J*=7.9 Hz, 1H), 7.33-7.23 (m, 5H), 7.19-7.12 (m, 2H), 7.04-7.00 (m, 2H), 4.91 (t, *J* = 7.5 Hz, 1H), 3.75 (s, 3H, CH₃), 3.69 (dd, *J* = 7.4, 17.0 Hz, 1H), 3.60 (dd, *J* = 7.8, 17.0 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 192.5, 161.2, 143.0, 136.4, 128.4, 127.6, 126.5, 126.3, 122.2, 121.4, 119.4, 119.3, 118.2, 111.0, 52.8, 45.5, 37.6 ppm. ESI-HRMS Calcd for C₁₉H₁₈NO₃ [M + H]⁺ 308.12812, Found: 308.12808.

(+)-4-(1H-Indol-3-yl)-2-oxo-4-(2-chlorophenyl)butyric acid methyl ester

White solid; 95% yield; Mp:108-109 °C; $[\alpha]^{23}{}_{D} = +98.6$ (c = 0.43, CH₂Cl₂); H = $(c_{0}, c_{0}, c_$

(+)-4-(1H-Indol-3-yl)-2-oxo-4-(3-bromophenyl)butyric acid methyl ester

Br White solid; 99%yield; Mp: 109-111 °C; $[α]^{23}_D = +28.0$ (c = 0.30, Mite solid; 99%yield; Mp: 109-111 °C; $[α]^{23}_D = +28.0$ (c = 0.30, CH₂Cl₂); 99.7% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (minor) = 10.96 min, t (major)= 12.09 min]; ¹H NMR (300 MHz, CDCl₃): δ 8.06 (br s, 1H), 7.46-7.45 (m, 1H), 7.40 (d, J = 7.9 Hz, 1H), 7.33-7.24 (m, 3H), 7.16-7.01 (m, 4H), 4.88 (t, J = 7.5 Hz, 1H), 3.78 (s, 3H), 3.67 (dd, J = 7.2, 17.4 Hz, 1H), 3.56 (dd, J = 7.8, 17.4 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 192.1, 161.2, 145.7, 136.5, 130.8, 130.1, 129.8, 126.5, 126.2, 122.6, 122.5, 121.5, 119.7, 119.2, 117.6, 111.2, 53.0, 45.4, 37.3 ppm. ESI-HRMS Calcd for $C_{19}H_{17}BrNO_3 [M + H]^+$ 386.03863, Found: 386.03899.

(+)-4-(1H-Indol-3-yl)-2-oxo-4-(2, 4-dichlorophenyl)butyric acid methyl ester

White solid; 95%yield; Mp:102-103 °C; $[\alpha]^{23}_{D}$ = +86.7 (c = 0.26, CH₂Cl₂); 99.9% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (minor) = 8.96 min, t (major)= 12.68 min]; ¹H NMR (300 MHz, CDCl₃): δ 8.08 (br s, 1H),

7.40-7.30 (m, 3H), 7.19-7.01 (m, 5H), 5.37 (dd, J = 6.5, 8.6 Hz, 1H), 3.80 (s, 3H, OCH₃), 3.71 (dd, J = 8.6, 17.1 Hz, 1H), 3.43 (dd, J = 6.3, 17.1 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 191.8, 161.2, 139.2, 136.5, 134.1, 132.9, 129.9, 129.5, 127.3, 126.3, 122.5, 122.0, 119.8, 119.2, 116.4, 111.2, 53.0, 44.3, 33.8 ppm. ESI-HRMS Calcd for C₁₉H₁₆Cl₂NO₃ [M + H]⁺ 376.05018, Found: 376.04999.

(+)-4-(1H-Indol-3-yl)-2-oxo-4-(4-fluorophenyl)butyric acid methyl ester

White solid; 99% yield; Mp: 95-96 °C; $[\alpha]^{23}_{D} = +58.3$ (c = 0.36, CH₂Cl₂); 99.8% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t (minor) = 12.04 min, t (major)= 16.99 min]; ¹H NMR (300 MHz, CDCl₃): δ 8.03 (br s, 1H),

7.39-7.25 (m, 4H), 7.19-7.13 (m, 1H), 7.05-6.91 (m, 4H), 4.90 (t, J = 7.5 Hz, 1H), 3.78 (s, 3H, OCH₃), 3.67 (dd, J = 7.1, 17.1 Hz, 1H), 3.57 (dd, J = 8.0, 17.1 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 192.4, 163.2, 161.3, 159.9, 138.9, 138.8, 136.6, 129.3, 129.2, 126.3, 122.4, 121.4, 119.6, 119.3, 118.2, 115.4, 115.2, 111.2, 52.9, 45.7, 37.0 ppm. ESI-HRMS Calcd for C₁₉H₁₇FNO₃ [M + H]⁺ 326.11870, Found: 326.11853.

(+)-4-(1H-Indol-3-yl)-2-oxo-4-(4-bromophenyl)butyric acid methyl ester

White solid; 90%yield; Mp: 143-145 °C; $[\alpha]^{23}{}_D = +10.6$ (c = 0.34, CHCl₃); 99.1% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (minor) = 13.29 min, t (major)= 21.68 min]; ¹H NMR (300 MHz, CDCl₃): δ 8.04 (br s, 1H), 7.39-7.31 (m, 4H), 7.25-7.14 (m, 3H), 7.05-7.02 (m, 2H), 4.87 (t, *J* = 7.4 Hz, 1H), 3.78 (s, 3H, OCH₃), 3.67 (dd, *J* = 7.1, 17.3 Hz, 1H), 3.56 (dd, *J* = 8.0, 17.4 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 192.1, 161.1, 142.2, 136.5, 131.5, 129.4, 126.1, 122.3, 121.3, 120.3, 119.5, 119.1, 117.6, 111.1, 52.9, 45.3, 37.0 ppm. ESI-HRMS Calcd for C₁₉H₁₇BrNO₃ [M + H]⁺ 386.03863, Found: 386.03878.

(+)-4-(1H-Indol-3-yl)-2-oxo-4-(4-cyanophenyl)butyric acid methyl ester

White solid; 94%yield; Mp: 168-169°C; $[\alpha]^{23}_{D} = +16.0$ (c = 0.25, CH₂Cl₂); 99.7% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (minor) = 22.09 min, t (major)= 32.57 min]; ¹H NMR (300 MHz, CDCl₃): δ 8.14 (br s, 1H),

7.56-7.52 (m, 2H), 7.45-7.42 (m, 2H), 7.36-7.31 (m, 2H), 7.18-7.15 (m, 1H), 7.07-7.01 (m, 2H), 4.96 (t, J = 7.5 Hz, 1H), 3.80 (s, 3H, OCH₃), 3.71 (dd, J = 6.9, 17.6 Hz, 1H), 3.60 (dd, J = 8.0, 17.6 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 191.7, 161.1, 148.8, 136.6, 132.4, 128.6, 126.0, 122.7, 121.5, 119.9, 119.0, 118.8, 116.9, 111.3, 110.5, 53.1, 45.0, 37.6 ppm. ESI-HRMS Calcd for C₂₀H₁₇N₂O₃ [M + H]⁺ 333.12337, Found: 333.12335.

(+)-4-(1H-Indol-3-yl)-2-oxo-4-(4-nitrophenyl)butyric acid methyl ester

^{O₂N} ^{O₂N} ^{O₂N} ^{O₂N} ^{O₂N</sub> ^{O₂N} ^{O₂N</sub> ^{O₂N} ^{O₂N} ^{O₂N</sub> ^{O₂N} ^{O₂N</sub> ^{O₂N} ^{O₂N</sub> ^{O₂N} ^{O₂N</sub> ^{O₂N} ^{O₂N</sub> ^O}}}}}}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>

3.74 (dd, J = 6.9, 17.8 Hz, 1H), 3.63 (dd, J = 8.0, 17.8 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 191.7, 161.0, 151.0, 146.6, 136.6, 128.7, 125.9, 123.8, 122.6, 121.6, 119.8, 118.9, 116.7, 111.4, 53.1, 45.0, 37.3 ppm. ESI-HRMS Calcd for C₁₉H₁₇N₂O₅ [M + H]⁺ 353.11320, Found: 353.11328.

(+)-4-(1H-Indol-3-yl)-2-oxo-4-(4-trifluoromethyl)butyric acid methyl ester

 F_3C F_3C CO_2Me H

White solid; 95%yield; Mp:130-131 °C; $[\alpha]^{23}_{D} = +37.5$ (c = 0.34, CH₂Cl₂); 99.6% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t (minor) = 8.92 min, t (major)= 12.56 min]; ¹H NMR (300 MHz, CDCl₃): δ 8.08 (br s, 1H), 7.51

(d, J = 8.3 Hz, 2H), 7.44 (d, J = 8.2 Hz, 2H), 7.39-7.31 (m, 2H), 7.17 (dd, J = 1.1, 7.1 Hz, 1H), 7.06-7.01 (m, 2H), 4.97 (t, J = 7.5 Hz, 1H), 3.78 (s, 3H OCH₃), 3.71 (dd, J = 7.0, 17.4 Hz, 1H), 3.61 (dd, J = 7.9, 17.4 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 192.0, 161.1, 147.3, 136.6, 128.9(q, J = 32.5 Hz), 128.1, 126.1, 125.5 (q, J = 3.8 Hz), 124.1 (q, J = 272.0 Hz), 122.5, 121.5, 119.7, 119.1, 117.4, 111.3, 53.0, 45.3, 37.4 ppm. ESI-HRMS Calcd for C₂₀H₁₇F₃NO₃ [M + H]⁺ 376.11550, Found: 376.11554.

(+)-4-(1H-Indol-3-yl)-2-oxo-4-(3-methylphenyl)butyric acid methyl ester

Light yellow solid; 89% yield; Mp: 98-100 °C; $[\alpha]^{23}_{D}$ = +33.3 (c = 0.60, CH₂Cl₂); 99.3% ee, determined by HPLC analysis [Daicel Chiralcel AS-H column, *n*-hexane/*i*-PrOH = 85:15, 1.0 mL/min, 220 nm; t (minor) = 13.793min, t (major)= 14.71 min]; ¹H NMR (300 MHz, CDCl₃): δ 8.00 (br s, 1H), 7.44 (dd, J = 0.9, 7.9 Hz, 1H), 7.30-7.27 (m, 1H), 7.14-7.11 (m, 4H), 7.05-6.98 (m, 3H), 4.87 (t, J =7.5 Hz, 1H), 3.74 (s, 3H, OCH₃), 3.67 (dd, J = 7.4, 17.0 Hz, 1H), 3.57 (dd, J = 7.7, 17.0 Hz,

1H), 2.27(s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 192.7, 161.3, 143.1, 138.0, 136.5, 128.5, 128.4, 127.3, 126.4, 124.7, 122.2, 121.5, 119.5, 119.4, 118.3, 111.1, 52.8, 45.7, 37.6, 21.4 ppm. ESI-HRMS Calcd for C₂₀H₂₀NO₃ [M + H]⁺ 322.14377, Found: 322.14375.

(+)-4-(1H-Indol-3-yl)-2-oxo-4-(4-methylphenyl)butyric acid methyl ester

Light yellow solid; 92% yield; Mp:114-116 °C; $[\alpha]^{23}{}_{D} = +130.6$ (c = 0.44, CH₂Cl₂); 99.2% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (minor) = 13.81 min, t (major)= 18.09 min]; ¹H NMR (300 MHz, CDCl₃): δ 7.98

(br s, 1H), 7.42 (d, J = 7.9 Hz, 1H), 7.28 (d, J = 8.1 Hz, 1H), 7.22-7.19 (m, 2H), 7.16-7.11 (m, 1H), 7.07-6.97 (m, 4H), 4.87 (t, J = 7.6 Hz, 1H), 3.74 (s, 3H, OCH₃), 3.66 (dd, J = 7.3,

16.9 Hz, 1H), 3.57 (dd, J = 7.9, 16.9 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 192.7, 161.3, 140.1, 136.5, 136.1, 129.2, 127.6, 126.4, 122.2, 121.4, 119.5, 119.4, 118.5, 111.1, 52.8, 45.7, 37.3, 20.9 ppm. ESI-HRMS Calcd for C₂₀H₂₀NO₃ [M + H]⁺ 322.14377, Found: 322.14376.

(+)-4-(1H-Indol-3-yl)-2-oxo-4-(4-methoxyphenyl)butyric acid methyl ester

White solid; 95%yield; Mp:111-112°C; $[\alpha]^{23}_{D} = +32.0$ (c = 0.47, CH₂Cl₂); 94% ee, determined by HPLC analysis [Daicel Chiralcel AS-H column, *n*-hexane/*i*-PrOH = 85:15, 1.0 mL/min, 220 nm; t (minor) = 26.34 min, t (major)= 33.62 min]; ¹H NMR (300 MHz, CDCl₃): δ 8.00 (br s, 1H), 7.41

(d, J = 7.5 Hz, 1H), 7.30 (d, J = 5.1 Hz, 1H), 7.24-7.20 (m, 2H), 7.14 (dt, J = 1.1, 8.1 Hz, 1H), 7.03 (dd, J = 1.0, 8.0 Hz, 1H), 6.99 (d, J = 2.1 Hz, 1H), 6.82-6.78 (m, 2H), 4.87 (t, J = 7.6 Hz, 1H), 3.76 (s, 3H), 3.74 (s, 3H, OCH₃), 3.65 (dd, J = 7.1, 16.9 Hz, 1H), 3.56 (dd, J = 8.0, 16.9 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 192.7, 161.3, 158.2, 136.6, 135.3, 128.7, 126.4, 122.3, 121.4, 119.5, 119.4, 118.7, 113.9, 111.1, 55.2, 52.9, 45.8, 37.0 ppm. ESI-HRMS Calcd for C₂₀H₂₀NO₄ [M + H]⁺ 338.13868, Found: 338.13892.

(+)-4-(1H-5-Methylindol-3-yl)-2-oxo-4-phenylbutyric acid methyl ester

Light yellow solid; 90% yield; Mp: 118-120 °C; $[\alpha]^{23}_{D} = +20.90$ (c = 0.48, $\sim O^{-CO_2Me}$ CH₂Cl₂); 99.6% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (minor)

= 9.82 min, t (major)= 13.25 min]; ¹H NMR (300 MHz, CDCl₃): δ 7.90 (br s, 1H), 7.34-7.16 (m, 7H), 6.98-6.93 (m, 2H), 4.88 (t, *J* = 7.6 Hz, 1H), 3.75 (s, 3H, OCH₃), 3.66 (dd, *J* = 7.3, 17.0 Hz, 1H), 3.58 (dd, *J* = 7.2, 16.3 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 192.6, 161.3, 143.2, 134.9, 128.7, 128.5, 127.7, 126.6, 126.5, 123.9, 121.7, 118.9, 117.6, 110.8, 52.8, 45.7, 37.7, 21.5 ppm. ESI-HRMS Calcd for C₂₀H₂₀NO₃ [M + H]⁺ 322.14377, Found: 322.14362.

(+)-4-(1H-7-Methylindol-3-yl)-2-oxo-4-phenylbutyric acid methyl ester

Light yellow solid; 92%yield; Mp:89-90 °C; $[\alpha]^{23}_{D} = +58.90$ (c = 0.29, CH₂Cl₂); 97% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (minor) = 8.39 min, t (major)= 11.14 min]; ¹H NMR (300 MHz, CDCl₃): δ 7.93 (br s, 1H), 7.33-7.15 (m, 6H), 7.01-6.93 (m, 3H), 4.90 (t, *J* = 7.5 Hz, 1H), 3.75 (s, 3H, OCH₃), 3.68 (dd, *J* = 7.4, 17.0 Hz, 1H), 3.59 (dd, *J* = 7.8, 17.0 Hz, 1H), 2.42 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ

192.7, 161.4, 143.3, 136.2, 128.5, 127.8, 126.6, 126.0, 122.8, 121.3, 120.3, 119.8, 118.8, 117.1, 52.9, 45.7, 37.9, 16.5 ppm. ESI-HRMS Calcd for $C_{20}H_{20}NO_3 [M + H]^+$ 322.14377, Found: 322.14375.

(-)-4-(1H-5-Methoxyindol-3-yl)-2-oxo-4-phenylbutyric acid methyl ester

Light yellow oil; 94%yield; $[\alpha]^{23}_{D}$ = -22.0 (c = 0.35, CHCl₃); 99% ee, MeO determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (minor) = 14.983 min, t (major)= 22.635 min]; ¹H NMR (300 MHz, CDCl₃): δ 7.95 (br s, 1H), 7.33-7.17 (m, 6H), 6.97 (d, *J* = 2.1 Hz, 1H), 6.82-6.78 (m, 2H), 4.86 (t, *J* = 7.5 Hz, 1H), 3.76 (s, 3H), 3.74 (s, 3H, OCH₃), 3.67 (dd, *J* = 7.4, 17.1 Hz, 1H), 3.58 (dd, *J* = 7.8, 17.0 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 192.6, 161.3, 153.8, 143.1, 131.7, 128.5, 127.7, 126.8, 126.6, 122.2, 118.0, 112.3, 111.8, 101.4, 55.8, 52.9, 45.6, 37.7 ppm. ESI-HRMS Calcd for C₂₀H₂₀NO₄ [M + H]⁺ 338.13868, Found: 338.13881.

(-)-4-(1H-5-Chloroindol-3-yl)-2-oxo-4-phenylbutyric acid methyl ester

White solid; 90%yield; Mp:105-106 °C; $[\alpha]^{23}_{D} = -11.4$ (c = 0.44, CHCl₃); 98% ee, determined by HPLC analysis [Daicel Chiralcel OJ-H column, n-hexane/i-PrOH = 70:30, 0.9 mL/min, 220 nm; t (minor) = 62.41 min, t (major)= 164.07 min]; ¹H NMR (300 MHz, CDCl₃): δ 8.08 (br s, 1H), 7.37 (d, J = 1.9 Hz, 1H), 7.32-7.16 (m, 6H), 7.10-7.04 (m, 2H), 4.85 (t, J = 7.5 Hz, 1H), 3.78 (s, 3H, OCH₃), 3.65 (dd, J = 7.5, 17.1 Hz, 1H), 3.57 (dd, J = 7.9, 17.4, Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 192.4, 161.2, 142.7, 134.9, 128.6, 127.6, 127.5, 126.8, 125.3, 122.8, 122.7, 118.8, 118.1, 112.2, 53.0, 45.6, 37.5 ppm. ESI-HRMS Calcd for C₁₉H₁₇ClNO₃ [M + H]⁺ 342.08915, Found: 342.08910.

(+)-4-(1H-6-Chloroindol-3-yl)-2-oxo-4-phenylbutyric acid methyl ester

White solid; 90% yield; Mp:164-165 °C; $[\alpha]^{23}_{D} = +14.5$ (c = 0.34, H^{-1} CHCl₃); 99.5% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t (major) = 15.51 min, t (minor)= 18.51 min]; ¹H NMR (300 MHz, CDCl₃): δ 8.04 (br s, 1H), 7.29-7.17 (m, 7H), 7.01-6.95 (m, 2H), 4.86 (t, *J* = 7.5 Hz, 1H), 3.77 (s, 3H, OCH₃), 3.66 (dd, *J* = 7.5, 17.1 Hz, 1H), 3.56 (dd, *J* = 7.6, 17.0 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 192.5, 161.3, 142.9, 136.9, 128.6, 128.3, 127.7, 126.7, 125.0, 122.1, 120.3, 120.2, 118.5, 111.1, 53.0, 45.5, 37.6 ppm. ESI-HRMS Calcd for C₁₉H₁₇ClNO₃ [M + H]⁺ 342.08915, Found: 342.08916.

(+)-4-(1H-6-Fluoroindol-3-yl)-2-oxo-4-phenylbutyric acid methyl ester

White solid; 86% yield; Mp.121-122 °C; $[\alpha]^{23}_{D} = +49.0$ (c = 0.29, $F = \prod_{H}^{CO_2Me} CH_2Cl_2$); 99.2% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 85:15, 0.5 mL/min, 220 nm; t (minor) = 38.27 min, t (major)= 39.85 min]; ¹H NMR (300 MHz, CDCl_3): δ 8.03 (br s, 1H), 7.30-7.15 (m, 7H), 6.99-6.95 (m, 2H), 6.77 (dt, J = 2.1, 9.5 Hz, 1H), 4.87 (t, J = 7.5 Hz, 1H), 3.77 (s, 3H, OCH₃), 3.66 (dd, J = 7.5, 17.0 Hz, 1H), 3.56 (dd, J = 7.6, 17.0 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 192.5, 161.7, 161.3, 158.5, 143.0, 136.6, 136.4, 128.6, 127.7, 126.7, 123.0, 121.7, 120.2, 120.1, 118.5, 108.5, 108.2, 97.6, 97.2, 52.9, 45.6, 37.7 ppm. ESI-HRMS Calcd for C₁₉H₁₇FNO₃ [M + H]⁺ 326.11870, Found: 326.11878.

(+)-3-(3-Methoxycarbonyl-3-oxo-1-phenylpropyl)-1H-indole-6-carboxylic acid methyl ester

White solid; 81% yield; Mp:170-171 °C; $[\alpha]^{23}_{D} = +27.0$ (c = 0.10, MeO₂C $(\alpha)^{N}_{H}$ $(\alpha)^{N}_{O} = -27.0$ (c = 0.10, MeO₂C $(\alpha)^{N}_{H} = -27.0$ (c = 0.10, CHCl₃); 96% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t

(minor) = 46.32 min, t (major)= 61.72 min]; ¹H NMR (300 MHz, CDCl₃): δ 8.44 (br s, 1H),

8.08-8.06 (m, 1H), 7.70 (dd, J = 1.4, 8.4 Hz, 1H), 7.42 (d, J = 8.4 Hz, 1H), 7.33-7.16 (m, 6H), 4.92 (t, J = 7.5 Hz, 1H), 3.90 (s, 3H), 3.77 (s, 3H), 3.69 (dd, J = 7.5, 17.1 Hz, 1H), 3.60 (dd, J = 7.6, 17.1 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 192.4, 168.0, 161.3, 142.8, 135.9, 129.9, 128.6, 127.7, 126.8, 124.8, 124.1, 120.6, 119.0, 118.8, 113.5, 53.0, 51.9, 45.5, 37.6 ppm. ESI-HRMS Calcd for C₂₁H₂₀NO₅ [M + H]⁺ 366.13360, Found: 366.13356.

(+)-4-(1H-Pyrrol-2-yl)-2-oxo-4-phenylbutyric acid methyl ester

Colorless oil; 95% yield; $[\alpha]^{23}_{D}$ = +58.4 (c = 0.25, EtOAc); 92% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 95:5, 0.5 mL/min, 220 nm; t (minor) = 45.54 min, t

(major)= 47.20 min]; ¹H NMR (300 MHz, CDCl₃): δ 7.93 (br s, 1H), 7.33-7.20 (m, 5H), 6.64-6.62 (m, 1H), 6.10 (dd, J = 2.8, 6.0 Hz, 1H), 5.97-5.94 (m, 1H), 4.61 (t, J = 7.2 Hz, 1H), 3.82 (s, 3H, OCH₃), 3.68 (dd, J = 7.7, 18.1 Hz, 1H), 3.46 (dd, J = 6.7, 18.1 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 192.5, 161.1, 141.9, 133.1, 128.8, 127.9, 127.1, 117.4, 108.1, 105.5, 53.0, 45.5, 39.0 ppm. ESI-HRMS Calcd for C₁₅H₁₆NO₃ [M + H]⁺ 258.11247, Found: 258.11266.

(+)-4-(1H-Pyrrol-2-yl)-2-oxo-4-(4-florophenyl)butyric acid methyl ester

Colorless oil; 90% yield; $[\alpha]^{23}_{D} = +56.7$ (c = 0.30, EtOAc); 92% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, M_{NH} = 0.00 mm (minor) = 122.05 mm, t (minor) = 122.05 mm, t (major) = 126.71 mm]; ¹H NMR (300 MHz, CDCl₃): δ 7.96 (br s, 1H), 7.22-7.17 (m, 2H), 7.00-6.95 (m, 2H), 6.66-6.63 (m, 1H), 6.10 (dd, J = 2.70, 6.10 Hz, 1H), 5.95-5.93 (m, 1H), 4.59 (t, J = 7.2 Hz, 1H), 3.82 (s, 3H), 3.65 (dd, J = 7.5, 18.2 Hz, 1H), 3.44 (dd, J = 6.9, 18.2 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 192.3, 163.4, 161.0, 160.1, 137.8, 137.7, 132.9, 129.4, 129.3, 117.6, 115.7, 115.4, 108.2, 105.6, 53.0, 45.5, 38.2 ppm. ESI-HRMS Calcd for C₁₅H₁₅FNO₃ [M + H]⁺ 276.10305, Found: 276.10338.

(+)-4-(1H-Pyrrol-2-yl)-2-oxo-4-(4-chlorophenyl)butyric acid methyl ester

Colorless oil; 96%yield; $[\alpha]^{23}_{D} = +55.0$ (c = 0.28, EtOAc); 90% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, \Box_{NH} = 0.00 min, α -hexane/*i*-PrOH = 95:5, 0.5 mL/min, 220 nm; t (major) = 58.55 min, t (minor) = 63.67 min], ¹H NMR (300 MHz, CDCl₃): δ 7.96 (br s, 1H), 7.29-7.25 (m, 2H), 7.19-7.14 (m, 2H), 6.66-6.64 (m, 1H), 6.11 (dd, J = 2.8, 6.0 Hz, 1H), 5.96-5.93 (m, 1H), 4.58 (t, J = 7.2 Hz, 1H), 3.83 (s, 3H), 3.65 (dd, J = 7.5, 18.3 Hz, 1H), 3.44 (dd, J = 6.9, 18.3 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 192.2, 160.9, 140.5, 132.8, 132.6, 129.2, 128.8, 117.7, 108.2, 105.7, 53.0, 45.3, 38.3 ppm. ESI-HRMS Calcd for C₁₅H₁₅ClNO₃ [M + H]⁺ 292.07350, Found: 292.07380.

(+)-4-(1H-Pyrrol-2-yl)-2-oxo-4-(4-bromophenyl)butyric acid methyl ester

Br Colorless oil; 96% yield; $[\alpha]^{23}_{D} = +34.3$ (c = 0.35, EtOAc); 90% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, M_{NH} column, *n*-hexane/i-PrOH = 95:5, 0.5 mL/min, 220 nm; t (major) = 61.04 min, t (minor)= 68.43 min]; ¹H NMR (300 MHz, CDCl₃): δ 7.95 (brs, 1H), 7.44-7.40 (m, 2H), 7.14-7.09 (m, 2H), 6.66-6.64 (m, 1H), 6.11 (dd, J = 2.8, 6.1 Hz, 1H), 5.96-5.93 (m, 1H), 4.57 (t, J = 7.2 Hz, 1H), 3.83 (s, 3H), 3.65 (dd, J = 7.5, 18.4 Hz, 1H), 3.44 (dd, J = 6.9, 18.3 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 192.2, 160.9, 141.1, 132.5, 131.8, 129.6, 120.9, 117.7, 108.2, 105.7, 53.1, 45.3, 38.4 ppm. ESI-HRMS Calcd for C₁₅H₁₅BrNO₃ [M + H]⁺ 336.02298, Found: 336.02375.

(+)-4-(1H-Pyrrol-2-yl)-2-oxo-4-(4-cyanophenyl)butyric acid methyl ester

Colorless crystal; 99% yield, Mp::125~126°C; $[\alpha]^{23}_{D} = +53.3$ (c = 0.15, EtOAc); 91% ee, determined by HPLC analysis [Daicel Chiralcel AD-H \bigcirc_{NH} column, *n*-hexane/i-PrOH = 90:10, 1.0 mL/min, 220 nm; t (minor) = 35.2 min, t (major)= 37.2 min]; ¹H NMR (300 MHz, CDCl₃): δ 8.08 (br s, 1H), 7.58 (d, *J* =8.3 Hz, 2H), 7.36 (d, *J* =8.2 Hz, 2H), 6.69-6.67 (m, 1H), 6.12 (dd, *J* = 2.8, 5.8 Hz, 1H), 5.97-5.95 (m, 1H), 4.67 (t, *J* = 7.1 Hz, 1H), 3.85 (s, 3H), 3.70 (dd, *J* = 7.4, 18.6 Hz, 1H), 3.46 (dd, *J* = 6.9, 18.6 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 191.7, 160.8, 147.6, 132.5, 131.5, 128.7, 118.5, 118.0, 110.8, 108.3, 106.0, 53.1, 45.0, 38.9 ppm. ESI-HRMS Calcd for C₁₆H₁₅N₂O₃ $[M + H]^+$ 283.10772, Found: 283.10802.

(+)-4-(1H-Pyrrol-2-yl)-2-oxo-4-(4-nitrophenyl)butyric acid methyl ester

Light yellow oil; 85% yield; $[\alpha]^{23}_{D} = +34.0$ (c = 0.42, EtOAc); 86% ee, determined by HPLC analysis [Daicel Chiralcel AS-H column, \Box_{NH} n-hexane/i-PrOH = 75:25, 1.0 mL/min, 220 nm; t (minor) = 21.94 min, t (major)= 28.47 min]; ¹H NMR (300 MHz, CDCl₃): δ 8.17-8.13 (m, 2H), 8.07 (br s, 1H), 7.44-7.39 (m, 2H), 6.70-6.68 (m, 1H), 6.13 (dd, J = 2.7, 6.0 Hz, 1H), 5.99-5.96 (m, 1H), 4.73 (t, J = 7.1 Hz, 1H), 3.86 (s, 3H), 3.74 (dd, J = 7.4, 18.7 Hz, 1H), 3.50 (dd, J = 6.8, 18.7 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 191.7, 160.8, 149.6, 147.0, 131.4, 128.8, 124.0, 118.2, 108.5, 106.2, 53.2, 45.1, 38.7 ppm. ESI-HRMS Calcd for C₁₅H₁₅N₂O₅ [M + H]⁺ 303.09755, Found: 303.09793.

(+)-4-(1H-Pyrrol-2-yl)-2-oxo-4-(4-trifluoromethyl)butyric acid methyl ester

Colorless oil; 97% yield; $[\alpha]^{23}{}_{D} = +48.9$ (c = 0.45, EtOAc); 88% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, \bigwedge_{NH} - hexane/*i*-PrOH = 95:5, 0.5 mL/min, 220 nm; t (major) = 43.57 min, t (minor) = 46.51 min]; ¹H NMR (300 MHz, CDCl₃): δ 8.00 (br s, 1H), 7.55 (d, J = 8.1 Hz, 2H), 7.36 (d, J = 8.3 Hz, 2H), 6.67-6.65 (m, 1H), 6.11 (dd, J = 2.8, 6.0 Hz, 1H), 5.98-5.95 (m, 1H), 4.67 (t, J = 7.1 Hz, 1H), 3.83 (s, 3H), 3.70 (dd, J = 7.5, 18.5 Hz, 1H), 3.47 (dd, J =7.5, 18.5 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 192.0, 160.9, 146.1, 132.1, 129.4 (q, J =32.5 Hz), 128.3, 125.7 (q, J = 3.6 Hz), 124.0 (q, J = 272.1 Hz), 117.9, 108.3, 106.0, 53.1, 45.2, 38.7 ppm. ESI-HRMS Calcd for C₁₆H₁₅F₃NO₃ [M + H]⁺ 326.09985, Found: 326.10025.

(+)-4-(1H-Pyrrol-2-yl)-2-oxo-4-(2-chlorophenyl)butyric acid methyl ester

Colorless oil; 90% yield; $[\alpha]^{23}_{D} = +42.0$ (c = 0.50, EtOAc); 85% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH =80:20, 0.5 mL/min, 220 nm; t (minor) = 120.51 min, t

(major)= 124.17 min]; ¹H NMR (300 MHz, CDCl₃): δ 8.11 (br s, 1H), 7.38-7.35 (m, 1H),

7.19-7.14 (m, 3H), 6.65-6.63 (m, 1H), 6.10 (dd, J = 2.8, 6.0 Hz, 1H), 5.95-5.93 (m, 1H), 5.12 (dd, J = 5.3, 9.2 Hz, 1H), 3.83 (s, 3H), 3.73 (dd, J = 9.2, 18.2 Hz, 1H), 3.37 (dd, J = 5.3, 18.2 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 191.9, 161.0, 139.6, 133.3, 131.8, 129.8, 128.8, 128.2, 127.3, 117.5, 108.1, 105.8, 53.0, 44.2, 35.3 ppm. ESI-HRMS Calcd for C₁₅H₁₅ClNO₃ [M + H]⁺ 292.07350, Found: 292.07387.

(+)- (1H-Pyrrol-2-yl)-2-oxo-4-(3-bromophenyl)butyric acid methyl ester

Colorless oil; 94% yield; $[\alpha]^{23}_{D} = +41.3$ (c = 0.80, EtOAc); 90% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 95:5, 0.5 mL/min, 220 nm; t (minor) = 49.52 min, t

(major)= 51.79 min]; ¹H NMR (300 MHz, CDCl₃): δ 7.97 (br s, 1H), 7.39-7.34 (m, 2H), 7.17 (dd, *J* = 1.6, 3.8 Hz, 2H), 6.67-6.65 (m, 1H), 6.11 (dd, *J* = 2.8, 6.0 Hz, 1H), 5.97-5.95 (m, 1H), 4.57 (t, *J* = 7.1 Hz, 1H), 3.84 (s, 3H), 3.67 (dd, *J* = 7.7, 18.4 Hz, 1H), 3.44 (dd, *J* = 6.7, 18.4 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 192.0, 160.9, 144.4, 132.2, 130.9, 130.3, 130.2, 126.5, 122.7, 117.8, 108.2, 105.8, 53.1, 45.2, 38.6 ppm. ESI-HRMS Calcd for C₁₅H₁₅BrNO₃ [M + H]⁺ 336.02298, Found: 336.02373.

(+)-4-(1H-Pyrrol-2-yl)-2-oxo-4-(3-cyanophenyl)butyric acid methyl ester

Colorless oil; 90% yield; $[\alpha]^{23}_{D} = +38.9$ (c = 0.35, EtOAc); 88% ee, determined by HPLC analysis [Daicel Chiralcel AS-H column, *n*-hexane/i-PrOH = 90:10, 1.0 mL/min, 220 nm; t (minor) = 64.16 min, t (major)= 68.15 min]; ¹H NMR (300 MHz, CDCl₃): δ 8.08 (br s, 1H), 7.54-7.48 (m, 3H), 7.44-7.38 (m, 1H), 6.70-6.67 (m, 1H), 6.12 (dd, J = 2.8, 6.0 Hz, 1H), 5.97-5.95 (m, 1H), 4.65 (t, J = 7.1 Hz, 1H), 3.86 (s, 3H), 3.71 (dd, J = 7.4, 18.6 Hz, 1H), 3.47 (dd, J = 6.9, 18.7 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 191.7, 160.7, 143.8, 132.4, 131.6, 131.4, 130.7, 129.5, 118.5, 118.0, 112.6, 108.3, 106.0, 53.1, 45.0, 38.4 ppm. ESI-HRMS Calcd for C₁₆H₁₅N₂O₃ [M + H]⁺ 283.10772, Found: 283.10812.

(+)-4-(1H-Pyrrol-2-yl)-2-oxo-4-(3-nitrophenyl)butyric acid methyl ester

Light yellow oil; 87% yield; $[\alpha]^{23}_{D} =+34.5$ (c = 0.65, EtOAc); 89% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/i-PrOH = 95:5, 0.5 mL/min, 220 nm; t (minor) = 103.69 min, t (major)= 106.66 min]; ¹H NMR (300 MHz, CDCl₃): δ 8.14-8.08 (m, 2H), 8.04 (br s, 1H), 7.60 (d, J = 7.7 Hz, 1H), 7.51-7.46 (m, 1H), 6.70-6.68 (m, 1H), 6.13 (dd, J = 2.9, 6.0 Hz, 1H), 5.98-5.96 (m, 1H), 4.73 (t, J = 7.1 Hz, 1H), 3.86 (s, 3H), 3.76 (dd, J = 7.6, 18.7 Hz, 1H), 3.51 (dd, J = 6.7, 18.7 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 191.8, 160.8, 148.5, 144.3, 134.1, 131.6, 129.7, 122.7, 122.2, 118.1, 108.5, 106.2, 53.2, 45.2, 38.6. ESI-HRMS Calcd

for $C_{15}H_{15}N_2O_5 [M + H]^+ 303.09755$, Found: 303.09796.

(+)-4-(1H-Pyrrol-2-yl)-2-oxo-4-(4-methylphenyl)butyric acid methyl ester

Light yellow oil; 96% yield; $[\alpha]^{23}_{D} = +55.3$ (c = 0.28, EtOAc); 91% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, M_{H} column, *n*-hexane/i-PrOH = 97:3, 0.5 mL/min, 220 nm; t (minor) = 72.52 min, t (major)= 75.78 min]; ¹H NMR (300 MHz, CDCl₃): δ 7.91 (br s, 1H), 7.12-7.08 (m, 4H), 6.62-6.59 (m, 1H), 6.09 (dd, J = 2.7, 6.0 Hz, 1H), 5.96-5.93 (m, 1H), 4.57 (t, J = 7.3 Hz, 1H), 3.81 (s, 3H), 3.64 (dd, J = 7.6, 18.1 Hz, 1H), 3.44 (dd, J = 6.9, 18.1 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 192.5, 161.0, 138.9, 136.6, 133.3, 129.4, 127.7, 117.3, 108.0, 105.3, 52.9, 45.5, 38.6, 20.9. ESI-HRMS Calcd for C₁₆H₁₈NO₃ [M + H]⁺ 272.12812, Found: 272.12847.

(+)-4-(1H-Pyrrol-2-yl)-2-oxo-4-(4-methoxyphenyl)butyric acid methyl ester

Colorless oil; 82% yield; $[\alpha]^{23}_{D} = +45.3$ (c = 0.38, EtOAc); 88% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, $(-)_{NH}$ (CO₂Me *n*-hexane/*i*-PrOH = 95:5, 0.5 mL/min, 220 nm; t (minor) = 71.59 min, t (major)= 76.06 min]; ¹H NMR (300 MHz, CDCl₃): δ 7.93 (br s, 1H), 7.17-7.12 (m, 2H), 6.85-6.80 (m, 2H), 6.64-6.61 (m, 1H), 6.10 (dd, J = 2.7, 6.0 Hz, 1H), 5.96-5.93 (m, 1H), 4.56 (t, J = 7.2 Hz, 1H), 3.81 (s, 3H), 3.77 (s, 3H), 3.63 (dd, J = 7.5, 18.0 Hz, 1H), 3.43 (dd, J =7.1, 18.0 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 192.6, 161.1, 158.6, 134.0, 133.5, 128.9, 117.3, 114.1, 108.1, 105.3, 55.2, 53.0, 45.6, 38.2. ESI-HRMS Calcd for C₁₆H₁₈NO₄ [M + H]⁺ 288.12303, Found: 288.12333.

(+)-4-(1H-Pyrrol-2-yl)-2-oxo-4-(3-methylphenyl)butyric acid methyl ester

Light yellow oil; 90% yield; $[\alpha]^{23}_{D} = +64.6$ (c = 0.32, EtOAc); 90% ee, determined by HPLC analysis [Daicel Chiralcel AS-H column, *n*-hexane/i-PrOH = 90:10, 1.0 mL/min, 220 nm; t (minor) = 15.46 min, t (major)= 16.59 min]; ¹H NMR (300 MHz, CDCl₃): δ 7.92 (br s, 1H), 7.22-7.17 (m, 1H), 7.05-7.03 (m, 3H), 6.64-6.62 (m, 1H), 6.10 (dd, J = 2.8, 5.9 Hz, 1H), 5.97-5.94 (m, 1H), 4.57 (t, J = 7.2 Hz, 1H), 3.82 (s, 3H), 3.67 (dd, J = 7.7, 18.1 Hz, 1H), 3.45 (dd, J = 6.7, 18.2 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 192.5, 161.1, 141.8, 138.4, 133.2, 128.6, 128.5, 127.8, 124.8, 117.3, 108.1, 105.4, 53.0, 45.4, 38.9, 21.4. ESI-HRMS Calcd for C₁₆H₁₈NO₃ [M + H]⁺ 272.12812, Found: 272.12844.

(+)-4-(1H-Pyrrol-2-yl)-2-oxo-4-(3-methoxyphenyl)butyric acid methyl ester

Colorless oil; 86% yield; $[\alpha]^{23}_{D} = +56.6$ (c = 0.30, EtOAc); 92% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 95:5, 0.5 mL/min, 220 nm; t (minor) = 72.45 min, t (major)= 75.50 min]; ¹H NMR (300 MHz, CDCl₃): δ 7.94 (br s, 1H), 7.25-7.20 (m, 1H), 6.84-6.76 (m, 3H), 6.65-6.63 (m, 1H), 6.10 (dd, J = 2.9, 5.9 Hz, 1H), 5.98-5.96(m, 1H), 4.59 (t, J = 7.2 Hz, 1H), 3.83 (s, 3H), 3.77 (s, 3H), 3.67 (dd, J = 7.7, 18.2 Hz, 1H), 3.46 (dd, J =6.7, 18.2 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 192.3, 161.0, 159.8, 143.5, 132.9, 129.7, 120.1, 117.4, 113.7, 112.2, 108.0, 105.4, 55.1, 52.9, 45.3, 38.9. ESI-HRMS Calcd for C₁₆H₁₈NO₄ [M + H]⁺ 288.12303, Found: 288.12325.

HPLC chromatograms for indole adducts

Daicel Chiralcel AD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t (minor) = 13.41 min, t (major)= 15.84 min]; 99.7%ee

#	Time	Area	Height	Width	Area%	Symmetry
1	13.418	11.4	4.9	0.3897	0.182	0.881
2	15.844	6261.4	213.6	0.4886	99.818	0.722

#	Time	Area	Height	Width	Area%	Symmetry
1	13.416	1698.2	74.7	0.3787	49.429	0.83
2	15.886	1737.5	63	0.4594	50.571	0.84

Daicel Chiralcel AD-H column), n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; 99.7% ee

#	Time	Area	Height	Width	Area%	Symmetry
1	10.959	19.7	1.2	0.2732	0.120	0.864
2	12.089	16436.5	798.2	0.3432	99.880	0.894

#	Time	Area	Height	Width	Area%	Symmetry
1	10.959	1309	72.4	0.3015	50.046	0.901
2	12.098	1306.6	65.1	0.3343	49.954	0.917

Daicel Chiralcel AD-H column, *n*-hexane / i-PrOH = 80:20, 1.0 mL/min, 220 nm; 99.9% ee

#	Time	Area	Height	Width	Area%	Symmetry
1	8.957	2.2	1.6E-1	0.2362	0.031	0.971
2	12.676	7016.3	306.3	0.3818	99.969	0.905

#	Time	Area	Height	Width	Area%	Symmetry
1	9.087	4209.1	264.2	0.2655	50.079	0.861
2	12.62	4195.8	185.4	0.3772	49.921	0.909

Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; 99.8% ee

#	Time	Area	Height	Width	Area%	Symmetry
1	12.009	1223.3	56.4	0.3617	49.985	0.978
2	16.969	1224.1	38.8	0.526	50.015	0.778

Daicel Chiralcel AD-H column, *n*-hexane / *i*-PrOH = 80:20, 1.0 mL/min, 220 nm; 99.1% ee

1	13.156	1073.7	46	0.389	49.921	0.88
2	21.539	1077.1	27.7	0.6492	50.079	0.901

Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; 99.7% ee

Ħ	Time	Area	Height	width	Area%	Symmet
1	22.129	1496.5	36	0.692	50.063	0.893
2	32.545	1492.7	24.6	1.0126	49.937	0.916

2

31.2

6729

118.2

0.9491

50.772

0.925

Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; 99.7% ee

#	Time	Area	Height	Width	Area%	Symmetry
1	8.916	21.5	1.3	0.267	0.172	0.941
2	12.563	12471.6	546.5	0.3804	99.828	0.885

#	Time	Area	Height	Width	Area‰	Symmetr
1	8.882	3208.8	196.8	0.2718	50.030	0.839
2	12.533	3204.9	142.3	0.3753	49.970	0.903

#	Time	Area	Height	Width	Area%	Symmetry
1	13.605	3269.2	135.7	0.4016	50.010	0.783
2	17.926	3267.9	101.2	0.5384	49.990	0.792

#	Time	Area	Height	Width	Area%	Symmetry
1	26.34	79.5	1.7	0.7708	3.076	1.007
2	33.617	2504.6	24.1	1.7338	96.924	0.767

#	Time	Area	Height	Width	Area%	Symmetry
1	26.336	2929.8	54.3	0.8987	50.039	0.916
2	33.659	2925.2	28.4	1.7154	49.961	0.778

Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; 99.6% ee

#	Time	Area	Height	Width	Area%	Symmetry
1	9.816	10.8	6.2E-1	0.2904	0.195	0.999
2	13.245	5531.3	236	0.3622	99.805	0.741

#	Time	Area	Height	Width	Area%	Symmetry
1	9.843	1076.2	63.3	0.2833	50.426	0.83
2	13.295	1058	46	0.3832	49.574	0.87

Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; 97% ee

#	Time	Area	Height	Width	Area%	Symmetry
1	8.395	48.7	3.9	0.2096	1.516	0.901
2	11.138	2492.8	133.4	0.3115	98.484	0.896

#	Time	Area	Height	Width	Area%	Symmetry
1	8.377	3305.1	231.7	0.2378	50.018	0.854
2	11.114	3302.7	173.2	0.3177	49.982	0.892

#	Time	Area	Height	Width	Area%	Symmetry
1	14.842	1160.4	43.1	0.4488	50.979	0.727
2	22.594	1115.9	27.8	0.6702	49.021	0.913

Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; 98.6% ee

Daicel Chiralcel OJ-H column, n-hexane / i-PrOH = 70:30, 0.9 mL/min, 220 nm; 98% ee

 1
 04.073
 5222.8
 16.8
 4.0220
 50.864
 0.759
 2

 2
 169.743
 5041.3
 6.8
 12.3421
 49.116
 0.819

#	Time	Area	Height	Width	Area%	Symmetry
1	38.137	2494.1	48.1	0.8648	48.985	0.886
2	39.758	2597.4	46.6	0.929	51.015	0.9

Daicel Chiralcel AD-H column, *n*-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; 96.3% ee

HPLC chromatogram for pyrrole adducts

Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 95:5, 0.5 mL/min, 220 nm; 92% ee

Ö

Daicel Chiralcel AD-H column, *n*-hexane/i-PrOH = 98:2, 0.5 mL/min, 220 nm; 92% ee

#	Time	Area	Height	Width	Area%	Symmetr
1	121.965	2578.5	18.3	2.353	49.845	0.806
2	127.004	2594.6	17.2	2.5192	50.155	0.819
Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 95:5, 0.5 mL/min, 220 nm; 90% ee

#	Time	Area	Height	Width	Area%	Symmetry
1	59.336	2602.1	36.4	1.19	50.382	0.87
2	64.326	2562.7	32.9	1.2987	49.618	0.821

2 68.406 5353.8 63.3 1.4106 49.248 0.778

Daicel Chiralcel AD-H column, *n*-hexane/i-PrOH = 90:10, 1.0 mL/min, 220 nm; 91% ee

#	Time	Area	Height	Width	Area%	Symmetry
1	35.234	1143	22.6	0.8416	49.525	0.866
2	37.305	1164.9	21.3	0.9096	50.475	0.825

2

28.348

772.2

12.4

1.0409

49.334

0.905

Daicel Chiralcel AS-H column, *n*-hexane / *i*-PrOH = 75:25, 1.0 mL/min, 220 nm; 86% ee

Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 95:5, 0.5 mL/min, 220 nm; 88% ee

#	Time	Area	Height	Width	Area%	Symmetry
1	43.712	2487.1	44.5	0.9305	50.084	0.821
2	46.515	2478.8	42.1	0.9818	49.916	0.845

Daicel Chiralcel AD-H column, n-hexane/i-PrOH =80:20, 0.5 mL/min, 220 nm; 85% ee

#	Time	Area	Height	Width	Area%	Symmetry
1	120.369	587.5	4.4	2.2062	49.975	0.905
2	124.391	588.1	4.3	2.2961	50.025	0.824

Daicel Chiralcel AD-H column, *n*-hexane / *i*-PrOH = 95:5, 0.5 mL/min, 220 nm; 90% ee

#	Time	Area	Height	Width	Area%	Symmetry
1	50.638	1008.3	16.6	1.0099	49.683	0.896
2	52.968	1021.2	15.9	1.07	50.317	0.88

Daicel Chiralcel AS-H column, *n*-hexane / i-PrOH = 90:10, 1.0 mL/min, 220 nm; 88% ee

CN

Daicel Chiralcel AD-H column, *n*-hexane / i-PrOH = 95:5, 0.5 mL/min, 220 nm; 89% ee

#	Time	Area	Height	Width	Area%	Symmetry
1	102.706	540.7	4.5	2.0027	49.290	0.819
2	105.85	556.3	4.5	2.0532	50.710	0.96

Daicel Chiralcel AD-H column, *n*-hexane/i-PrOH = 97:3, 0.5 mL/min, 220 nm; 91% ee

#	Time	Area	Height	Width	Area%	Symmetry
1	71.534	15793.7	181.5	1.4505	49.600	0.849
2	74.872	16048.2	174.7	1.5314	50.400	0.84

Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 95:5, 0.5 mL/min, 220 nm; 88% ee

Daicel Chiralcel AS-H column, *n*-hexane/i-PrOH = 90:10, 1.0 mL/min, 220 nm; 90% ee

#	Time	Area	Height	Width	Area%	Symmetry
1	15.427	293.2	11.3	0.4331	50.066	0.894
2	16.568	292.4	10.6	0.4596	49.934	1.007

Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 95:5, 0.5 mL/min, 220 nm; 92% ee

#	Time	Area	Height	Width	Area%	Symmetry
1	76.008	152.1	1.8	1.4477	50.438	0.871
2	79.22	149.5	1.6	1.5404	49.562	0.871

¹H NMR and ¹³C NMR Spectra for indole and pyrrole adducts

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

The structure of (S)-8e from different view