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Experiments 

       Fabrication of p-DSCs: NiO nanoparticles (particle size ~20 nm, 99.9%, Inframat Advanced Materials) 

were ball-milled in ethanol with few droplets of acetate additive for 2 hrs.  The mixture of above colloidal 

solution, ethyl cellulose (Aldrich) and terpinol anhydrous (≥99.5%, Fluka) were sonicated and stirred 

alternatively to obtain a fine dispersion. A paste was made by evaporating the ethanol from the mixture on a 

rotary evaporator.  FTO glass (Nippon sheet glass, resistance 13 Ω/square) were coated with nickel acetate 

(+98%, Alfa Aesar) ethanol (≥99.7%, Merck) solution (0.05 M) by dip-coating and subsequently dried before 

screen print.  The photocathode films were screen-printed with the NiO paste and dried for 5 min at 125 ºC.  This 

coating-drying procedure was repeated to obtain films with different thickness. The NiO electrodes were sintered 

under an air flow at 450 oC for 30 min with a ramping time of 30 min from room temperature (~25 oC) to 450 oC, 

and then post-treated at 550 oC for 15 min with a ramping time of 10 min from 450 oC to 550 oC.  Average 

device results suggest that 15 minute is the optimized treatment time at 550 oC to significantly improve the 

photovoltage without losing much surface area of NiO nanocrystalline films for efficient dye loading. After 

cooling to room temperature, the electrode films were soaked in a 0.2 mM dye solution overnight.  The resulting 

NiO working electrodes were assembled and sealed with the counter electrodes made by sputtering coating Pt on 

FTO glass to produce a sandwich type cell.  The electrolyte, containing 0.03 M iodine, 0.5 M 4-terbutylpyridine, 

0.6 M 1-butyl-3-methylimidazolium iodide, and 0.1 M guanidinium thiocyanate in a mixed acetonitrile and 

valeronitrile (with volume ratio of 85 : 15) solution, was introduced into the cell via a vacuum filling method.  
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Characterization: Morphology observation and crystal structure of NiO nanorods were verified by 

Transmission Electron Microscope (FEI Tecnai G2 20 TEM) and X-ray Powder Diffraction (Phillips powder 

diffractometer). Brunauer – Emmett – Teller (BET) analysis based on N2 adsorption has been used to determine 

surface area and the pore size distribution using the Barrett – Joyner – Halenda (BJH) method on a TriStar II 

3020 Surface Area and Porosity Analyzer.  The thickness of the NiO films was measured by using a profilometer 

(DEKTAK 150, Veeco Instruments Inc).   The reflection spectra at wavelength range of 300–800 nm of 

mesoporous NiO were collected by using a Cary 5000 ultra-violet–visible - near-infrared (UV-Vis-NIR) 

spectrophotometer equipped with an integrating sphere (Internal DRA-2500).   

The sealed solar cells were shielded by a black metal mask with an aperture area of 0.36 cm2, and measured the 

photovoltaic properties using a Keithley 2400 Source Meter under the irradiation of simulated sunlight (100 

mW/cm2) provided by an Oriel solar simulator with an AM 1.5 filter.  IPCE plotted as a function of excitation 

wavelength was recorded on a Keithley 2400 Source Meter under the irradiation of a 300 W xenon lamp with an 

Oriel CornerstoneTM 2601/4m monochromator.  Electrochemical impedance spectroscopy (EIS) was measured 

with an AutoLab PST A30 in a frequency range of 0.1 – 105 Hz under 1 sun of AM1.5 simulated solar radiation 

and an applied electrical bias dropping from the open-circuit voltage (Voc) of the device to 100 mV below Voc 

with a 20 mV interval. EIS spectra were then fitted in Zview software with a transmission line model shown in 

Figure S7. Generally, an EIS spectrum of a DSC comprises three distinctive parts associated with 

electrochemical processes of different time domains, i.e. the fast response from charge transfer at counter 

electrode in the high frequency domain, the signal from carrier transport and recombination in the semiconductor 

layer in the mid-frequency domain and the slow response from the Nerstain diffusion of redox couple species in 

the electrolyte taking place in the low frequency domain. Depending on the characteristic time constants of the 

individual processes, responses from one or more processes would dominate the EIS spectrum and provide 

pertinent information of the whole device. See a case discussion in Figure S6. 
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Figure S1. Chemical structure of dye. The  chemical  structure of  the p‐type dye  contained  an oligothiophene 

coupled to triphenylamine as the donor and a perylenemonoimid as the acceptor. 

 

 

 

 

 

 

 

 

 

Figure S2.  Photocurrent density – voltage characteristics under simulated AM 1.5G illumination at different 
light intensity and incident photon to current conversion efficiency (IPCE) characteristics of p-type DSC 
prepared from NiO nanocrystalline films without post-treatment at 550 oC. 100% sun corresponds to 100 mW 
cm-2. 

 

 

 

 

 

 

 

 

Figure S3. Photocurrent density – voltage characteristics under simulated AM 1.5G illumination at different 
light intensity of p-type DSC prepared from NiO nanocrystalline films with post-treatment at 550 oC. 100% sun 
corresponds to 100 mW cm-2. 
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Figure S4. NiO films with a variety of film thickness of 1.1, 2.2 and 3.2 m prepared at 450 °C and with a post-
treatment at 550°C.  

 

 

 

 

 

 

 

 

 

 

Figure S5. Diffuse reflectance spectra of mesoporous NiO films (left) and UV-vis absorption spectra of dyed 
NiO films (right) prepared at 450 °C and with a post-treatment at 550°C. 
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Figure S6. BET analysis of mesoporous NiO after sintered at 450 and with post-treatment at 550 oC.  Based  on 

BET measurement, the post‐treatment brought an approximately 38% decrease in the specific surface area of 

the mesoporous NiO film from 55 m2 g‐1 to 34 m2 g‐1and broadened the major pore size from 8.5 nm to 15.3 nm. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7. HRTEM images of NiO nanoparticle (a) after sintered at 450 and (b) with post-treatment at 550 oC. 
Before the post‐treatment, an amorphous shell can be easily found on many NiO nanoparticles, while the post‐

treatment fosters the formation of clear lattice fringes at the edge of the nanoparticle and confirms the well‐

developed nanoscale crystallinity. 
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Figure S8. Typical EIS spectra of two devices made of NiO photocathode without (Device A) and with (Device 
B) 550 oC post-treatment. The devices were measured at 0.22 V bias under the AM 1.5G illumination at 100 mW 
cm-2 (1 sun). In the current case, the response from counter electrode in the high frequency region is 
overshadowed by the large impedance of hole diffusion in the NiO film in both spectra and particularly 
indiscernible in the spectrum from Device B. While both spectra show a distinct semicircle in the mid-frequency 
region, implying a large enough charge transfer resistance at the NiO/electrolyte interface, the EIS spectrum of 
Device A features a stronger Warburg diffusion due to the slow transport of holes in NiO mesoporous layer and 
suggests a hole diffusion length (Lh) comparable to the film thickness, d, at this bias and light intensity. Wang et 
al. has shown that reliable values of charge transfer resistance at the semiconductor/electrolyte interface (Rct) and 
the resistance to the carrier transport in the semiconductor layer (Rtr) could still be reliably obtained by fitting the 
EIS spectra with a transmission line model if the electron diffusion length, Ln, satisfies Ln ≥ d/2.[1] 

 

 

 

 

 

Figure S9. Equivalent circuit for fitting EIS spectra of p-DSCs. Rs represents the serial resistance of the device, 
Zd is the Warburg impedance due to the electrolyte diffusion, while RCE and CCE are the charge transfer 
resistance and the double layer capacitance of the platinized counter electrode, respectively. RFTO/EL and CFTO/EL 
stand for the charge transfer resistance and the corresponding double layer capacitance at exposed 
FTO/electrolyte interface. Processes of hole transport in the NiO and recombination with the I- are depicted by 
the distributed element in the middle of the circuit, where rtr, rct and cch are local resistance for hole transport, 
charge transfer resistance at the NiO/electrolyte interface for hole recombination with I- and the distributed 
capacitance of NiO particles. Taking d as the thickness of the NiO film, the total hole transport resistance is Rt = 
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rtr × d and the total interfacial charge recombination resistance is Rct = rct / d. The lifetime and apparent diffusion 
coefficient of holes in the NiO film can be calculated.  
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