Electronic Supplementary Information for

Abnormal oxazol-4-ylidene and thiazol-4-ylidene rhodium complexes: synthesis, structure, and property

Jun Zhang, ${ }^{*}{ }^{a}$ Jun Fu, ${ }^{a}$ Xiaolong Su, ${ }^{a}$ Xinke Qin, ${ }^{a}$ Meixin Zhao, ${ }^{a}$ and Min Shi ${ }^{*}{ }^{a, b}$${ }^{a}$ Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry \&Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai200237, China.${ }^{b}$ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, ChineseAcademy of Sciences, 354 Fenglin Road, Shanghai 200032 ChinaZhangj@ecust.edu.cn; Mshi@mail.sioc.ac.cn
Table of contents S1
General information S2
Preparation and characterization S2
NMR spectra S14
X-Ray crystallography S38

General Information:

Unless otherwise stated, all reactions and manipulations were performed using standard Schlenk techniques. All solvents were purified by distillation using standard methods. Commercially available reagents were used without further purification. NMR spectra were recorded by using a Bruker 400 MHz spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{CDCl}_{3}: 7.26 \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR} \mathrm{CDCl}_{3}: 77.0 \mathrm{ppm}$). Mass spectra were recorded on the HP-5989 instrument by EI/ESI methods. Infrared spectra were recorded on a Perkin-Elmer PE-983 spectrometer with absorption in cm^{-1}. X-ray diffraction analysis was performed by using a Bruker Smart-1000 X-ray diffractometer.

1-Phenyl-2-(phenylamino)ethanone (1) has been previously reported, and its spectra were consistent with that of the published data. ${ }^{1}$

Preparation and characterization

Preparation of N-aryl-amidoacetophenones 2a-2c:

In general, N-aryl-amidoacetophenones 2a-2c were prepared following a literature method. ${ }^{1}$

N-Phenyl-amidoacetophenones (2a) ${ }^{1}$

Aminoketone $1(0.8 \mathrm{~g}, 2.83 \mathrm{mmol})$ and Benzoyl chloride ($0.8 \mathrm{~g}, 5.66 \mathrm{mmol})$ were dissolved in dried DCE (15 mL), and refluxed for 12 h . After filtration, the solvent was evaporated, and the residue was purified by flash chromatography (hexane/EtOAc 10/1) to afford 2a as a white solid ($0.85 \mathrm{~g}, 95 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta 8.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\operatorname{Ar} H), 7.40(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.22-7.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 7.15-7.21(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar} H), 7.09-7.13(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{Ar} H), 5.34\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 193.4(\mathrm{NCO}), 170.6\left(\mathrm{COCH}_{2}\right), 144.0$, $135.2,135.1,133.5,129.7,129.0,128.8,128.7,127.9,127.6,127.4,126.7,57.0\left(\mathrm{CH}_{2}\right)$.

[^0]
N -4-methoxylphenyl-amidoacetophenones (2b)

Aminoketone $1(3.0 \mathrm{~g}, 14.2 \mathrm{mmol})$ and 4-methoxylbenzoyl chloride ($1.2 \mathrm{~g}, 7.1$ $\mathrm{mmol})$ were dissolved in dried DCE $(30 \mathrm{~mL})$, and refluxed for 12 h . After filtration, the solvent was evaporated, and the residue was purified by flash chromatography (hexane/EtOAc 4/1) to afford 2a as a white solid (2.31 g, 95\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta 8.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.47(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.36(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.21-7.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 7.17-7.20(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{Ar} H), 7.11-7.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 6.67(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 5.32\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.73(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 193.6(\mathrm{NCO}), 170.0\left(\mathrm{COCH}_{2}\right), 160.7,144.4,135.1,133.4$, $131.0,129.0,128.6,127.9,127.3,127.1,126.5,112.8,57.1\left(\mathrm{CH}_{2}\right), 55.0\left(\mathrm{OCH}_{3}\right)$.

N-4-chlorophenyl-amidoacetophenones (2c)

Aminoketone $1(3.0 \mathrm{~g}, 14.2 \mathrm{mmol})$ and 4-chlorobenzoyl chloride ($1.2 \mathrm{~g}, 7.1$
 mmol) were dissolved in dried DCE $(30 \mathrm{~mL})$, and refluxed for 12 h . After filtration, the solvent was evaporated, and the residue was purified by flash chromatography (hexane/EtOAc 4/1) to afford 2a as a white solid (2.20 g, 91\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta 8.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.48(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.21-7.24(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.14-7.17$ (m, $5 \mathrm{H}, \mathrm{ArH}), 5.33\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 193.0(\mathrm{NCO}), 169.3\left(\mathrm{CH}_{2} \mathrm{CO}\right), 143.6$, $135.7,134.8,133.5,133.5,130.2,129.1,128.6,127.8,127.8,127.3,126.8,57.0\left(\mathrm{CH}_{2}\right)$.

2,3,5-Triphenyloxazolium trifluoromethanesulfonate (3a)

2a $(0.16 \mathrm{~g}, 0.51 \mathrm{mmol})$ was dissolved in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.112 \mathrm{~g}$, $1.12 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C} . \mathrm{Tf}_{2} \mathrm{O}(0.32 \mathrm{~g}, 1.12 \mathrm{mmol})$ was added carefully over 5 mins at $-40{ }^{\circ} \mathrm{C}$. The solution was warmed to room temperature and stirred for 10 h and concentrated in vacuo. The resulting residue was purified by chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}=30: 1\right)$ to give 33 as a white powder ($0.20 \mathrm{~g}, 88 \%$). $\mathrm{Mp}: 176-178{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO, $400 \mathrm{MHz}): \quad \delta 9.15\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\text {oха }}\right), 8.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.82-7.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.74-7.79$ (m, $6 \mathrm{H}, \operatorname{Ar} H), 7.67-7.71(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Ar} H), 7.59-7.65(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H) .{ }^{13} \mathrm{C}$ NMR (DMSO, 100 MHz): δ $159.1(\mathrm{NCO}), 151.5,134.6,133.6,131.9,131.3,130.6,129.7,129.6,129.3,125.8,124.9,124.0,120.6$
$(\mathrm{q}, J(\mathrm{C}, \mathrm{F})=315 \mathrm{~Hz}), 120.2$, 120.2. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v\left(\mathrm{~cm}^{-1}\right) 1638.19,1545.14,1491.21,1463.43$, $1449.90,1403.19,1258.19,1222.69,1170.25,1150.13,1029.37,759.49,732.51,688.64,658.86 . \mathrm{MS}:$ m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{NO}(\mathrm{M}-\mathrm{OTf})^{+}$298.1226, found 298.1228.

3,5-Diphenyl-2-(4-methoxyl)phenyloxazolium trifluoromethanesulfonate (3b)

2b $(0.79 \mathrm{~g}, 2.29 \mathrm{mmol})$ was dissolved in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.463 \mathrm{~g}$, $4.58 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C} . \mathrm{Tf}_{2} \mathrm{O}(1.29 \mathrm{~g}, 4.58 \mathrm{mmol})$ was added carefully over 5 mins at $-40^{\circ} \mathrm{C}$. The solution was warmed to room temperature and stirred for 10 h and concentrated in vacuo. The resulting residue was purified by chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}=30: 1\right)$ to give 33 as a white powder $(1.0 \mathrm{~g}, 88 \%) . \mathrm{Mp}$: $168-170{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \quad \delta 8.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ oxa $), 7.82-7.84(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.65(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.52-7.61(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar} H), 7.41-7.42(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 6.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{ArH}), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 165.0(\mathrm{NCO}), 158.9,152.6,133.2,131.9$, $131.9,131.2,130.8,129.1,125.5,125.4,123.5,120.5(\mathrm{q}, J(\mathrm{C}, \mathrm{F})=292 \mathrm{~Hz}), 118.6,115.2,110.9,55.8$ $\left(\mathrm{OCH}_{3}\right)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v\left(\mathrm{~cm}^{-1}\right) 1604.21,1505.17,1488.78,1434.45,1403.41,1259.16,1223.45$, $1151.90,1029.74,840.02,763.28,738.70,692.00 . \mathrm{MS}: \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NO}_{2}(\mathrm{M}-\mathrm{OTf})^{+}$ 328.1332, found 328.1331.

3,5-Diphenyl-2-(4-chloride)phenyloxazolium trifluoromethanesulfonate (3c)

2c $(0.48 \mathrm{~g}, 1.37 \mathrm{mmol})$ was dissolved in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.277 \mathrm{~g}$, $2.74 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C} . \mathrm{Tf}_{2} \mathrm{O}(0.77 \mathrm{~g}, 2.74 \mathrm{mmol})$ was added carefully over 5 mins at $-40^{\circ} \mathrm{C}$. The solution was warmed to room temperature and stirred for 10 h and concentrated in vacuo. The resulting residue was purified by chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}=30: 1\right)$ to give 3 c as a white powder $(0.61 \mathrm{~g}, 89 \%) . \mathrm{Mp}$: $217-219{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \quad \delta 9.13\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\text {oxa }}\right), 8.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H)$, 7.76-7.79 (m, $5 \mathrm{H}, \mathrm{Ar} H), 7.72(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Ar} H), 7.64-7.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H) .{ }^{13} \mathrm{C}$ NMR (DMSO, 100 MHz): δ $163.7(\mathrm{NCO}), 158.4,151.8,139.8,131.5,130.8,129.7,129.6,129.1,128.5,125.7,125.0,121.3,120.8$ $(\mathrm{q}, J(\mathrm{C}, \mathrm{F})=298 \mathrm{~Hz}), 119.1,114.1 . \mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v\left(\mathrm{~cm}^{-1}\right) 1634.25,1600.72,1491.84,1268.43,1257.34$, 1157.17, 1033.81, 832.11, 732.16, 689.23, $670.59,663.52$. $\mathrm{MS}: \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{ClNO}$ $(\mathrm{M}-\mathrm{OTf})^{+}$332.0837, found 332.0833.

N-(2-oxo-2-phenylethyl)- N-phenylbenzothioamide (4a)

To a solution of $\mathbf{2 a}(1.80 \mathrm{~g}, 5.7 \mathrm{mmol})$ in dried toluene $(30 \mathrm{~mL})$ was added Lawesson's Reagent ($1.3 \mathrm{~g}, 3.14 \mathrm{mmol}$) at room temperature. The resulting mixture was refluxed for 6 h , and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane $: \operatorname{EtOAc}=8: 1$) to give 4a as yellow solid ($0.72 \mathrm{~g}, 40 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.04(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.61(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar} H), 7.51(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.33-7.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.16-7.23(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H), 7.08-7.12$ (m, $4 \mathrm{H}, \mathrm{Ar} H), 5.89\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 203.2(\mathrm{NCS}), 191.5\left(\mathrm{COCH}_{2}\right)$, $145.7,142.8,135.0,133.5,128.8,128.6,128.3,127.8,127.6,127.3,127.2,126.6,63.2\left(\mathrm{CH}_{2}\right)$.

4-methoxy- N -(2-oxo-2-phenylethyl)- N -phenylbenzothioamide (4b)

To a solution of $\mathbf{2 b}(0.8 \mathrm{~g}, 2.3 \mathrm{mmol})$ in dried toluene $(15 \mathrm{~mL})$ was added Lawesson's Reagent $(0.51 \mathrm{~g}, 1.27 \mathrm{mmol})$ at room temperature. The resulting mixture was refluxed for 6 h , and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane $: \operatorname{EtOAc}=8: 1$) to give $\mathbf{4 b}$ as yellow solid ($0.28 \mathrm{~g}, 35 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H)$, $7.60(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.33(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\operatorname{Ar} H), 7.20(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar} H), 7.09-7.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 6.61(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 5.89(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): ~} \delta 203.1(\mathrm{NCS}), 191.9\left(\mathrm{COCH}_{2}\right), 159.9$, $146.4,135.4,135.2,133.6,129.9,129.0,128.7,127.9,127.0,126.6,112.7,63.6\left(\mathrm{CH}_{2}\right), 55.1\left(\mathrm{OCH}_{3}\right)$.

4-chloro-N-(2-oxo-2-phenylethyl)-N-phenylbenzothioamide (4c)

To a solution of $2 \mathrm{c}(0.37 \mathrm{~g}, 1.06 \mathrm{mmol})$ in dried toluene $(10 \mathrm{~mL})$ was added Lawesson's Reagent $(0.23 \mathrm{~g}, 0.58 \mathrm{mmol})$ at room temperature. The resulting mixture was refluxed for 6 h , and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane $: \operatorname{EtOAc}=8: 1$) to give $\mathbf{4 b}$ as yellow solid ($0.18 \mathrm{~g}, 49 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H)$, $7.61(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{Ar} H)$, 7.19-7.24 (m, $4 \mathrm{H}, \mathrm{Ar} H), 7.13-7.16$ (m, $1 \mathrm{H}, \mathrm{ArH}), 7.09$ (d, J=8.8 Hz, $2 \mathrm{H}, \mathrm{ArH}$), 5.87 (s, 2 H , $\left.\mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 201.8(\mathrm{NCS}), 191.5\left(\mathrm{COCH}_{2}\right), 145.7,141.3,135.1,134.4,133.7$,
$129.2,128.8,127.9,127.7,127.5,126.6,63.3\left(\mathrm{CH}_{2}\right)$.

2,3,5-Triphenylthiazolium trifluoromethanesulfonate (5a)

4a $(0.15 \mathrm{~g}, 0.453 \mathrm{mmol})$ was dissolved in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.091$ $\mathrm{g}, 0.906 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C} . \mathrm{Tf}_{2} \mathrm{O}(0.256 \mathrm{~g}, 2.74 \mathrm{mmol})$ was added carefully over 5 mins at $-40^{\circ} \mathrm{C}$. The solution was warmed to room temperature and stirred for 10 h and concentrated in vacuo. The resulting residue was purified by chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}=30: 1\right)$ to give $\mathbf{5 a}$ as a white powder $(0.187 \mathrm{~g}, 89 \%) . \mathrm{Mp}: 185-187{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta 8.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH} \mathrm{thiaz}), 7.74-7.77(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.64-7.66(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.49-7.56(\mathrm{~m}, 9$ $\mathrm{H}, \mathrm{Ar} H), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H) .{ }^{13} \mathrm{C}$ NMR (DMSO, 100 MHz$): \delta 168.6(\mathrm{NCS}), 139.8,136.9$, $135.5,133.0,131.2,130.9,129.9,129.9,129.7,129.2,127.1,126.6,126.3,124.9,120.6(\mathrm{q}, J(\mathrm{C}, \mathrm{F})=$ $320 \mathrm{~Hz})$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v\left(\mathrm{~cm}^{-1}\right)$ 1561.22, 1489.20, 1456.12, 1275.10, 1257.24, 1222.21, 1169.10, $1150.39,1029.46,758.88,708.60,688.33 . \mathrm{MS}: \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{NS}(\mathrm{M}-\mathrm{OTf})^{+} 314.0998$, found 314.1002 .

3,5-Diphenyl-2-(4-methoxyl)phenylthiazolium trifluoromethanesulfonate (5b)

$4 \mathbf{b}(0.185 \mathrm{~g}, 0.512 \mathrm{mmol})$ was dissolved in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.104$ $\mathrm{g}, 1.024 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C} . \mathrm{Tf}_{2} \mathrm{O}(0.288 \mathrm{~g}, 1.024 \mathrm{mmol})$ was added carefully over 5 mins at $-40^{\circ} \mathrm{C}$. The solution was warmed to room temperature and stirred for 10 h and concentrated in vacuo. The resulting residue was purified by chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}=30: 1\right)$ to give $\mathbf{5 b}$ as a white powder $(0.19 \mathrm{~g}, 75 \%) . \mathrm{Mp}: 148-150{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.23\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\text {thiaz }}\right), 7.67-7.70(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar} H), 7.56(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.47-7.51(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 7.37-7.42(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.36(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}) 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta 168.8(\mathrm{NCS}), 163.7,140.3,136.7,133.6,131.8,131.3,130.9,130.4,129.5,127.1,126.7$, $125.8,120.7(\mathrm{q}, J(\mathrm{C}, \mathrm{F})=318 \mathrm{~Hz}), 116.5,115.1,55.6\left(\mathrm{OCH}_{3}\right)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v\left(\mathrm{~cm}^{-1}\right) 160.43,1491.79$, $1452.57,1261.29,1223.20,1181.39,1152.55,1029.81,835.19,761.67,691.44 . \mathrm{MS}: \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NOS}(\mathrm{M}-\mathrm{OTf})^{+} 344.1104$, found 344.1110 .

3,5-Diphenyl-2-(4-chloride)phenylthiazolium trifluoromethanesulfonate (5c)

$4 \mathbf{c}(0.436 \mathrm{~g}, 1.19 \mathrm{mmol})$ was dissolved in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.242$ $\mathrm{g}, 2.38 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C} . \mathrm{Tf}_{2} \mathrm{O}(0.671 \mathrm{~g}, 2.38 \mathrm{mmol})$ was added carefully over 5 mins at $-40^{\circ} \mathrm{C}$. The solution was warmed to room temperature and stirred for 10 h and concentrated in vacuo. The resulting residue was purified by chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}=30: 1\right)$ to give 5 c as a white powder $(0.47 \mathrm{~g}, 80 \%) . \mathrm{Mp}: 185-187^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.26\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} H_{\text {thiaz }}\right)$, 7.68-7.71 (m, 2 $\mathrm{H}, \mathrm{Ar} H), 7.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.51-7.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.43-7.50(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar} H), 7.36(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H$). ${ }^{13} \mathrm{C}$ NMR (DMSO, 100 MHz): $\delta 167.3$ (NCS), 140.2, 138.1, 136.7, 135.5, 131.8, 131.2, 130.9, 130.0, 129.8, 129.4, 127.0, 126.6, 126.2, 123.7, $120.6(\mathrm{q}, J(\mathrm{C}, \mathrm{F})=320 \mathrm{~Hz}) . \operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $v\left(\mathrm{~cm}^{-1}\right) 1591.57,1490.57,1451.61,1257.52,1222.83,1150.46,1093.47,1028.95,1002.49,829.85$, 761.26, 745.40, 691.03. MS: m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{CINS}$ (M-OTf) ${ }^{+} 348.0608$, found 348.0605 .

2,3,5-Triphenyloxazol-4-ylidene rhodium(I) cyclooctadiene chloride (6a)

KHMDS (1.0 M in hexane, $0.246 \mathrm{~mL}, 0.246 \mathrm{mmol}$) was added dropwise to a solution of $3 \mathbf{a}(0.10 \mathrm{~g}, 0.224 \mathrm{mmol})$ and $[(\mathrm{COD}) \mathrm{RhCl}]_{2}(0.055 \mathrm{~g}, 0.112 \mathrm{mmol})$ in THF (5 mL) at $-78^{\circ} \mathrm{C}$. After 30 mins , the mixture was warmed to room temperature and stirred for 5 h . The solvent was evacuated in vacuo and the residue was purified by column chromatography on silica gel $(\mathrm{PE} / \mathrm{EtOAc}=2: 1)$ to give the product $\mathbf{6 a}$ as a yellow powder ($59 \mathrm{mg}, 49 \%$). Mp: 204-206 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 8.79$ (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H$), 7.99 (s , $2 \mathrm{H}, \mathrm{Ar} H$), 7.58-7.62 (m, $3 \mathrm{H}, \mathrm{ArH}$), 7.46-7.51 (m, $5 \mathrm{H}, \mathrm{ArH}$), 7.32-7.39 (m, $3 \mathrm{H}, \mathrm{ArH}), 4.91-4.95$ (m, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}$), 4.82-4.86(m, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}$), $3.23\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right.$), 2.66-2.70 (m, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}$), 2.29-2.34 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.67-1.79 (m, $4 \mathrm{H}, \mathrm{CH}_{2}$), 1.38-1.48 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}^{\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.}$ $\mathrm{MHz}): \delta 159.3$ (d, $\left.J_{\mathrm{C}-\mathrm{Rh}}=46.3 \mathrm{~Hz}, \mathrm{C}=\mathrm{Rh}\right), 157.5,152.2,152.2,138.7,132.5,130.0,129.3$, 129.1, 129.1, 128.3, 128.3, 127.8, 125.2, 121.6, $96.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=7.5 \mathrm{~Hz}, C H, C O D\right), 95.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=6.9 \mathrm{~Hz}\right.$, $C H, C O D), 69.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=15.5 \mathrm{~Hz}, C \mathrm{H}, \mathrm{COD}\right), 67.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=14.4 \mathrm{~Hz}, C H, C O D\right), 33.2\left(\mathrm{CH}_{2}\right), 31.3$ $\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right)$. MS: m / z calculated for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NORh}(\mathrm{M}-\mathrm{Cl})^{+} 508.1148$, found 508.1141 .

3,5-Diphenyl-2-(4-methoxy)phenyloxazol-4-ylidene rhodium(I) cyclooctadiene chloride (6b)

KHMDS (1.0 M in hexane, $0.46 \mathrm{~mL}, 0.46 \mathrm{mmol}$) was added dropwise to a solution of $\mathbf{3 b}(0.2 \mathrm{~g}, 0.42 \mathrm{mmol})$ and $[(\mathrm{COD}) \mathrm{RhCl}]_{2}(0.104 \mathrm{~g}, 0.21 \mathrm{mmol})$ in THF (5 mL) at $-78{ }^{\circ} \mathrm{C}$. After 30 mins , the mixture was warmed to room temperature and stirred for 5 h . The solvent was evacuated in vacuo and the residue was purified by column chromatography on silica gel $(\mathrm{PE} / \mathrm{EtOAc}=2: 1)$ to give the product $\mathbf{6 b}$ as a yellow powder ($135 \mathrm{mg}, 56 \%$). Mp: $230-232{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, $7.98(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 7.62(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar} H)$, 7.48 $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.42(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.86(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 4.89-4.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 4.80-4.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.23$ $\left(\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 2.68-2.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 2.30-2.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.68-1.77\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.38-1.48 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 162.8,158.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=46.7 \mathrm{~Hz}, \mathrm{C}=\mathrm{Rh}\right)$, $157.7,151.4,151.3,138.9,130.3,129.9,129.3,128.3,127.5,125.1,114.7,113.8,96.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=8.2\right.$ $\mathrm{Hz}, C H, C O D), 95.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=7.1 \mathrm{~Hz}, C H, C O D\right), 69.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=15.4 \mathrm{~Hz}, C H, C O D\right), 67.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}\right.$ $=14.2 \mathrm{~Hz}, C H, C O D), 55.5\left(\mathrm{OCH}_{3}\right), 33.2\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right) . \mathrm{MS}: \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{Rh}(\mathrm{M}-\mathrm{Cl})^{+} 538.1253$, found 538.1251.

3,5-Diphenyl-2-(4-chloride)phenyloxazol-4-ylidene rhodium(I) cyclooctadiene chloride (6c)

KHMDS (1.0 M in hexane, $0.23 \mathrm{~mL}, 0.23 \mathrm{mmol}$) was added dropwise to a solution of $3 \mathrm{c}(0.1 \mathrm{~g}, 0.21 \mathrm{mmol})$ and $[(\mathrm{COD}) \mathrm{RhCl}]_{2}(0.051 \mathrm{~g}, 0.105 \mathrm{mmol})$ in THF (5 mL) at $-78{ }^{\circ} \mathrm{C}$. After 30 mins , the mixture was warmed to room temperature and stirred for 5 h . The solvent was evacuated in vacuo and the residue was purified by column chromatography on silica gel $(\mathrm{PE} / \mathrm{EtOAc}=2: 1)$ to give the product $\mathbf{6 c}$ as a yellow powder ($85 \mathrm{mg}, 71 \%$). Mp: 203-205 ${ }^{\circ} \mathrm{C} \cdot{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.97(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} H), 7.63(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar} H), 7.50$ (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.34-7.41(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar} H), 4.93\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 4.81-4.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right)$, $3.22\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 2.66-2.69\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 2.27-2.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.68-1.79\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.36-1.51 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 159.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=46.9 \mathrm{~Hz}, \mathrm{C}-\mathrm{Rh}\right), 156.5$, $152.5,152.5,139.1,138.5,130.2,129.6,129.4,129.4,128.9,128.4,127.9,125.3,120.0,96.7$ (d, $J_{\mathrm{C}-\mathrm{Rh}}$ $=7.3 \mathrm{~Hz}, C \mathrm{H}, \mathrm{COD}), 95.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=7.6 \mathrm{~Hz}, C H, C O D\right), 69.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=14.3 \mathrm{~Hz}, C H, C O D\right), 67.3(\mathrm{~d}$,
$\left.J_{\mathrm{C}-\mathrm{Rh}}=14.8 \mathrm{~Hz}, C \mathrm{H}, \mathrm{COD}\right), 33.2\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right) . \mathrm{MS}: \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{ClNORh}(\mathrm{M}-\mathrm{Cl})^{+} 542.0758$, found 542.0750 .

2,3,5-Triphenylthiazol-4-ylidene rhodium(I) cyclooctadiene chloride (7a)

KHMDS (1.0 M in hexane, $0.12 \mathrm{~mL}, 0.12 \mathrm{mmol}$) was added dropwise to a solution of $5 \mathbf{5 a}(0.05 \mathrm{~g}, 0.108 \mathrm{mmol})$ and $[(\mathrm{COD}) \mathrm{RhCl}]_{2}(0.027 \mathrm{~g}, 0.054 \mathrm{mmol})$ in THF (5 mL) at $-78^{\circ} \mathrm{C}$. After 30 mins , the mixture was warmed to room temperature and stirred for 5 h . The solvent was evacuated in vacuo and the residue was purified by column chromatography on silica gel $(\mathrm{PE} / \mathrm{EtOAc}=2: 1)$ to give the product 7 a as a red powder $(30$ $\mathrm{mg}, 50 \%) . \mathrm{Mp}: 202-204{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 8.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2$ $\mathrm{H}, \mathrm{Ar} H), 7.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 7.41-7.53(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 7.39(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.24-7.33(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{Ar} H), 6.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 4.83-4.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 4.72-4.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 2.88-2.92(\mathrm{~m}, 1 \mathrm{H}$, $\left.\left.\mathrm{CH}_{2} \mathrm{CH}\right), 2.47-2.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 2.08-2.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.95-2.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})_{2}\right), 1.52-1.65(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.25-1.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 187.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=44.9 \mathrm{~Hz}, \mathrm{C}=\mathrm{Rh}\right)$, $165.2,165.2,142.1,133.5,133.5,133.5,131.0,129.2,129.0,128.7,128.3,127.9,127.4,95.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}\right.$ $=7.1 \mathrm{~Hz}, C H, C O D), 94.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=6.6 \mathrm{~Hz}, C H, C O D\right), 69.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=14.9 \mathrm{~Hz}, C H, C O D\right), 66.4(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{Rh}}=15.2 \mathrm{~Hz}, \mathrm{CH}, \mathrm{COD}\right), 33.2\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right) . \mathrm{MS}: \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{ClNRhS}(\mathrm{M})^{+} 559.0608$, found 559.0611.

3,5-Diphenyl-2-(4-methoxy)phenylthiazol-4-ylidene rhodium(I) cyclooctadiene chloride (7b)

KHMDS (1.0 M in hexane, $0.11 \mathrm{~mL}, 0.11 \mathrm{mmol}$) was added dropwise to a solution of $5 \mathbf{b}(0.1 \mathrm{~g}, 0.2 \mathrm{mmol})$ and $[(\mathrm{COD}) \mathrm{RhCl}]_{2}(0.05 \mathrm{~g}, 0.1 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After 30 mins , the mixture was warmed to room temperature and stirred for 5 h . The solvent was evacuated in vacuo and the residue was purified by column chromatography on silica gel $(\mathrm{PE} / \mathrm{EtOAc}=2: 1)$ to give the product 7a as a red powder ($55 \mathrm{mg}, 46 \%$). Mp: $186-188{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.02(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{Ar} H), 8.69(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 7.48-7.54(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 7.37(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}, \operatorname{Ar} H), 7.29(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Ar} H), 7.18(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 6.90(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Ar} H), 6.80(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 4.81-4.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 4.70-4.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 2.86-2.90 (m, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 2.44-2.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 2.07-2.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.97-2.02(\mathrm{~m}, 1 \mathrm{H}$,
CH_{2}), 1.51-1.64 (m, $4 \mathrm{H}, \mathrm{CH}_{2}$), 1.25-1.34 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 186.0(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{Rh}}=44.4 \mathrm{~Hz}, \mathrm{C}=\mathrm{Rh}\right), 165.5,165.5,161.6,142.2,133.6,132.2,132.2,130.8,129.0,128.5,128.2$, 127.6, 119.5, 114.4, 95.3 (d, $J=7.3 \mathrm{~Hz}, C H, C O D), 94.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=6.7 \mathrm{~Hz}, C H, \mathrm{COD}\right), 69.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=\right.$ $15.1 \mathrm{~Hz}, C \mathrm{H}, \mathrm{COD}), 66.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=15.2 \mathrm{~Hz}, C H, \mathrm{COD}\right), 55.3\left(\mathrm{OCH}_{3}\right), 33.2\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right), 29.0$ $\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right) . \mathrm{MS}: \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{ClNORhS}(\mathrm{M})^{+} 589.0713$, found 589.0714.

3,5-Diphenyl-2-(4-chloride)phenylthiazol-ylidene rhodium(I) cyclooctadiene chloride (7c)

KHMDS (1.0 M in hexane, $0.11 \mathrm{~mL}, 0.11 \mathrm{mmol}$) was added dropwise to a solution of $5 \mathrm{c}(0.1 \mathrm{~g}, 0.2 \mathrm{mmol})$ and $\left[(\mathrm{COD}) \mathrm{RhCl}_{2}(0.05 \mathrm{~g}, 0.1 \mathrm{mmol})\right.$ in THF $(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 30 mins , the mixture was warmed to room temperature and stirred for 5 h . The solvent was evacuated in vacuo and the residue was purified by column chromatography on silica gel $(\mathrm{PE} / \mathrm{EtOAc}=2: 1)$ to give the product 7 c as a red powder $(60 \mathrm{mg}, 50 \%)$. $\mathrm{Mp}: 208-210{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta 9.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 8.70(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 7.50-7.56(\mathrm{~m}, 3 \mathrm{H}$, $\operatorname{Ar} H), 7.42(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar} H), 7.27-7.31(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 7.19(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 6.88(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{Ar} H), 4.83-4.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 4.72-4.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 2.89\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right)$, 2.45-2.49 (m, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 2.08-2.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 1.94-2.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.52-1.63(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.26-1.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 187.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=45.1 \mathrm{~Hz}, \mathrm{C}=\mathrm{Rh}\right)$, $163.6,163.6,141.8,137.6,133.8,133.8,133.3,130.3,129.4,129.4,128.7,128.3,128.1,125.8,95.7$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{Rh}}=7.5 \mathrm{~Hz}, C \mathrm{H}, \mathrm{COD}\right), 94.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=7.8 \mathrm{~Hz}, C \mathrm{H}, \mathrm{COD}\right), 69.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=14.7 \mathrm{~Hz}, C \mathrm{H}\right.$, COD $), 66.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=14.3 \mathrm{~Hz}, C H, \mathrm{COD}\right), 33.2\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right) . \mathrm{MS}: \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{NRhS}(\mathrm{M})^{+}$593.0218, found 593.0219.

2,3,5-Triphenyloxazol-4-ylidene rhodium(I) biscarbonyl chloride (8a)

Rh complex 6a ($37 \mathrm{mg}, 0.068 \mathrm{mmol}$) was dissolved in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and carbon monoxide was bubbled through the solution for 1 h at room temperature. A color change from yellow to pale yellow was observed during this time. The solvent was evacuated in vacuo and the residue was purified by column chromatography on silica gel $(\mathrm{PE} / \mathrm{EtOAc}=3: 1)$ to give the product $\mathbf{8 a}$ as a yellow powder $(25 \mathrm{mg}, 75 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta 8.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.53-7.66(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar} H), 7.48(\mathrm{t}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar} H)$,
$7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ar} H) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 185.6$ (d, $\left.J_{\mathrm{C}-\mathrm{Rh}}=54.2 \mathrm{~Hz}, \mathrm{Rh}-\mathrm{CO}\right)$, $183.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=75.5 \mathrm{~Hz}, \mathrm{Rh}-\mathrm{CO}\right), 158.0,155.0,155.0,151.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=39.5 \mathrm{~Hz}, \mathrm{Rh}=\mathrm{C}\right), 138.2,133.2$, $130.8,130.0,129.4,129.0,128.5,128.5,128.1,125.8,121.2$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v\left(\mathrm{~cm}^{-1}\right) 2067.01$ (CO), 1988.82 (CO).

3,5-Diphenyl-2-(4-methoxy)phenyloxazol-4-ylidene rhodium(I) biscarbonyl chloride (8b)

 Rh complex $\mathbf{6 b}(68 \mathrm{mg}, 0.118 \mathrm{~mol})$ was dissolved in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and carbon monoxide was bubbled through the solution for 1 h at room temperature. A color change from yellow to pale yellow was observed during this time. The solvent was evacuated in vacuo and the residue was purified by column chromatography on silica gel $(\mathrm{PE} / \mathrm{EtOAc}=3: 1)$ to give the product $\mathbf{8 b}$ as a yellow powder ($55 \mathrm{mg}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.43(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.59-7.64(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar} H), 7.41-7.48(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H), 7.38(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.89$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 185.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=54.1\right.$ $\mathrm{Hz}, \mathrm{Rh}-\mathrm{CO}), 183.2$ (d, $\left.J_{\mathrm{C}-\mathrm{Rh}}=74.7 \mathrm{~Hz}, \mathrm{Rh}-\mathrm{CO}\right), 163.4,158.1,154.0,154.0,150.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=39.4 \mathrm{~Hz}\right.$, $\mathrm{Rh}=\mathrm{C}), 138.4,130.7,130.5,130.0,128.7,128.5,128.3,125.6,114.7,113.3,55.6\left(\mathrm{OCH}_{3}\right) . \mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right):$ $v\left(\mathrm{~cm}^{-1}\right) 2064.94(\mathrm{CO}), 1985.79(\mathrm{CO})$.

3,5-Diphenyl-2-(4- chloride)phenyloxazol-4-ylidene rhodium(I) biscarbonyl chloride (8c)

Rh complex $\mathbf{6 c}(62 \mathrm{mg}, 0.107 \mathrm{~mol})$ was dissolved in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and carbon monoxide was bubbled through the solution for 1 h at room temperature. A color change from yellow to pale yellow was observed during this time. The solvent was evacuated in vacuo and the residue was purified by column chromatography on silica gel $(\mathrm{PE} / \mathrm{EtOAc}=3: 1)$ to give the product 8 c as a yellow powder ($48 \mathrm{mg}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 8.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar} H$), $7.60-7.63(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar} H), 7.48(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.37-7.44(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar} H) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 185.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=54.3 \mathrm{~Hz}, \mathrm{Rh}-\mathrm{CO}\right), 183.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=75 \mathrm{~Hz}, \mathrm{Rh}-\mathrm{CO}\right), 157.0$, $155.2,155.2,151.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=39.9 \mathrm{~Hz}, \mathrm{Rh}=\mathrm{C}\right), 139.9,137.9,131.0,130.2,129.8,129.6,129.1,128.5$, 127.8, 125.8, 119.5. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v\left(\mathrm{~cm}^{-1}\right) 2065.97(\mathrm{CO}), 1986.25(\mathrm{CO})$.

2,3,5-Triphenylthiazol-4-ylidene rhodium(I) biscarbonyl chloride (9a)

Rh complex 7a ($43 \mathrm{mg}, 0.077 \mathrm{~mol}$) was dissolved in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and carbon monoxide was bubbled through the solution for 1 h at room temperature. A color change from red to orange yellow was observed during this time. The solvent was evacuated in vacuo and the residue was purified by column chromatography on silica gel $(\mathrm{PE} / \mathrm{EtOAc}=3: 1)$ to give the product 9 a as a yellow powder ($38 \mathrm{mg}, 98 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta 8.27(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 7.42-7.49(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar} H), 7.34(\mathrm{t}, J=$ $16 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.27(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ $185.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=53.3 \mathrm{~Hz}, \mathrm{Rh}-\mathrm{CO}\right), 183.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=76.5 \mathrm{~Hz}, \mathrm{Rh}-\mathrm{CO}\right), 176.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=38.2 \mathrm{~Hz}\right.$, $\mathrm{Rh}=\mathrm{C}), 171.3,166.6,166.6,141.4,138.7,138.7,132.3,131.7,130.0,129.2,129.1,128.9,128.6$, 126.9. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v\left(\mathrm{~cm}^{-1}\right) 2060.96(\mathrm{CO}), 1981.06(\mathrm{CO})$.

3,5-Diphenyl-2-(4-methoxy)phenylthiazol-4-ylidene rhodium(I) biscarbonyl chloride (9b)

Rh complex $\mathbf{7 b}(52 \mathrm{mg}, 0.088 \mathrm{~mol})$ was dissolved in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and carbon monoxide was bubbled through the solution for 1 h at room temperature. A color change from yellow to pale yellow was observed during this time. The solvent was evacuated in vacuo and the residue was purified by column chromatography on silica gel $(\mathrm{PE} / \mathrm{EtOAc}=3: 1)$ to give the product $\mathbf{9 b}$ as a yellow powder ($46 \mathrm{mg}, 97 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.26(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 8.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 7.38-7.55(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar} H), 7.20(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 6.82(\mathrm{~d}$, $\left.J=9.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 3.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH})_{3}\right){ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 186.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=54.5 \mathrm{~Hz}\right.$, Rh-CO), 183.2 (d, $J_{\mathrm{C}-\mathrm{Rh}}=76.4 \mathrm{~Hz}, \mathrm{Rh}-\mathrm{CO}$), $175.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=37.9 \mathrm{~Hz}, \mathrm{Rh}=\mathrm{C}\right), 167.0,167.0,162.1$, 141.6, 137.4, 137.3, 132.4, 130.9, 129.9, 128.9, 128.7, 128.6, 119.0, 114.7, $55.4\left(\mathrm{OCH}_{3}\right) . \operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $v\left(\mathrm{~cm}^{-1}\right) 2061.47(\mathrm{CO}), 1981.71(\mathrm{CO})$.

3,5-Diphenyl-2-(4- chloride)phenylthiazol-4-ylidene rhodium(I) biscarbonyl chloride (9c)

Rh complex 7c ($54 \mathrm{mg}, 0.091 \mathrm{mmol}$) was dissolved in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and carbon monoxide was bubbled through the solution for 1 h at room temperature. A color change from red to orange yellow was observed during this time. The solvent was evacuated in vacuo and the residue was purified by column chromatography on silica gel $(\mathrm{PE} / \mathrm{EtOAc}=3: 1)$ to give the product 9 c as a yellow powder (42mg, $85 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.26(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 7.42-7.53(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar} H), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.21(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 185.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=53.6 \mathrm{~Hz}, \mathrm{Rh}-\mathrm{CO}\right), 183.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}\right.$ $=76.4 \mathrm{~Hz}, \mathrm{Rh}-\mathrm{CO}), 177.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=39.2 \mathrm{~Hz}, \mathrm{Rh}=\mathrm{C}\right), 165.1,165.1,141.2,139.0,139.0,138.3,132.1$, $130.3,130.2,129.6,129.1,129.1,128.7,125.2 . \mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v\left(\mathrm{~cm}^{-1}\right) 2061.95(\mathrm{CO}), 1981.92(\mathrm{CO})$.

NMR Spectra:

N-Phenyl-amidoacetophenones (2a)

N-4-methoxylphenyl-amidoacetophenones (2b)

N-4-chlorophenyl-amidoacetophenones (2c)

2,3,5-Triphenyloxazolium trifluoromethanesulfonate (3a)

3,5-Diphenyl-2-(4-methoxyl)phenyloxazolium trifluoromethanesulfonate (3b)

3,5-Diphenyl-2-(4-chloride)phenyloxazolium trifluoromethanesulfonate (3c)

N-(2-oxo-2-phenylethyl)- N-phenylbenzothioamide (4a)

4-methoxy- N-(2-oxo-2-phenylethyl)- N-phenylbenzothioamide (4b)

4-chloro- N -(2-oxo-2-phenylethyl)- N -phenylbenzothioamide (4c)

2,3,5-Triphenylthiazolium trifluoromethanesulfonate (5a)

3,5-Diphenyl-2-(4-methoxyl)phenylthiazolium trifluoromethanesulfonate (5b)

3,5-Diphenyl-2-(4-chloride)phenylthiazolium trifluoromethanesulfonate (5c)

2,3,5-Triphenyloxazol-4-ylidene rhodium(I) cyclooctadiene chloride (6a)

3,5-Diphenyl-2-(4-methoxy)phenyloxazol-4-ylidene rhodium(I) cyclooctadiene chloride (6b)

3,5-Diphenyl-2-(4-chloride)phenyloxazol-4-ylidene rhodium(I) cyclooctadiene chloride (6c)

2,3,5-Triphenylthiazol-4-ylidene rhodium(I) cyclooctadiene chloride (7a)

3,5-Diphenyl-2-(4-methoxy)phenylthiazol-4-ylidene rhodium(I) cyclooctadiene chloride (7b)

3,5-Diphenyl-2-(4-chloride)phenylthiazol-ylidene rhodium(I) cyclooctadiene chloride (7c)

2,3,5-Triphenyloxazol-4-ylidene rhodium(I) biscarbonyl chloride (8a)

3,5-Diphenyl-2-(4-methoxy)phenyloxazol-4-ylidene rhodium(I) biscarbonyl chloride (8b)

3,5-Diphenyl-2-(4- chloride)phenyloxazol-4-ylidene rhodium(I) biscarbonyl chloride (8c)

2,3,5-Triphenylthiazol-4-ylidene rhodium(I) biscarbonyl chloride (9a)

3,5-Diphenyl-2-(4-methoxy)phenylthiazol-4-ylidene rhodium(I) biscarbonyl chloride (9b)

3,5-Diphenyl-2-(4- chloride)phenylthiazol-4-ylidene rhodium(I) biscarbonyl chloride (9c)

X-Ray Crystallography.

Crystallographic measurements were made on a Bruker Smart Apex 100 CCD area detector using graphite monochromated Mo-Karadiation $\left(\lambda_{\mathrm{Mo-K} \alpha}=0.71073 \AA\right.$). The structures were solved by directed methods (SHELXS-97) and refined on F^{2} by full-matrix least squares (SHELX-97) using all unique data. All the calculations were carried out with the SHELXTL18 program. ${ }^{3}$

Key details of the crystal and structure refinement data are summarized in Table S1. Further crystallographic details may be found in the respective CIF files, which were deposited at the Cambridge Crystallographic Data Centre, Cambridge, UK. The CCDC reference numbers for $\mathbf{5 a}, \mathbf{5 b}$, 6a, and 7a were assigned as $887373,887374,885472$, and 885473 , respectively.

[^1]Table S1. Crystal Data, Data Collection, and Structure Refinement for 5a, 5b, 6a, and 7a

	5 a	5b	6 a	7a
Identification code	a20614a	a20614b	a20325b	a20606b
Formula	$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}_{2}$	$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}_{2}$	$\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{ClNORh}$	$\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{Cl}_{3} \mathrm{NRhS}$
Formula weight	463.48	493.50	543.88	644.86
$T, \mathrm{~K}$	293(2)	293(2)	293(2)	293(2)
crystal system	Monoclinic	Triclinic	Orthorhombic	Triclinic
space group	P2(1)/c	P-1	Pbca	P-1
a, \AA	9.645(3)	7.594(6)	11.671(7)	7.677(9)
b, \AA	14.571(5)	10.726(9)	19.299(12)	12.049(15)
c, \AA	15.150(5)	15.412(12)	21.860(14)	16.55(2)
α, deg	90	106.631(9)	90	109.144(15)
β, deg	101.947(5)	98.221(10)	90	96.378(14)
γ, deg	90	103.331(10)	90	97.420(15)
Volume, \AA^{3}	2083.1(13)	1140.7(16)	4924(5)	1415(3)
Z	4	2	8	2
$D_{\text {calc }}, \mathrm{Mg} / \mathrm{m}^{3}$	1.478	1.437	1.467	1.514
absorption coefficient, mm^{-1}	0.307	0.288	0.824	0.981
F(000)	952	508	2224	656
crystal size, mm	$\begin{gathered} 0.20 \mathrm{x} 0.20 \mathrm{x} \\ 0.18 \end{gathered}$	$\begin{gathered} 0.32 \times 0.25 \mathrm{x} \\ 0.22 \end{gathered}$	$\begin{gathered} 0.12 \times 0.09 \mathrm{x} \\ 0.08 \end{gathered}$	$\begin{gathered} 0.63 \times 0.54 \mathrm{x} \\ 0.45 \end{gathered}$
2θ range, deg	1.96 to 26.00	1.41 to 25.01	1.86 to 27.01	1.82 to 25.01
reflections	9226 / 4056	4714 / 3924	22379 / 5336	5816 / 4862
collected/unique	$[\mathrm{R}(\mathrm{int})=0.0333]$	$[\mathrm{R}(\mathrm{int})=0.0665]$	$[\mathrm{R}(\mathrm{int})=0.0507]$	$[\mathrm{R}(\mathrm{int})=0.0381]$
data / restraints / parameters	4056 / 0 / 280	3924 / $1 / 304$	5336 / $1 / 315$	4862 / 0 / 342
goodness of fit on F^{2}	1.056	1.161	0.901	1.095
final R indices $[I>2 \sigma(I)]^{a}$	$\begin{gathered} \mathrm{R} 1=0.0509 \\ \mathrm{wR} 2=0.1502 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.0978 \\ \mathrm{wR} 2=0.2606 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.0316 \\ \mathrm{wR} 2=0.0671 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.0471 \\ \mathrm{wR} 2=0.1195 \end{gathered}$
R indices (all data)	$\begin{gathered} \mathrm{R} 1=0.0692 \\ \mathrm{wR} 2=0.1624 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.1077 \\ \mathrm{wR} 2=0.2740 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.0608 \\ \mathrm{wR} 2=0.0742 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.0501, \\ \mathrm{wR} 2=0.1219 \end{gathered}$
lgst diff peak and hole, e $/ \AA^{3}$	0.427 and -0.463	0.955 and -0.877	0.464 and -0.489	0.728 and -1.245

[^0]: 1 F. J. Lakner, M. A. Parker, B. Rogovoy, A. Khvat and A. Ivachtchenko, Synthesis, 2009, 12, 1987.

[^1]: 2. G. M. Sheldrick, SHELL-97, Program for crystal structure refinement, University of Göttingen: Göttingen, Germany, 1997.
