- Electronic Supplementary Information (ESI) -

New tetramethylthiepinium (TMTI) for Copper-Free Click Chemistry

Mathias King, Rachid Baati* and Alain Wagner*

Faculté de Pharmacie Université de Strasbourg 74 route du Rhin CS 60024 67401 ILLKIRCH CEDEX Email: alwag@unistra.fr

Table of contents:

1.	General	S2
2.	TMTH Synthesis reported by Krebs and Kimling	S2
3.	Experimental Procedures	S3
4.	HPLC Chromatograms and NMR Results	S5
5.	Analytical results	S9

1. General

All chemical reagents and solvents were purchased from Sigma-Adrich, Acros, TCI or Alfa-Aesar and were used without further purification unless stated otherwise. Na₂SO₄ was used as a drying agent in all cases and solvent was evaporated with a Büchi Rotavapor R-114 equipped with a vacuubrand PC 101 NT.

Analytical thin layer chromatography (TLC) was performed using plates 60F-254 purchased from Merck. ¹H and ¹³C NMR spectra were recorded at 23°C on Bruker 400 and 500 spectrometers. Recorded shifts are reported in parts per million (δ) and calibrated using residual undeuterated solvent. Data are represented as follows: Chemical shift, mutiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet, br = broad), coupling constant (*J*, Hz) and integration. High resolution mass spectra (HRMS) were obtained using a Agilent Q-TOF (time of flight) 6520 and low resolution mass spectra using an Agilent MSD 1200 SL (ESI/APCI) with an Agilent HPLC1200 SL.

2. TMTH Synthesis reported by Krebs and Kimling^[1]

3. Experimental Procedures

Synthesis of Ethyl 3-(3-ethoxy-2,2-dimethyl-3-oxopropyl)sulfanyl-2,2-dimethylpropanoate.

3-(2-carboxy-2-methylpropyl)sulfanyl-2,2-dimethylpropanoic acid (1g, 4.27mmol, 1eq) was suspended in 1,1,1-triethoxyethane (2.35ml, 12.80mmol, 3eq) and ethanol (0.50ml, 8.57mmol, 2eq) was added to increase solubility. The suspension was heated in a microwave oven to 140°C for 10min. Addition of brine (10ml) and extraction with Ethyl acetate (3 x 10ml). The combined organic phases were dried over Na₂SO₄, decanted and evaporated to dryness. The crude product was purified via silica gel column chromatography (CH₂Cl₂/MeOH 100:0 to 95:5) to yield the desired product as colorless oil (1.08g, 3.72mmol, 87%). R_f = 0.88 in 98:2 CH₂Cl₂/MeOH.

Recorded NMR data is in agreement with reported spectral data^[2].

Synthesis of 1-[4-(methoxycarbonyl)benzyl]-3,3,6,6-tetramethyl-4,5-didehydro-2,3,6,7-tetrahydrothiepinium trifluoromethanesulfonate

3, 3, 6, 6- tetramethylthiacycloheptyne (10 mg, 0.06 mmol, 1 eq) and methyl 4-(bromomethyl)benzoate (27.2 mg, 0.12 mmol, 2 eq) were dissolved in dichloromethane (0.4 ml) and placed under argon atmosphere. Lithium trifluoromethanesulfonate (92.7 mg, 0.59 mmol, 10 eq) was added in water (0.2 ml) and the reaction mixture was stirred at room temperature for 24 h. Water (1.8 ml) was added and the reaction mixture was extracted with dichloromethane (3 x 5 ml). The combined organic phases were dried with Na₂SO₄, decanted and evaporated to dryness. The crude product was purified via silica gel column chromatography (CH₂Cl₂/MeOH 100:0 to 9:1) to yield the desired product (17.8 mg, 0.04 mmol, 64%). R_f = 0.18 in 95:5 CH₂Cl₂/MeOH.

¹H NMR (CDCl₃, 400MHz): δ 8.10 - 7.98 (m, *J* = 8.0 Hz, 2 H), 7.66 - 7.55 (m, *J* = 8.3 Hz, 2 H), 4.97 (s, 2 H), 4.15 (d, *J* = 12.5 Hz, 2 H), 3.93 (s, 3 H), 3.63 (d, *J* = 12.3 Hz, 2 H), 1.34 (s, 6 H), 1.27 (s, 6 H). ¹³C NMR CDCl₃, 101MHz): δ 166.0, 132.6, 131.7, 130.8, 130.7, 106.0, 61.5, 52.4, 34.5, 29.7, 26.2, 25.3. HRMS (ESI) calc for C₁₉H₂₅O₂S⁺ [M]⁺, 317.15761; found 317.15814.

Synthesis of 1-benzyl-6-[4-(methoxycarbonyl)benzyl]-4,4,8,8-tetramethyl-4,5,7,8-tetrahydro-1H-thiepino[4,5-d][1,2,3]triazol-6-ium trifluoromethanesulfonate

1-[4-(methoxycarbonyl)benzyl]-3,3,6,6-tetramethyl-4,5-didehydro-2,3,6,7-tetrahydrothiepinium trifluoromethanesulfonate (3.5 mg, 7.5 μ mol, 1 eq) is dissolved in acetonitrile (0.25 ml) under argon atmosphere. Benzyl azide (6.0 mg, 45.0 μ mol, 6 eq) is added and the reaction mixture is stirred at room temperature for 2 h. The solvent is evaporated under reduced pressure. The crude product is purified via silica gel column chromatography (CH₂Cl₂/MeOH 100:0 to 9:1) to yield the desired product (3.3 mg, 5.5 μ mol, 37%). R_f = 0.22 in 95:5 CH₂Cl₂/MeOH.

¹H NMR (CDCl₃, 400MHz): δ 8.07 - 7.95 (m, 2 H), 7.59 - 7.46 (m, 2 H), 7.32 - 7.21 (m, 3 H), 6.87 (d, *J* = 6.5 Hz, 2 H), 5.70 (d, *J* = 16.6 Hz, 1 H), 5.61 (d, *J* = 16.6 Hz, 1 H), 5.11 (d, *J* = 13.1 Hz, 1 H), 4.99 (d, *J* = 12.8 Hz, 1 H), 3.87 (s, 3 H), 3.67 (d, *J* = 12.8 Hz, 1 H), 3.43 (d, *J* = 13.1 Hz, 1 H), 3.33 (s, 2 H), 1.73 (s, 3 H), 1.50 (s, 3 H), 1.32 (s, 3 H), 1.12 (s, 3 H). ¹³C NMR CDCl₃, 101MHz): δ 166.0, 147.4, 136.4, 135.2, 132.3, 131.2, 131.0, 130.9, 129.2, 128.5, 126.3, 55.3, 53.4, 52.6, 50.9, 46.1, 36.3, 35.1, 31.2, 30.5, 29.3, 27.5. HRMS (ESI) calc for $C_{26}H_{32}N_3O_2S^+$ [M]⁺, 450.22103; found 450.2205.

⁽¹⁾ Krebs, A.; Kimling, H. *Tetrahedron Letters* **1970**, 761-764.

⁽²⁾ Feeder, N.; Ginnelly, M. J.; Jones, R. V. H.; O'Sullivan, S.; Warren, S. *Tetrahedron Letters* **1994**, *35*, 9095-9098.

4. HPLC Chromatograms and NMR Results

Electronic Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2012

Kinetic recorded with benzyl azide via NMR and integration of the benzyl signal

5. Analytical results

Formula Calculator Results									
Formula	Best	Mass	Tgt Mass	Diff (ppm)	Mz	Ion Species	Score		
C26 H32 N3 O2 S	TRUE	450.22103	450.22152	1.09	450.2205	C26 H32 N3 O2 S	98.88		
C19 H32 N9 S2		450.22105	450.22221	2.57	450.2205	C19 H32 N9 S2	93.75		
C18 H36 N5 O4 S2		450.22104	450.22087	-0.38	450.2205	C18 H36 N5 O4 S2	93.42		
C22 H28 N9 S		450.22105	450.21884	-4.9	450.2205	C22 H28 N9 S	92.4		
C18 H28 N9 O5		450.22104	450.22134	0.66	450.2205	C18 H28 N9 O5	90.49		
C17 H32 N5 O9		450.22103	450.22	-2.29	450.2205	C17 H32 N5 O9	86.51		
C34 H28 N		450.22102	450.22217	2.56	450.2205	C34 H28 N	83.7		
C14 H36 N5 O9 S		450.22104	450.22337	5.18	450.2205	C14 H36 N5 O9 S	82.14		
C21 H32 N5 O4 S		450.22104	450.2175	-7.86	450.2205	C21 H32 N5 O4 S	82.06		
C22 H32 N3 O7		450.22103	450.22403	6.66	450.2205	C22 H32 N3 O7	78.59		