Supporting Information

for

Copper-Catalyzed Cyanation of Arenes Using Benzyl Nitrile as a Cyanide Anion Surrogate

Jisong Jin, Qiaodong Wen, Ping Lu*, and Yanguang Wang*

Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China E-mail: pinglu@zju.edu.cn; orgwyg@zju.edu.cn; Fax: +86-571-87952543

Table of Contents

1. General experimental details	S2
2. Optimization of the reaction conditions	S3
3. Spectral data for substrates and products	S4-S13
4. References	S13
5. Detection of CN ⁻ by indicator paper	S14
6. GC-MS data and possible formation pathway for	S15-S20
by-products	
7. Kinetics Investigation Data	S21
8. Copies of ¹ H and ¹³ C NMR for substrates and	S22-S58
products	

1. General experimental details

Melting points were recorded on a BÜCHI 535. NMR spectra were obtained on a Bruker AVANCE DMX500 spectrometer operating at 500 MHz or 400 MHz for ¹H-NMR, 125 MHz or 100 MHz for ¹³C-NMR in CDCl₃. Chemicals were either purchased or purified by standard techniques without special instructions. Chemical shifts were quoted in parts per million (ppm) referenced to the appropriate solvent peak or 0.0 ppm for tetramethylsilane. The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, t = triplet, m = multiple. Coupling constants J, were reported in hertz unit (Hz). Chemical shifts (in ppm) were referenced to tetramethylsilane ($\delta = 0$ ppm) in CDCl₃ as an internal standard. ¹³C NMR spectra were obtained by using the same NMR spectrometers and chemical shifts were reported in ppm referenced to the center line of a triplet at 77.36 ppm of CDCl₃.

Typical procedure for the reaction of 2-arylpyridine and benzyl cyanide: A 10 mL round-bottom flask was charged with 2-arylpyridine (0.5 mmol), benzyl cyanide (0.75 mmol), CuBr (0.6 mmol), and DMF (2 mL). The reaction mixture was stirred at 130 °C (oil bath) for 18 h. After cooling to room temperature, the resultant mixture was added to water (30 mL), extracted with DCM (3×5 mL), and dried over Na₂SO₄. The dichloromethane was evaporated under reduced pressure and the residue was purified by flash column chromatography on a silica gel to give the products.

2. Optimization of the reaction conditions

Table S1 Optimization of the reaction conditions ^a

Entry	Catalyst	2a	Solvent	Time	Temp	3a/Yield	4a/Yield	Recovery of
	(equiv)	(equiv)		(h)	(°C)	(%) ^b	(%) ^b	1a (%)
1	$CuI(1) + Pd(OAc)_2(0.1)$	1.5	DMF	12	130	30	41	0
2	$CuBr(1) + Pd(OAc)_2(0.1)$	1.5	DMF	12	130	53	ND	40
3	$CuCl(1) + Pd(OAc)_2(0.1)$	1.5	DMF	12	130	32	ND	50
4	CuBr (1)	1.5	DMF	18	130	80	ND	0
5	Cu ₂ O (1)	1.5	DMF	18	130	68	ND	0
6	CuOTf(1)	1.5	DMF	18	130	0	ND	>95
7	$Cu(OAc)_2(1)$	1.5	DMF	18	130	0	ND	0
8	$CuBr_2(1)$	1.5	DMF	18	130	<5	ND	>95
9	CuBr (0.5)	1.5	DMF	18	130	38	ND	51
10	CuBr (1.2)	1.5	DMF	18	130	83	ND	0
11	CuBr (1.5)	1.5	DMF	18	130	63	ND	0
12	CuBr (2)	1.5	DMF	18	130	31	ND	36
13	CuBr (1.2)	1.2	DMF	18	130	75	ND	0
14	CuBr (1.2)	2	DMF	18	130	58	ND	10
15	CuBr (1.2)	1.5	DMSO	18	130	55	ND	0
16	CuBr (1.2)	1.5	DME	18	130	<5	ND	>95
17	CuBr (1.2)	1.5	Toluene	18	reflux	34	ND	50
18	CuBr (1.2)	1.5	NMP	18	130	72	ND	0
19	CuBr (1.2)	1.5	DMF	24	130	61	ND	0
20	CuBr (1.2)	1.5	DMF	36	130	42	30	0
21	CuBr (1.2)	1.5	DMF	18	100	61	ND	<5
22	CuBr (1.2)	1.5	DMF	18	160	53	ND	0
23 °	CuBr (1.2)	1.5	DMF	18	130	<5	ND	>95
24 ^d	CuBr (1.2)	1.5	DMF	18	130	0	ND	>95
25 °	CuBr (1.2)	1.5	DMF	18	130	0	ND	>95
$26^{\rm f}$	CuBr (1.2)	1.5	DMF	18	130	0	ND	>95
27 ^g	CuBr (1.2)	1.5	DMF	18	130	0	ND	>95
28^{h}	CuBr (1.2)	1.5	DMF	18	130	0	ND	>95

^a Reaction conditions: 2-phenylpyridine **1a** (0.5 mmol), solvent (2 mL), air. ^b Isolated yield. ^c Under O₂. ^d Addition of DDQ (0.5 mmol). ^e Addition of *t*-BuOOH (0.5 mmol). ^f Under N₂. ^g Addition of 1,10-Phen (0.5 mmol). ^h Addition of K₂CO₃ (1 mmol).

2. Spectral data for substrates and products:

2-(p-tolyl)pyridine (1b)

colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, *J* = 4.7 Hz, 1H), 7.93 (d, *J* = 7.8 Hz, 2H), 7.63 (m, 2H), 7.28 (d, *J* = 7.9 Hz, 2H), 7.13 (td, *J* = 5.9, 3.7 Hz, 1H), 2.39 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 157.06, 149.27, 138.62, 136.40, 136.29, 129.23, 126.50, 121.53, 119.93, 21.00.

2-(1,1'-biphenyl-4-yl)pyridine (1c)¹

white solid, m.p. 142-143 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.75 (d, J = 4.7 Hz, 1H), 8.12 (d, J = 7.7 Hz, 2H), 7.77 (m, 4H), 7.69 (d, J = 7.8 Hz, 2H), 7.49 (t, J = 7.5 Hz, 2H), 7.40 (t, J = 7.3 Hz, 1H), 7.26 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 157.01, 149.71, 141.70, 140.57, 138.26, 136.74, 128.82, 127.51, 127.44, 127.29, 127.09, 122.09, 120.41.

2-(4-methoxyphenyl)pyridine (1d)

colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, J = 4.4 Hz, 1H), 7.97 (d, J = 8.7 Hz, 2H), 7.67 (m, 2H), 7.17-6.99 (m, 1H), 7.00 (d, J = 8.7 Hz, 2H), 3.85 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 160.41, 157.03, 149.46, 136.56, 131.97, 128.09, 121.32, 119.69, 114.05, 55.25.

2-(4-chlorophenyl)pyridine (1e)²

white solid, m.p. 44-45°C.

¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, J = 4.4 Hz, 1H), 7.95 (d, J = 8.5 Hz, 2H), 7.78-7.73 (m, 1H), 7.70 (d, J = 7.9 Hz, 1H), 7.45 (d, J = 8.5 Hz, 2H), 7.25 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 156.16, 149.72, 137.76, 136.87, 135.08, 128.91, 128.15, 122.36,

120.32.

2-(4-fluorophenyl)pyridine (1f)³

white solid, m.p. 39-41 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, J = 4.5 Hz, 1H), 7.99 (dd, J = 8.0, 5.7 Hz, 2H), 7.72 (t, J = 7.6 Hz, 1H), 7.66 (d, J = 7.9 Hz, 1H), 7.21 (m, 1H), 7.15 (t, J = 8.5 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 164.3 (d, J_{C-F} = 247 Hz), 156.3, 149.6, 136.7, 135.4 (d, J_{C-F} = 3.4 Hz), 128.6 (d, J_{C-F} = 8.7 Hz), 121.9, 120.1, 115.5 (d, J_{C-F} = 21 Hz).

2-(4-(trifluoromethyl)phenyl)pyridine (1g)³

white solid, m.p.70-72 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.72 (d, J = 4.5 Hz, 1H), 8.10 (d, J = 8.2 Hz, 2H), 7.75 (m, 4H), 7.27 (dd, J = 8.4, 3.3 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 155.7, 149.8, 142.6, 136.9, 130.6 (q, J_{C-F} = 32 Hz), 127.1, 125.5, 124.1 (q, J_{C-F} = 270 Hz), 122.9, 120.7.

4-(pyridin-2-yl)benzonitrile (1h)

colorless oil

¹H NMR (400 MHz, CDCl₃) δ 8.74 (d, J = 4.5 Hz, 1H), 8.12 (d, J = 8.2 Hz, 2H), 7.80 (m, 4H), 7.33 (dd, J = 6.4, 5.5 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 155.09, 149.99, 143.39, 137.08, 132.51, 127.39, 123.32, 120.94, 118.80, 112.34.

2-(o-tolyl)pyridine (1i)

colorless oil

¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, *J* = 4.4 Hz, 1H), 7.72 (t, *J* = 7.7 Hz, 1H), 7.39 (d, *J* = 7.6 Hz, 2H), 7.25 (m, 4H), 2.36 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 160.06, 149.19, 140.44, 136.10, 135.74, 130.72, 129.61, 128.25,

125.86, 124.08, 121.60, 20.26.

2-(m-tolyl)pyridine (1j)

colorless oil

¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, *J* = 4.7 Hz, 1H), 7.86 (s, 1H), 7.76 (m, 3H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.24 (m, 2H), 2.46 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 157.64, 149.60, 139.34, 138.46, 136.76, 129.75, 128.66, 127.67, 124.01, 122.05, 120.68, 21.55.

2-(3,5-dimethylphenyl)pyridine (1k)

colorless oil

¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, J = 4.7 Hz, 1H), 7.70 (d, J = 3.6 Hz, 2H), 7.64 (s, 2H), 7.19 (dd, J = 8.5, 4.5 Hz, 1H), 7.07 (s, 1H), 2.41 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 156.06, 149.78, 143.55, 137.77, 136.66, 134.78, 130.59, 128.49, 124.53, 123.10, 118.20, 112.62, 20.05.

5-methyl-2-phenylpyridine (11)

colorless oil

¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 8.00 (d, *J* = 7.5 Hz, 2H), 7.61 (d, *J* = 8.1 Hz, 1H), 7.49 (m, 3H), 7.40 (t, *J* = 7.3 Hz, 1H), 2.35 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 154.48, 149.83, 139.17, 137.07, 131.35, 128.48, 128.38, 126.46, 119.77, 17.90.

2-(naphthalen-1-yl)pyridine (1m)

colorless oil

¹H NMR (400 MHz, CDCl₃) δ 8.85 (d, J = 4.7 Hz, 1H), 8.18 (d, J = 7.6 Hz, 1H), 7.96 (d, J = 8.4 Hz, 2H), 7.81 (dd, J = 10.7, 4.6 Hz, 1H), 7.66 (d, J = 7.0 Hz, 1H), 7.60 (m, 2H), 7.53 (dd, J = 9.5,

5.3 Hz, 2H), 7.33 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 159.04, 149.35, 138.33, 136.26, 133.77, 130.98, 128.75, 128.22, 127.34, 126.35, 125.73, 125.45, 125.16, 124.89, 121.87.

2-(naphthalen-2-yl)pyridine (1n)

colorless oil

¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, J = 4.6 Hz, 1H), 8.53 (s, 1H), 8.18 (d, J = 8.6 Hz, 1H), 7.97 (m, 2H), 7.90 (m, 1H), 7.85 (d, J = 7.9 Hz, 1H), 7.74 (m, 1H), 7.54 (m, 2H), 7.24 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 157.13, 149.65, 136.72, 136.54, 133.53, 133.41, 128.64, 128.38, 127.59, 126.44, 126.22, 124.46, 122.07, 120.70.

2-phenylpyrimidine (10)

colorless oil

¹H NMR (400 MHz, CDCl₃) δ 8.79 (d, J = 4.8 Hz, 2H), 8.47 (dd, J = 6.6, 3.0 Hz, 2H), 7.51 (m, 3H), 7.15 (t, J = 4.8 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 164.63, 157.16, 137.49, 130.72, 128.55, 128.07, 119.02.

2,6-diphenylpyridine (2s)⁴

white solid, m. P. 79-80 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.0 Hz, 4H), 7.83 (m, 1H), 7.73 (d, *J* = 7.8 Hz, 2H), 7.56 (t, *J* = 7.5 Hz, 4H), 7.49 (dd, *J* = 10.6, 3.8 Hz, 2H).

 ^{13}C NMR (100 MHz, CDCl₃) δ 156.75, 139.43, 137.48, 128.97, 128.68, 126.97, 118.62, 77.36, 77.04, 76.73.

2-methyl-6-phenylpyridine (2t)

colorless oil

¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 7.3 Hz, 2H), 7.65 (t, J = 7.7 Hz, 1H), 7.51 (m, 3H), 7.42 (t, J = 7.2 Hz, 1H), 7.11 (d, J = 7.6 Hz, 1H), 2.66 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 158.27, 156.88, 139.70, 136.82, 128.62, 126.94, 121.54, 117.56, 24.70.

2-methoxy-6-phenylpyridine (2u)

colorless oil

¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.2 Hz, 2H), 7.66 (t, J = 7.8 Hz, 1H), 7.51 (t, J = 7.7 Hz, 2H), 7.44 (dd, J = 10.6, 3.8 Hz, 1H), 7.38 (d, J = 7.4 Hz, 1H), 6.74 (d, J = 8.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 163.70, 154.60, 139.13, 139.02, 128.81, 128.58, 126.66, 112.74, 109.21, 53.16.

2-(anthracen-9-yl)pyridine (2v)³

white solid, m. p. 165-167 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.96 (d, J = 4.8 Hz, 1H), 8.58 (s, 1H), 8.09 (d, J = 8.4 Hz, 2H), 7.92 (dd, J = 11.0, 4.2 Hz, 1H), 7.65 (d, J = 8.8 Hz, 2H), 7.55 (d, J = 7.7 Hz, 1H), 7.46 (ddd, J = 22.9, 15.3, 7.2 Hz, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 158.13, 149.98, 136.20, 134.99, 131.29, 129.95, 128.41, 127.52, 126.74, 125.91, 125.81, 125.05, 122.28.

2-(pyridin-2-yl)benzonitrile (3a)

colorless oil

¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, *J* = 4.7 Hz, 1H), 7.85-7.76 (m, 4H), 7.71-7.67 (dd, *J* = 8.0, 4.4 Hz, 1H), 7.50 (m, 1H), 7.37-7.34(m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 155.18, 149.86, 143.39, 136.80, 134.07, 132.79, 129.91, 128.71, 123.29, 123.18, 118.64, 110.98.

2-(pyridin-2-yl)isophthalonitrile (4)

CN

white solid, m. p. 141-142 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.86 (d, J = 3.9 Hz, 1H), 8.02 (d, J = 7.9 Hz, 2H), 7.94 (td, J = 7.8, 1.4 Hz, 1H), 7.75 (d, J = 7.8 Hz, 1H), 7.66 (dd, J = 7.9 Hz, 1H), 7.50 (dd, J = 7.1, 5.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 152.17, 150.31, 146.97, 137.31, 137.10, 129.34, 124.76, 124.57, 116.50, 114.20, 77.36, 77.11, 76.85. HRMS (EI) Calcd. for [C₁₃H₇N₃] ([M]⁺) : 205.0640, found: 205.0636.

5-methyl-2-(pyridin-2-yl)benzonitrile (3b)⁴

white solid, m. p. 61-62 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, J = 4.4 Hz, 1H), 7.83 (dd, J = 10.8, 4.5 Hz, 1H), 7.76 (m, 2H), 7.61 (s, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.34 (dd, J = 6.6, 5.5 Hz, 1H), 2.44 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 155.16, 149.78, 140.61, 139.05, 136.75, 134.39, 133.72, 129.79, 123.05, 123.03, 118.88, 110.65, 20.82.

4-(pyridin-2-yl)-(1,1'-biphenyl)-3-carbonitrile (3c)

colorless oil

¹H NMR (400 MHz, CDCl₃) δ 8.81 (s, 1H), 8.03 (d, J = 1.4 Hz, 1H), 7.93 (q, J = 8.1 Hz, 2H), 7.86 (s, 2H), 7.64 (d, J = 7.2 Hz, 2H), 7.51 (t, J = 7.4 Hz, 2H), 7.44 (t, J = 7.3 Hz, 1H), 7.38 (s, 1H).. ¹³C NMR (100 MHz, CDCl₃) δ 154.93, 150.00, 141.95, 138.36, 136.89, 132.64, 131.43, 130.49, 129.21, 128.58, 127.07, 123.38, 123.19, 118.84, 111.49.

5-methoxy-2-(pyridin-2-yl)benzonitrile (3d) ⁴

white solid, m. p. 102-103 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.75 (d, J = 4.5 Hz, 1H), 7.80 (m, 3H), 7.31 (dd, J = 11.7, 5.6 Hz, 1H), 7.28 (d, J = 2.5 Hz, 1H), 7.22 (dd, J = 8.7, 2.5 Hz, 1H), 3.89 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.61, 155.05, 149.85, 136.84, 136.10, 131.43, 122.93, 122.89, 119.47, 118.73, 118.56, 111.80, 55.82.

5-chloro-2-(pyridin-2-yl)benzonitrile (3e) ⁴

white solid, m. p. 166-167 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, *J* = 4.7 Hz, 1H), 7.82 (m, 4H), 7.67 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.38 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 154.14, 150.10, 141.88, 137.03, 134.99, 133.66, 133.24, 131.36, 123.67, 123.14, 117.51, 112.46.

5-fluoro-2-(pyridin-2-yl)benzonitrile (3f)⁴

white solid, m. p. 130-131 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, *J* = 4.4 Hz, 1H), 7.84 (dt, *J* = 7.6, 5.5 Hz, 2H), 7.75 (d, *J* = 7.9 Hz, 1H), 7.49 (dd, *J* = 8.0, 2.4 Hz, 1H), 7.39 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 161.9 (d, J_{C-F} = 252 Hz), 154.1, 149.9, 139.8 (d, J_{C-F} = 3.4 Hz), 136.9, 132.1 (d, J_{C-F} = 8 Hz), 123.3, 123.0, 120.6 (d, J_{C-F} = 25 Hz), 120.4 (d, J_{C-F} = 22 Hz), 117.4, 112.3 (d, J_{C-F} = 10 Hz).

2-(pyridin-2-yl)-5-(trifluoromethyl)benzonitrile (3g)

white solid, m. p. 58-59 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.82 (d, J = 4.7 Hz, 1H), 8.08 (s, 1H), 8.03 (d, J = 8.2 Hz, 1H), 7.95 (d, J = 8.3 Hz, 1H), 7.90 (t, J = 7.2 Hz, 1H), 7.85 (d, J = 7.4 Hz, 1H), 7.44 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 153.8, 150.3, 146.6, 137.1, 131.4 (q, $J_{C-F} = 26$ Hz), 131.1 (q, $J_{C-F} = 3.4$ Hz), 130.8, 129.5 (q, $J_{C-F} = 2.6$ Hz), 124.1, 123.4, 123.0 (q, $J_{C-F} = 217$ Hz), 117.4, 112.0. HRMS (EI) Calcd. for [C₁₃H₇N₂F₃] ([M]⁺) : 248.0561, found: 248.0561.

4-(pyridin-2-yl)isophthalonitrile (3h)⁴

white solid, m. p. 155-156 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.80 (s, 1H), 8.07 (s, 1H), 8.01 (d, *J* = 8.2 Hz, 1H), 7.94 (d, *J* = 8.1 Hz, 1H), 7.88 (m, 2H), 7.43 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 153.28, 150.39, 147.07, 137.52, 137.26, 135.82, 131.06, 124.49, 123.45, 116.75, 116.68, 113.33, 112.59.

3-methyl-2-(pyridin-2-yl)benzonitrile (3i)

colorless oil

¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, J = 4.4 Hz, 1H), 7.85 (td, J = 7.7, 1.7 Hz, 1H), 7.61 (d, J = 7.6 Hz, 1H), 7.52 (d, J = 7.7 Hz, 1H), 7.39 (m, 3H), 2.24 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 156.06, 149.78, 143.55, 137.77, 136.66, 134.78, 130.59, 128.49, 124.53, 123.10, 118.20, 112.62, 20.05.

4-methyl-2-(pyridin-2-yl)benzonitrile (3j)

colorless oil

¹H NMR (400 MHz, CDCl₃) δ 8.60 (s, 1H), 7.80 (dd, *J* = 16.1, 7.8 Hz, 2H), 7.66 (dd, *J* = 18.5, 8.0 Hz, 3H), 7.48 (t, *J* = 7.6 Hz, 1H), 2.41 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 155.19, 149.73, 143.74, 143.15, 136.68, 133.85, 130.57, 129.45, 123.17, 123.14, 118.87, 107.80, 21.68.

2,4-dimethyl-6-(pyridin-2-yl)benzonitrile (3k)

light yellow oil

¹H NMR (400 MHz, CDCl₃) δ 8.73 (d, J = 3.3 Hz, 1H), 7.77 (m, 2H), 7.40 (s, 1H), 7.31 (m, 1H), 7.17 (s, 1H), 2.57 (t, J = 4.2 Hz, 3H), 2.40 (t, J = 4.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 155.81, 149.61, 143.78, 143.03, 143.01, 136.58, 130.75, 128.03, 123.32, 123.01, 117.73, 108.34, 21.54, 20.80.

2-(5-methylpyridin-2-yl)benzonitrile (3l)

CN

colorless oil

¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 7.75 (dd, *J* = 15.6, 7.8 Hz, 2H), 7.60 (dd, *J* = 18.4, 8.2 Hz, 3H), 7.42 (t, *J* = 7.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 152.46, 150.38, 143.52, 137.28, 134.04, 133.14, 132.79, 129.79, 128.44, 122.68, 118.84, 110.88, 18.27.

1-(pyridin-2-yl)-2-naphthonitrile (3m)⁵

white solid, m. p. 156-157 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.84 (d, J = 4.5 Hz, 1H), 7.91 (m, 3H), 7.69 (m, 2H), 7.60 (dd, J = 14.4, 7.2 Hz, 2H), 7.50 (t, J = 7.7 Hz, 1H), 7.43 (dd, J = 7.5, 5.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 155.23, 149.96, 144.41, 136.72, 134.97, 131.10, 129.38, 128.73, 128.27, 127.87, 126.76, 126.67, 125.60, 123.47, 118.49, 109.69.

2-(pyridin-2-yl)naphthalene-1,3-dicarbonitrile (4b)

white solid, m. p. 201-202 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.91 (d, J = 4.4 Hz, 1H), 8.58 (s, 1H), 8.42 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 8.2 Hz, 1H), 7.95 (dt, J = 16.7, 7.7 Hz, 2H), 7.81 (dd, J = 14.9, 7.4 Hz, 2H), 7.52 (dd, J = 7.5, 5.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 152.93, 150.34, 144.20, 139.77, 137.08, 133.78, 132.22, 131.40, 129.51, 129.11, 126.14, 125.01, 124.63, 116.94, 115.56, 111.72, 110.57, 77.36, 77.11, 76.85. HRMS (EI) Calcd. for $[C_{17}H_9N_3]$ ($[M]^+$) : 255.0796, found: 255.0803.

2-(pyrimidin-2-yl)benzonitrile (30)⁵

white solid, m. p. 136-137 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.92 (d, J = 4.0 Hz, 2H), 8.36 (d, J = 7.9 Hz, 1H), 7.85 (d, J = 7.7 Hz, 1H), 7.71 (t, J = 7.7 Hz, 1H), 7.57 (t, J = 7.5 Hz, 1H), 7.33 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 162.72, 157.29, 140.21, 134.98, 132.52, 130.36, 130.17, 120.11, 118.88, 111.70.

2-(1H-pyrazol-1-yl)benzonitrile (3p)

colorless oil

¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 2.4 Hz, 1H), 7.79 (m, 3H), 7.71 (td, J = 8.0, 1.1 Hz, 1H), 7.43 (t, J = 7.7 Hz, 1H), 6.55 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 142.17, 141.90, 134.39, 133.95, 129.46, 127.19, 124.17, 116.94,

108.42, 105.24.

2-(3-methyl-1H-pyrazol-1-yl)benzonitrile (3q)

colorless oil

¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 2.3 Hz, 1H), 7.80 (d, J = 8.2 Hz, 1H), 7.75 (dd, J = 7.8, 0.9 Hz, 1H), 7.68 (td, J = 8.2, 1.2 Hz, 1H), 7.38 (t, J = 7.6 Hz, 1H), 6.34 (d, J = 2.3 Hz, 1H), 2.40 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 151.85, 142.13, 134.38, 134.00, 130.23, 126.70, 124.04, 117.23, 108.65, 104.62.

benzo[h]quinoline-10-carbonitrile (3r)

white solid, m. p. 132-133 °C.

¹H NMR (400 MHz, CDCl₃) δ 9.12 (m, 1H), 8.20 (d, J = 8.0 Hz, 1H), 8.12 (dd, J = 15.6, 7.7 Hz, 2H), 7.78 (q, J = 8.8 Hz, 2H), 7.71 (t, J = 7.7 Hz, 1H), 7.61 (dd, J = 8.0, 4.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 148.41, 144.37, 136.19, 135.68, 133.98, 132.71, 130.63, 127.33, 127.19, 127.05, 126.90, 123.01, 120.81, 108.81.

4. References

- 1 I. M. Heilbron, D. H. Hey, A. Lambert. J. Chem. Soc., 1940, 1279.
- 2 M. Li, R. Hua. Tetrahedron Lett., 2009, 50, 1478.
- 3 L. Ackermann, H. K. Potukuchi, A. R. Kapdi, C. Schulzke. *Chem. Eur. J.*, 2010, **16**, 3300.
- 4 J. Xu, G. Cheng, D. Su, Y. Liu, X. Wang, Y. Hu. Chem. Eur. J., 2009, 15, 13105.
- 5 J. Kim, S. Chang, J. Am. Chem. Soc., 2010, 132, 10272.

5. Detection of CN⁻ by indicator paper

Entry	Benzyl Cyanide	[Cu]	Solvent	Air / N ₂	Turn Red ^b
1	CN	CuBr	DMF	air	Y
2	CN	CuBr ₂	DMF	air	Ν
3	CN	CuBr	DMF	N ₂	Ν
4	CN	CuBr	DMF	air	Y
5	CN	CuBr ₂	DMF	air	Ν
6	OH CN	CuBr	DMF	air	Y
7	OH CN		DMF	air	Y
8	O CN	CuBr	DMF	air	Y
9			DMF	air	Y
					(deep red)

Table S2 Detection of CN⁻ by indicator paper^a

^a Reaction conditions: The mixture was heated at 130 °C in DMF (2 mL) for 3 h before the test.

^b CN⁻ was detected according to the published procedure ((a) J. Kim, J. Choi, K. Shin, Sukbok Chang, J. *Am. Chem. Soc.*, 2012, **134**, 2528; (c) G, Zhang, X. Ren, J. Chen, M. Hu, J. Cheng, *Org. Lett.*, 2011, **13**, 5004); "N" means negative result and "Y" means positive result.

6. GC-MS data and possible formation pathway for by-products

Figure S1 GC-MS data for benzaldehyde, benzoic acid, *N*,*N*-dimethylbenzamide and *cis*- and *trans*-2,3-diphenylfumaronitrile as the by-products (a) GC data for the reaction mixture

zju.M Tue May 22 12:34:13 2012

页面: 1

(b) MS data for benzaldehyde

峰编号: 1 1.236 分钟处 面积: 8491365 面积 % 1.84

每个库中 3 个最匹配的记录。	Ref\#	CAS\#	定量	
D:\Database\NIST02.L				
1 Benzaldehyde		4942	000100-52-7	96
2 Benzaldehyde		4943	000100-52-7	96
3 Benzaldehyde		4941	000100-52-7	94

(c) MS data for benzoic acid

(d) MS data for *N*,*N*-dimethylbenzamide

D:\Database\NIST02.L 1 Benzamide, N, N-dimethyl-2 Benzamide, N, N-dimethyl-3 Benzamide, N-ethyl-22553 000611-74-5 87 3 Benzamide, N-ethyl-22537 000614-17-5 50

D: \Database\N15102	• L			
1 Benzonitrile, 4	-(2-cyano-2-pheny	76433	061469-58-7	95
2 (E) alpha., . al	pha.'-Dicyanostil	76429	002450-55-7	92
3 Benzonitrile, 3	-(2-cyano-2-pheny	76432	147728-29-8	83

(f) MS data for *trans*- or *cis*-2,3-diphenylfumaronitrile

D:\Database\NIST02.L 1 Benzonitrile, 4-(2-cvano-2-pheny 76433 061469-58-7

M 81	Indedodate (Miniorow, L		
1	Benzonitrile, 4-(2-cyano-2-pheny	76433 061469-58-7	96
2	(E) alpha., . alpha. '-Dicyanostil	76429 002450-55-7	95
3	Diphenylmethylenemalononitrile	76426 010394-96-4	90

7. Kinetics Investigation Data

Figure S2 CuBr-catalyzed cyanation of 1a with 2a

Figure S3 CuBr-catalyzed cyanation of 1a with 6

Figure S4 Cu(OAc)₂-catalyzed cyanation of 1a with 6

8. Copies of ¹H and ¹³C NMR for substrates and products

Figure S5 ¹H-NMR spectrum of 1b

Figure S9 ¹H-NMR spectrum of 1d

Figure S34 ¹³C-NMR spectrum of 1s

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

Figure S36¹³C-NMR spectrum of 1t

Figure S38 ¹³C-NMR spectrum of 1u

Figure S40 ¹³C-NMR spectrum of 1v

Figure S54 ¹³C-NMR spectrum of 3g

Figure S56 ¹³C-NMR spectrum of 3h

Figure S58 ¹³C-NMR spectrum of 3i

Figure S61 ¹H-NMR spectrum of 3k

Figure S66 ¹³C-NMR spectrum of 3m

Figure S67 ¹H-NMR spectrum of 3na+3nb

Figure S68 ¹H-NMR spectrum of 4b

Figure S70 ¹H-NMR spectrum of 30

Figure S72 ¹H-NMR spectrum of 3p

Figure S74 ¹H-NMR spectrum of 3q

Figure S76 ¹H-NMR spectrum of 3r

