Exploiting Adamantane as a Versatile Organic Tecton: Multicomponent Catalytic Cascade Reactions.

Ronald Grigg,^a* Elghareeb E. Elboray,^{a,b} Moustafa F. Aly^b and Hussien H. Abbas-Temirek^b

^a School of Chemistry, University of Leeds, Leeds, UK, LS6 9JT.

^b Department of Chemistry, Faculty of Science at Qena, South Valley University, Qena, Egypt.

r.grigg@leeds.ac.uk

Table of contents

1.	General technical data	.2
2.	General Procedure A: N-propargylation	.2
3.	General Procedure B: allene formation	4
4.	General Procedure C: Pd catalysed 3-component cascades	5
5.	General Procedure D: Pd catalysed 9-component cascades	13
6.	References	24
7.	HRMS of 9-component cascade products	25

General technical data.

Thin layer chromatography (TLC) was carried out on a pre-coated aluminium plates with silica gel 60 F254 (Merck), and was visualised using ultraviolet light and/or aqueous KMnO₄/I₂. Flash column chromatography employed silica gel 60 (Merck, 230-400mesh). Meting points were determined on a Reichert hot-stage microscope and are uncorrected. Optical rotations were calculated using Polartronic H 532 (Schmidt + Haensch) instrument. Infrared spectra were recorded using a Perkin-Elmer Spectrum FT-IR spectrometer either as a thin film on sodium chloride discs or as a solid using golden gate apparatus. Proton nuclear magnetic resonance spectra were recorded at 500 and 300MHz on a Bruker DRX500 and DPX300 instruments, respectively. Chemical shifts (δ) are reported in parts per million relative to tetramethylsilane ($\delta = 0.00$) and coupling constants are given in hertz (Hz). The following abbreviations are used: s = singlet, br = broad, d = doublet, dd = doublet of doublets, dd = doublet of double doublets, dt = doublet of triplets, m = multiplet, t = triplet, td = triplet of doublets. ¹³C-NMR spectra were recorded at 75 MHz on a Bruker DPX300 instrument and chemical shifts are reported in parts per million (ppm). Mass spectral data were determined at 70 eV on a Micromass ZMD 2000 electrospray (ES) machine. Accurate masses were obtained using a Bruker Daltonics micrOTOF spectrometer. The m/z data mentioned in case of 9-component cascades are the result of two runs using the auto sampler technique and by injecting the sample directly to the machine using a syringe pump.

¹H-NMR peak assignments are mainly based on DEPT135, COSY, HMQC and HMBC spectral data.

All compounds were named according to the IUPAC system using the ACD/ILAB (ACD/IUPAC v.12.0 programme) web service (http://www.acdlabs.com).

General Procedure A: N-propargylation.

Propargyl bromide (80% solution in toluene, 2 equiv.) was added to a solution of the NHheterocycle (1 equiv.) and K_2CO_3 in dry acetone and the mixture was stirred at room temperature for 16h. The mixture was filtered, the solvent removed under reduced pressure and the residue dissolved in CHCl₃ (20 mL). The organic layer was washed with water (2 × 10 mL), dried over anhydrous MgSO₄, filtered and the filtrate evaporated under *vacuo* to afford he product. 2',3',5'-Tri-O-acetyl-3-prop-2-yn-1-yluridine.¹

Prepared by general procedure A from 2',3',5'-tri-*O*-acetyluridine. Flash column chromatography eluting with 7:3 v/v EtOAc/*n*-hexane afforded the product as a colourless gum (93%), [α]_D+17.1 (*c*, 35 mg/10 mL CH₂Cl₂); $\delta_{\rm H}$ (500 MHz, CDCl₃); 7.41 (1H, d, *J* 8.2, pyrimidinyl 6-H), 6.02 (1H, d, *J* 4.7, ribosyl 1-H), 5.86 (1H, d, *J* 8.2, pyrimidinyl 5-H), 5.38 (1H, dd, *J* 5.9 and 4.7, ribosyl 2-H), 5.35-5.31 (1H, m, ribosyl 3-H), 4.71 (1H, dd, *J* 16.4 and 2.1, NCH_ACΞ), 4.65 (1H, dd, *J* 16.4 and 2.6, NCH_BCΞ), 4.36 (3H, br s, ribosyl 4-H and 5-CH₂), 2.18 (1H, dd, *J* 2.6 and 2.1, ΞCH), 2.14 (3H, s, OCOMe), 2.12 (3H, s, OCOMe), 2.11 (3H, s, OCOMe); δ_c (75 MHz, CDCl₃); 170.5, 170.1, 170.0, 163.3, 161.5, 150.5, 138.2, 103.1, 89.2, 80.1, 73.3, 71.3, 70.2, 63.2, 30.7, 21.2, 20.9, 20.8; ν_{max} /cm⁻¹ (film); 2396, 2125, 1747, 1711, 1670, 1456, 1376, 1233; *m*/z (ES, %) 409 (MH⁺, 65).

3',5'-Di-O-acetyl-3-prop-2-yn-1-ylthymidine.

Prepared by general procedure A from 3',5'-di-*O*-acetylthymidine. Flash column chromatography eluting with 2:1 v/v EtOAc/*n*-hexane gave the product as a colourless gum (90%), $[\alpha]_D$ –3.2 (*c*, 10 mg/1 mL CH₂Cl₂); (Found: C, 55.90; H, 5.80; N, 7.45; C₁₇H₂₀N₂O₇ requires C, 56.04; H, 5.53; N, 7.69%); δ_H (500 MHz, CDCl₃); 7.29 (1H, br s, pyrimidinyl 6-H), 6.37 (1H, dd, *J* 9.1 and 5.9, deoxyribosyl 1-H), 5.22 (1H, dt, *J* 6.6 and 2.1, deoxyribosyl 3-H), 4.72 (2H, d, *J* 2.6, N*CH*₂CE), 4.38-4.34 (2H, m, deoxyribosyl 5-CH₂), 4.26 (1H, m, deoxyribosyl 4-H), 2.50 (1H, ddd, *J* 14.3, 5.9 and 2.1, deoxyribosyl 2-H_A), 2.18-2.15 (1H, m, deoxyribosyl 2-H_B), 2.16 (1H, m, ECH), 2.13 (3H, s, OCOMe), 2.11 (3H, s, OCOMe), 1.98 (3H, s, pyrimidinyl 5-Me); δ_c (75 MHz, CDCl₃); 170.7, 170.4, 162.3, 150.2, 147.5, 145.6,

132.9, 85.5, 82.0, 74.0, 70.6, 63.8, 37.6, 30.4, 20.9, 20.8, 13.3; υ_{max}/cm⁻¹ (film); 3272, 2955, 1743, 1707, 1673, 1651, 1466, 1369, 1333, 1234; *m*/*z* (ES, %) 365 (MH⁺, 100).

General Procedure B: Allene formation.²

A mixture of alkyne (1 equiv.), dicyclohexylamine (1.8 equiv.), paraformaldehyde (2.5 equiv.) and CuI (0.5 equiv.) in dry dioxane was refluxed for 3h. The reaction mixture was cooled and the solvent removed under reduced pressure. The residue was dissolved in CHCl₃ and the organic layer washed with (10%) NH₄OH three times then with water, dried over anhydrous MgSO₄, filtered and the filtrate evaporated under *vacuo* to give the crude allene which was purified by flash column chromatography.

1-(Buta-2,3-dien-1-yl)-3,7-dimethyl-3,7-dihydro-1*H*-purine-2,6-dione (4a).³

Prepared by general procedure B from 3,7-dimethyl-1-(prop-2-yn-1-yl)-3,7-dihydro-1*H*-purine-2,6-dione.^{4,5} Flash column chromatography eluting with EtOAc gave **4a** as a colourless fine needles (83%), mp. 128-130 °C; (Found: C, 56.70; H, 5.10; N, 24.15; $C_{11}H_{12}N_4O_2$ requires C, 56.89; H, 5.21; N, 24.12%); δ_H (300 MHz, CDCl₃); 7.53 (1H, s, purine 8-H), 5.36-5.27 (1H, m, CH₂*CH*=), 4.83-4.78 (2H, m, N*CH*₂CH=), 4.65-4.61 (2H, m, =CH₂), 4.00 (3H, s, NMe), 3.58 (3H, s, NMe); δ_c (75 MHz, CDCl₃); 208.8, 154.9, 151.2, 148.8, 141.5, 107.6, 86.3, 77.0, 39.5, 33.6, 29.7; ν_{max} /cm⁻¹ (film); 3115, 2950, 1701, 1654, 1598, 1477, 1332; *m*/z (ES, %) 233 (MH⁺, 100).

2',3',5'-Tri-O-acetyl-3-buta-2,3-dien-1-yluridine (4b).

Prepared by general procedure B from 2',3',5'-tri-*O*-acetyl-3-prop-2-yn-1-yluridine. Flash column chromatography eluting with 2:1 v/v EtOAc/*n*-hexane gave **4b** as a colourless gum

(80%), [α]_D + 30.6 (*c*, 4.2 mg/1 mL CH₂Cl₂); (Found: C, 53.85; H, 5.00; N, 6.45; C₁₉H₂₂N₂O₉ requires C, 54.03; H, 5.25; N, 6.63%); $\delta_{\rm H}$ (500 MHz, CDCl₃); 7.37 (1H, d, *J* 8.1, pyrimidinyl 6-H), 6.01 (1H, d, *J* 4.3, ribosyl 1-H), 5.82 (1H, d, *J* 8.1, pyrimidinyl 5-H), 5.38 (1H, dd, *J* 5.9 and 4.3, ribosyl 2-H), 5.35-5.31 (1H, m, ribosyl 3-H), 5.29-5.23 (1H, m, CH₂CH=), 4.83-4.80 (2H, m, NCH₂CH=), 4.55-4.51 (2H, m, =CH₂), 4.36 (3H, br s, ribosyl 4-H and 5-CH₂), 2.15 (3H, s, OCOMe), 2.12 (3H, s, OCOMe), 2.11 (3H, s, OCOMe); $\delta_{\rm c}$ (75 MHz, CDCl₃); 209.2, 170.6, 170.5, 169.9, 162.1, 150.8, 137.8, 103.1, 89.2, 86.0, 80.0, 77.6, 73.3, 71.3, 63.3, 39.6, 21.4, 21.1, 20.8 ; $\nu_{\rm max}/{\rm cm}^{-1}$ (film); 2107, 1960, 1746, 1666, 1457, 1423, 1388, 1229; *m/z* (ES, %) 423 (MH⁺, 100).

3',5'-Di-O-acetyl-3-buta-2,3-dien-1-ylthymidine (4c).

Prepared by general procedure B from 3',5'-di-*O*-acetyl-3-prop-2-yn-1-ylthymidine. Flash column chromatography eluting with 1:1 v/v EtOAc/*n*-hexane gave **4c** as a colourless gum (75%), $[\alpha]_D$ + 17.0 (*c*, 10 mg/1 mL CH₂Cl₂); (Found: C, 57.05; H, 5.85; N, 7.40; C₁₈H₂₂N₂O₇ requires C, 57.14; H, 5.86; N, 7.40%); δ_H (500 MHz, CDCl₃); 7.27 (1H, br s, pyrimidinyl 6-H), 6.35 (1H, dd, *J* 8.6 and 5.6, deoxyribosyl 1-H), 5.27 (1H, tt, *J* 12.8 1nd 6.4, CH₂*CH*=), 5.23-5.21 (1H, m, deoxyribosyl 3-H), 4.80 (2H, dt, *J* 6.4 and 3.0, N*CH*₂CH=), 4.56 (2H, dt, *J* 6.4 and 3.0, =CH₂), 4.36 (2H, d, *J* 3.9, deoxyribosyl 5-CH₂), 4.25 (1H, dt, *J* 5.9 and 3.9, deoxyribosyl 4-H), 2.49 (1H, ddd, *J* 14.1, 5.6 and 2.0, deoxyribosyl 2-H_A), 2.18-2.15 (1H, m, deoxyribosyl 2-H_B), 2.13 (3H, s, OCOMe), 2.11 (3H, s, OCOMe), 1.96 (3H, s, pyrimidinyl 5-Me); δ_c (75 MHz, CDCl₃); 209.5, 170.8, 170.5, 163.1, 150.9, 132.9, 111.0, 86.1, 85.8, 82.4, 77.3, 74.5, 64.2, 39.9, 38.0, 21.4, 21.2, 13.8; ν_{max}/cm^{-1} (film); 2954, 1957, 1744, 1703, 1671, 1647, 1466, 1367, 1232; *m*/z (ES, %) 379 (MH⁺, 100).

General Procedure C: Pd catalysed 3-component cascades.

A mixture of substituted allene **4** (1 equiv.), aryl/heteroaryl iodide **5** (1.2 equiv.), 1aminoadamantane **1** (1.2 equiv.), $Pd_2(dba)_3$ (2.5 mol%), TFP (tri-(2-furyl)phosphine) (10 mol%) and K₂CO₃ (3 equiv.) in MeCN was stirred and heated at 80 °C (oil bath temperature). The mixture was cooled, filtered and the inorganic precipitate washed with MeCN. The filtrate was evaporated under reduced pressure and the resulting residue dissolved in CHCl₃ and washed with saturated NH₄Cl and then with saturated NaCl. The organic layer was dried with anhydrous MgSO₄, filtered, and the filtrate evaporated under reduced pressure. The residue was purified by flash chromatography.

1-[(2Z)-4-(Adamantan-1-ylamino)-3-(pyridin-3-yl)but-2-en-1-yl]-3,7-dimethyl-3,7dihydro-1*H*-purine-2,6-dione (6a).

Prepared by general procedure C from **4a** and heating for 5h. Gradient elution chromatography with EtOAc and then 10:1 v/v EtOAc/MeOH gave the product **6a** (78%) as a colourless froth, mp 91-93°C; $\delta_{\rm H}$ (300 MHz, CDCl₃); 8.77 (1H, d, *J* 1.5, pyridyl-H), 8.45 (1H, dd, *J* 4.9 and 1.5, pyridyl-H), 7. 87 (1H, dt, *J* 8.0 and 1.5, pyridyl-H), 7.55 (1H, s, purine-H), 7.21 (1H, ddd, *J* 8.0, 4.9 and 0.5, pyridinyl-H), 5.90 (1H, t, *J* 7.1, NCH₂*CH*=), 4.90 (2H, d, *J* 7.1, N*CH*₂CH=), 4.00 (3H, s, NMe), 3.82 (2H, s, =C*CH*₂N), 3.59 (3H, s, NMe), 2.10 (3H, br s, 3 × adamantyl-CH), 1.78 (6H, d, *J* 2.3, 3 × adamantyl-CH₂), 1.67 (6H, br s, 3 × adamantyl-CH₂); $\delta_{\rm c}$ (75 MHz, CDCl₃); 155.4, 151.7, 149.3, 148.7, 148.1, 142.0, 139.6, 137.5, 134.1, 126.1, 123.4, 108.0, 51.4, 42.9, 39.9, 39.6, 37.2, 34.0, 30.2, 30.0; $\nu_{\rm max}/\rm{cm}^{-1}$ (film); 2906, 2848, 1704, 1661, 1550, 1455, 1358, 1310, 1234; *m*/z (ESI⁺) 461.3 (100%, MH⁺); (Found MH⁺, 461.2675. C₂₆H₃₃N₆O₂ requires *MH*, 461.2660). NOE data (CDCl₃) for **6a**:

				% Enhancemer	nt
Irradiated proton	1-H	2-Н	4-H	Pyridyl-H	adamantyl-CH ₂ (δ 1.74)
1-H		6.8	3.6	-	-
2-Н	3.2		-	8.4 (δ 8.77) 6.1 (δ 7.87)	-
4-H	4.3	-		4.4 (δ 8.77) 3.6 (δ 7.87)	6.8

1-[(2*E*)-4-(Adamantan-1-ylamino)-3-(2-thienyl)but-2-en-1-yl]-3,7-dimethyl-3,7-dihydro-1*H*-purine-2,6-dione (6b).

Prepared by general procedure C from **4a** and heating for 2h. Flash chromatography eluting with EtOAc gave the product **6b** (69%) as a colourless froth, mp 155-157°C; $\delta_{\rm H}$ (300 MHz, CDCl₃); 7.50 (1H, s, purine-H), 7.17 (1H, dd, *J* 3.6 and 1.0, thienyl-H), 7.11 (1H, dd, *J* 5.1 and 1.0, thienyl-H), 6.93 (1H, dd, *J* 5.1 and 3.6, thienyl-H), 5.97 (1H, t, *J* 7.2, NCH₂*CH*=), 4.85 (2H, d, *J* 7.2, N*CH*₂CH=), 3.98 (3H, s, NMe), 3.81 (2H, s, =C*H*₂N), 3.57 (3H, s, NMe), 2.11 (3H, br s, 3 × adamantyl-CH), 1.80 (6H, d, *J* 2.6, 3 × adamantyl-CH₂), 1.68 (6H, d, *J* 2.1, 3 × adamantyl-CH₂); δ_c (75 MHz, CDCl₃); 154.9, 151.2, 148.7, 145.3, 141.5, 136.4, 127.2, 124.1, 123.8, 122.1, 107.5, 50.9, 42.5, 39.7, 39.2, 36.8, 33.5, 29.7, 29.4; ν_{max}/cm^{-1} (film); 2903, 2846, 1702, 1660. 1549, 1454, 1361, 1310, 1233; *m*/z (ESI⁺) 466.2 (100%, MH⁺); (Found MH⁺, 466.2289. C₂₅H₃₂N₅O₂ ³²S requires *MH*, 466.2271).

1-{(2Z)-4-(Adamantan-1-ylamino)-3-[3-(trifluoromethyl)phenyl]but-2-en-1-yl}-3,7dimethyl-3,7-dihydro-1*H*-purine-2,6-dione (6c).

Prepared by general procedure C from **4a** and heating for 2h. Flash chromatography eluting with 30:1 v/v CHCl₃/MeOH gave the product **6c** (91%) as a colourless froth, mp 68-70°C; $\delta_{\rm H}$ (300 MHz, CDCl₃); 7.86 (1H, s, phenyl-H), 7.75 (1H, d, *J* 7.7, phenyl-H), 7.52 (1H, s, purine-H), 7.47 (1H, d, *J* 7.7, phenyl-H), 7.39 (1H, t, *J* 7.7, phenyl-H), 5.90 (1H, t, *J* 7.1, NCH₂CH=), 4.90 (2H, d, *J* 7.1, NCH₂CH=), 3.99 (3H, s, NMe), 3.82 (2H, s, =CCH₂N), 3.59 (3H, s, NMe), 2.11 (3H, br s, 3 × adamantyl-CH), 1.79 (6H, br d, *J* 2.2, 3 × adamantyl-CH₂),

1.68 (6H, br d, *J* 1.6, $3 \times \text{adamantyl-CH}_2$); δ_c (75 MHz, CDCl₃); 155.0, 151.4, 148.9, 142.5, 141.6, 140.9, 130.4 (*J* 32.1), 129.6, 128.6, 125.5, 124.2 (*J* 272.0), 123.8 (*J* 4.4), 123.2 (*J* 4.4), 107.6, 50.9, 42.5, 39.6, 39.4, 36.8, 33.6, 29.8, 29.7; $\nu_{\text{max}}/\text{cm}^{-1}$ (film); 3310, 2907, 2849, 1702, 1661, 1604, 1550, 1487, 1455, 1415, 1334, 1258, 1234; *m*/*z* (ESI⁺) 528.3 (100%, MH⁺); (Found MH⁺, 528.2575. C₂₈H₃₃F₃N₅O₂ requires *MH*, 528.2581).

2',3',5'-Tri-*O*-acetyl-3-{(2Z)-4-(adamantan-1-ylamino)-3-[3,5bis(trifluoromethyl)phenyl]but-2-en-1-yl}uridine (6d).

Prepared by general procedure C from **4b** and heating for 5h. Flash column chromatography eluting with 1:1 v/v EtOAc/*n*-hexane gave the product **6d** (77%) as a pale yellow gum; $[\alpha]_D$ + 19.5 (*c*, 16 mg/1 mL CHCl₃); δ_H (300 MHz, CDCl₃); 8.00 (2H, s, 2 × phenyl-H), 7.61 (1H, s, phenyl-H), 7.33 (1H, d, *J* 8.2, pyrimidinyl 6-H), 5.91 (1H, d, *J* 4.9, ribosyl 1-H), 5.78 (1H, t, *J* 7.1, NCH₂*CH*=), 5.74 (1H, d, *J* 8.2, pyrimidinyl 5-H), 5.28 (1H, dd, *J* 6.0 and 4.9, ribosyl 2-H), 5.23-5.19 (1H, m, ribosyl 3-H), 4.69 (2H, d, *J* 7.1, NCH₂CH=), 4.24 (3H, s, ribosyl 4-H and 5-CH₂), 3.62 (2H, s, =CCH₂N), 2.00 (9H, s, 2 × OCOMe and 3 × adamantyl-CH), 1.96 (3H, s, OCOMe), 1.64 (6H, br d, *J* 2.2, 3 × adamantyl-CH₂), 1.56 (6H, br s, 3 × adamantyl-CH₂); δ_c (75 MHz, CDCl₃); 170.1 (CO), 169.5 (2 × CO), 161.9, 150.7, 144.0, 140.3, 137.5, 131.2 (q, *J* 33.2), 126.6 (brd, *J* 3.3), 125.9, 123.5 (q, *J* 237.1), 120.7 (q, *J* 3.9), 102.7, 88.7, 79.7, 73.0, 69.9, 62.8, 50.8, 42.5, 39.5, 39.4, 36.7, 29.6, 20.7, 20.4, 20.3; ν_{max}/cm^{-1} (film); 3313, 3023, 2908, 2850, 1755, 1713, 1668, 1455, 1383, 1310, 1280, 1227; *m*/z (ESI⁺) 786.3 (100%, MH⁺); (Found MH⁺, 786.2941. C₃₇H₄₁F₆N₃O₉ requires *MH*, 786.2820).

2',3',5'-Tri-*O*-acetyl-3-[(2Z)-4-(adamantan-1-ylamino)-3-(3-chloro-4-fluorophenyl)but-2-en-1-yl]uridine (6e).

Prepared by general procedure C from **4b** and heating for 4h. Flash chromatography eluting with 1:1 v/v EtOAc/*n*-hexane gave the product **6e** (86%) as a pale yellow gum; $[\alpha]_D + 19.7$ (*c*, 14 mg/1 mL CHCl₃); δ_H (300 MHz, CDCl₃); 7.62 (1H, dd, *J* 7.1 and 2.2, phenyl-H), 7.44-7.39 (1H, m, phenyl-H), 7.40 (1H, d, *J* 8.2, pyrimidinyl 6-H), 7.05 (1H, t, *J* 8.5, phenyl-H), 6.00 (1H, d, *J* 4.4, ribosyl 1-H), 5.84 (1H, d, *J* 8.2, pyrimidinyl 5-H), 5.74 (1H, t, *J* 7.1, NCH₂*CH*=), 5.39 (1H, dd, *J* 5.5 and 4.4, ribosyl 2-H), 5.34-5.33 (1H, m, ribosyl 3-H), 4.75 (2H, d, *J* 7.1, N*CH*₂*CH*=), 4.35 (3H, s, ribosyl 4-H and 5-CH₂), 3.70 (2H, s, =C*CH*₂N), 2.13 (3H, s, OCOMe), 2.12 (3H, s, OCOMe), 2.10 (6H, s, OCOMe and 3 × adamantyl-CH), 1.74 (6H, br d, *J* 2.2, 3 × adamantyl-CH₂), 1.67 (6H, br s, 3 × adamantyl-CH₂); δ_c (75 MHz, CDCl₃); 170.1 (CO), 169.6 (2 × CO), 162.0, 157.5 (*J* 248.8), 150.7, 140.8, 139 (*J* 4.4), 137.4, 128.6, 126.1 (*J* 6.6), 123.9, 120.5 (*J* 17.7), 116.1 (*J* 21.0), 102.8, 88.8, 79.7, 73.0, 69.9, 62.8, 50.8, 42.5, 39.54, 39.51, 36.8, 29.6, 20.8, 20.5, 20.4; ν_{max}/cm^{-1} (film); 3312, 2906, 2849, 1751, 1711, 1668, 1497, 1455, 1386, 1310, 1228; *m*/z (ESI⁺) 702.3 (100%, MH⁺); (Found MH⁺, 702.2606. C₃₅H₄₂CIFN₃O₉ requires *MH*, 702.2588). NOE data (CDCl₃) for **6e**:

				% Enhancer	nent
Irradiated proton	1-H	2-H	4-H	phenyl-H	adamantyl-CH ₂ (δ 1.74)
1-H		6.8	4.0	-	-
2-Н	3.7		-	8.3 (δ 7.62) 6.6 (δ 7.41)	-
4-H	4.1	-		4.3 (δ 7.62) 3.3 (δ 7.41)	5.8

2',3',5'-Tri-*O*-acetyl-3-[(2Z)-4-(adamantan-1-ylamino)-3-(4-methylphenyl)but-2-en-1-yl]uridine (6f).

Prepared by general procedure C from **4b** and heating for 3h. Flash chromatography eluting with 1:1 v/v EtOAc/*n*-hexane gave the product **6f** (87%) as a pale yellow gum; $[\alpha]_D + 19.0$ (*c*, 11 mg/1 mL CHCl₃); δ_H (300 MHz, CDCl₃); 7.38 (2H, d, *J* 8.2, 2 × phenyl-H), 7.37 (1H, d, *J* 8.2, pyrimidinyl 6-H), 7.10 (2H, d, *J* 7.7, 2 × phenyl-H), 6.02 (1H, d, *J* 4.9, ribosyl 1-H), 5.82 (1H, d, *J* 8.2, pyrimidinyl 5-H), 5.76 (1H, t, *J* 7.1, NCH₂*CH*=), 5.37 (1H, dd, *J* 6.0 and 4.9, ribosyl 2-H), 5.35-5.31 (1H, m, ribosyl 3-H), 4.77 (2H, d, *J* 7.1, N*CH*₂CH=), 4.34 (3H, s, ribosyl 4-H and 5-CH₂), 3.79 (2H, s, =C*CH*₂N), 2.32 (3H, s, phenyl-Me), 2.13 (3H, s, OCOMe), 2.11 (3H, s, OCOMe), 2.08 (6H, s, OCOMe and 3 × adamantyl-CH₂); δ_c (75 MHz, CDCl₃); 170.1 (CO), 169.6 (2 × CO), 162.0, 150.7, 142.7, 138.4, 137.3, 137.1, 129.0, 126.2, 122.3, 102.9, 88.5, 79.6, 72.9, 69.9, 62.9, 50.8, 42.5, 39.8, 39.2, 36.8, 29.7, 21.1, 20.8, 20.5, 20.4; ν_{max}/cm^{-1} (film); 3313, 3022, 2906, 2849, 1748, 1712, 1668, 1511, 1455, 1371, 1310, 1228; *m*/z (ESI⁺) 664.3 (100%, MH⁺); (Found MH⁺, 664.3252. C₃₆H₄₆N₃O₉ requires *MH*, 664.3229).

3',5'-Di-*O*-acetyl-3-[(2Z)-4-(adamantan-1-ylamino)-3-phenylbut-2-en-1-yl]thymidine (6g).

Prepared by general procedure C from **4c** and heating for 3h. Flash chromatography eluting with 1:1 v/v EtOAc/*n*-hexane gave the product **6g** (99%) as a pale yellow gum; $[\alpha]_D + 5.2$ (*c*, 12 mg/1 mL CHCl₃); δ_H (300 MHz, CDCl₃); 7.50 (2H, dd, *J* 8.0 and 1.4, 2 × phenyl-H), 7.31-7.22 (3H, m, 3 × phenyl-H and pyrimidinyl 6-H), 6.37 (1H, dd, *J* 8.5 and 5.8, deoxyribosyl 1-H), 5.82 (1H, t, *J* 7.1, NCH₂*CH*=), 5.21 (1H, dt, *J* 6.6 and 2.2, deoxyribosyl 3-H), 4.82 (2H,

NOE data (CDCl₃) for **6g**:

d, *J* 7.1, N*CH*₂CH=), 4.38 (1H, dd, *J* 12.1 and 3.8, deoxyribosyl 5-H_A), 4.32 (1H, dd, *J* 12.1 and 3.8, deoxyribosyl 5-H_B), 4.24 (1H, dt, *J* 6.6 and 3.8, deoxyribosyl 4-H), 3.83 (2H, s, =C*CH*₂N), 2.48 (1H, ddd, *J* 13.7, 5.5 and 1.6, deoxyribosyl 2-H_A), 2.20-2.08 (1H, ddd, *J* 13.7, 5.5 and 1.6, deoxyribosyl 2-H_A), 2.20-2.08 (1H, ddd, *J* 13.7, 5.5 and 1.6, deoxyribosyl 5-H_B), 2.12 (3H, s, OCOMe), 2.10 (3H, s, OCOMe), 2.09 (3H, s, 3 × adamantyl-CH), 1.95 (3H, s, pyrimidinyl 5-Me), 1.74 (6H, br d, *J* 2.2, 3 × adamantyl-CH₂), 1.66 (6H, br d, *J* 2.2, 3 × adamantyl-CH₂); δ_c (75 MHz, CDCl₃); 170.4, 170.2, 162.9, 150.7, 142.6, 141.4, 132.6, 128.3, 127.4, 126.3, 123.5, 110.8, 85.4, 82.0, 74.1, 63.9, 50.9, 42.6, 39.9, 39.3, 37.6, 36.8, 29.7, 20.9, 20.8, 13.5; ν_{max}/cm^{-1} (film); 3312, 3020, 2906, 2848, 1747, 1704, 1668, 1644, 1464, 1367, 1310, 1233; *m*/*z* (ESI⁺) 606.3 (100%, MH⁺); (Found MH⁺, 606.3194. C₃₄H₄₄N₃O₇ requires *MH*, 606.3174).

				% Enhancement	
Irradiated proton	1-H	2-H	4-H	phenyl-H (δ 7.50)	adamantyl-CH ₂ (δ 1.74)
1-H		5.8	3.6	-	-
2-Н	4.3		-	11.9	-
4-H	4.3	-		6.8	7.0

3',5'-Di-*O*-acetyl-3-{(2Z)-4-(adamantan-1-ylamino)-3-[4-(methoxycarbonyl)phenyl]but-2-en-1-yl}thymidine (6h).

Prepared by general procedure C from **4c** and heating for 4h. Flash chromatography eluting with 1:1 v/v EtOAc/*n*-hexane gave the product **6h** (93%) as a pale yellow gum; $[\alpha]_D + 7.6$ (*c*, 13 mg/1 mL CHCl₃); δ_H (300 MHz, CDCl₃); 7.96 (2H, d, *J* 8.5, 2 × phenyl-H), 7.59 (2H, d, *J* 8.5, 2 × phenyl-H), 7.29 (1H, s, pyrimidinyl 6-H), 6.38 (1H, dd, *J* 5.8 and 8.5, deoxyribosyl 1-H), 5.90 (1H, t, *J* 7.1, NCH₂*CH*=), 5.22 (1H, dt, *J* 6.6 and 2.2, deoxyribosyl 3-H), 4.83 (2H, d, *J* 7.1, NCH₂CH=), 4.39 (1H, dd, *J* 4.4 and 12.1, deoxyribosyl 5-H_A), 4.33 (1H, dd, *J* 3.3 and 12.1, deoxyribosyl 5-H_B), 4.25 (1H, dt, *J* 3.6 and 6.3, deoxyribosyl 4-H), 3.89 (3H, s, CO₂Me), 3.81 (2H, s, =CCH₂N), 2.49 (1H, ddd, *J* 1.6, 5.5 and 13.7, deoxyribosyl 2-H_A), 2.20

(1H, ddd, *J* 1.6, 6.6 and 13.7, deoxyribosyl 2-H_B), 2.12 (3H, s, OCOMe), 2.11 (3H, s, OCOMe), 2.10 (3H, s, $3 \times \text{adamantyl-CH}$), 1.96 (3H, s, pyrimidinyl 5-Me), 1.75 (6H, br d, *J* 2.2, $3 \times \text{adamantyl-CH}_2$), 1.67 (6H, br s, $3 \times \text{adamantyl-CH}_2$); δ_c (75 MHz, CDCl₃); 170.3, 170.1, 166.9, 162.9, 150.6, 146.1, 141.8, 132.8, 129.6, 128.8, 126.3, 125.3, 110.8, 85.4, 82.0, 74.1, 63.8, 52.0, 50.8, 42.5, 39.8, 39.2, 37.5, 36.8, 29.6, 20.9, 20.8, 13.4; ν_{max}/cm^{-1} (film); 3311, 3018, 2906, 2848, 1746, 1704, 1669, 1645, 1606, 1465, 1366, 1278, 1233; *m/z* (ESI⁺) 664.3 (100%, MH⁺); (Found MH⁺, 664.3239. C₃₆H₄₆N₃O₉ requires *MH*, 664.3229).

3',5'-Di-*O*-acetyl-3-[(2Z)-4-(adamantan-1-ylamino)-3-(3,4-dichlorophenyl)but-2-en-1-yl]thymidine (6i).

Prepared by general procedure C from 4c and heating for 2h. Flash chromatography eluting with 1:1 v/v EtOAc/n-hexane gave the product **6i** (87%) as a pale yellow gum; $[\alpha]_{\rm D}$ + 7.7 (c, 11 mg/1 mL CHCl₃); δ_H (300 MHz, CDCl₃); 7.56 (1H, d, J 1.6, phenyl-H), 7.28 (1H, dd, J 8.2 and 1.6, 2 × phenyl-H), 7.19 (1H, d, J 8.2, phenyl-H), 7.18 (1H, s, pyrimidinyl 6-H), 6.27 (1H, dd, J 8.2 and 6.0, deoxyribosyl 1-H), 5.70 (1H, t, J 7.1, NCH₂CH=), 5.12 (1H, dt, J 6.6 and 2.2, deoxyribosyl 3-H), 4.68 (2H, d, J 7.1, NCH₂CH=), 4.28 (1H, dd, J 12.3 and 3.6, deoxyribosyl 5-H_A), 4.23 (1H, dd, J 12.3 and 3.6, deoxyribosyl 5-H_B), 4.15 (1H, dt, J 6.6 and 3.6, deoxyribosyl 4-H), 3.62 (2H, s, =CCH₂N), 2.38 (1H, ddd, J 14.3, 6.6 and 2.2, deoxyribosyl 2-H_A), 2.09 (1H, ddd, J 14.3, 8.2 and 1.6, deoxyribosyl 2-H_B), 2.02 (3H, s, OCOMe), 2.00 (6H, s, OCOMe and 3 × adamantyl-CH), 1.86 (3H, s, pyrimidinyl 5-Me), 1.64 (6H, br d, J 2.2, 3 × adamantyl-CH₂), 1.56 (6H, br s, 3 × adamantyl-CH₂); δ_c (75 MHz, CDCl₃); 170.3, 170.1, 162.9, 150.6, 141.8, 140.5, 132.8, 132.2, 130.9, 130.0, 128.3, 125,7, 124.8, 110.8, 85.4, 82.0, 74.1, 63.8, 50.9, 42.5, 39.7, 39.3, 37.5, 36.8, 29.6, 20.9, 20.8, 13.4; v_{max}/cm^{-1} (film); 3310, 3018, 2906, 2848, 1746, 1702, 1670, 1644, 1550, 1466, 1366, 1336, 1310, 1233; *m/z* (ESI⁺) 674.2 (100%, MH⁺); (Found MH⁺, 674.2410. C₃₄H₄₂Cl₂N₃O₇ requires MH, 664.3229).

General Procedure D: Pd catalysed 9-component cascades.

A mixture of substituted allene **4** (4 equiv.), 1,3,5,7-tetrakis-(4-iodophenyl)adamantane **3** (1 equiv.), nucleophile **7** (4.4 equiv.), $Pd_2(dba)_3$ (2.5 mol%), TFP (tri-(2-furyl)phosphine) (10 mol%), and K₂CO₃ (6 equiv.) in MeCN or DMF was stirred and heated at 80 °C (oil bath temperature) for 3-32h. The mixture was filtered and the inorganic precipitate washed with MeCN. The solvent was removed under reduced pressure, the residue dissolved in CHCl₃ and washed with H₂O. The organic layer was dried over anhydrous MgSO₄, filtered, and the filtrate evaporated under reduced pressure. The residue was purified by flash chromatography.

1,1',1'',1'''-[Tricyclo[3.3.1.1^{3,7}]decane-1,3,5,7-tetrayltetrakis(4,1-phenylene{ (2Z)-4-[3-(3-isopropyl-5-methyl-4*H*-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]-oct-8-yl]but-2ene-3,1-diyl})]tetrakis(3,7-dimethyl-3,7-dihydro-1*H*-purine-2,6-dione) (8a).

Prepared by general procedure D from **4a** in MeCN and heating for 24h. Flash chromatography gradient eluting with 20:1 v/v CHCl₃/MeOH then 15:1 v/v CHCl₃/MeOH gave the product **8a** (52%) as a colourless froth, mp 199-201°C; $\delta_{\rm H}$ (300 MHz, CDCl₃); 7.54 (4H, s, 4 × purine-H), 7.46 (8H, d, *J* 8.2, 8 × phenyl-H), 7.37 (8H, d, *J* 8.2, 8 × phenyl-H), 5.88 (4H, t, *J* 6.2, 4 × NCH₂CH=), 4.93 (8H, d, *J* 6.2, 4 × NCH₂CH=), 4.24 (4H, m, 4 × azabicyclooctyl-H), 3.99 (12H, s, 4 × purine-NCH₃), 3.68 (8H, s, 4 × =CCH₂N), 3.58 (12H, s,

4 × purine-N*CH*₃), 3.46 (8H, br s, 8 × azabicyclooctyl-H), 2.96 (4H, m, 4 × triazolyl 3-*CH*(CH₃)₂), 2.37 (12H, s, 4 × triazolyl 5-CH₃), 2.21 (8H, br dd, *J* 8.7 and 3.6, 8 × azabicyclooctyl-H), 2.1 (20H, br s, 8 × azbicyclooctyl-H + 6 × adamantyl-CH₂), 1.66 (16H, br d, *J* 7.7, 16 × azabicyclooctyl-H), 1.32 (24H, d, *J* 6.7, 4 × triazolyl 3-CH(*CH*₃)₂); δ_c (75 MHz, CDCl₃);157.6, 153.5, 149.9, 149.3, 147.4, 146.7, 140.2, 138.9, 138.5, 125.3, 124.8, 123.0, 106.2, 57.2, 49.7, 45.8 (2 × C), 38.2, 37.5, 36.0, 32.2, 28.3, 25.2, 24.2, 20.2, 11.4; v_{max}/cm^{-1} (film); 3384, 2935, 1704, 1661, 1603, 1549, 1513, 1455, 1415, 1357, 1314, 1286, 1234; *m*/z (ESI⁺) 2321.3 (30%, [M+Na]⁺); (Found [M+Na]⁺, 2321.2911. C₁₃₀H₁₆₁NaN₃₂O₈ requires [*M*+*Na*]⁺, 2321.3018); 2298.3 (28%, [M+H]⁺); (Found [M+H]⁺, 2298.3056. C₁₃₀H₁₆₁N₃₂O₈ requires [*M*+*H*]⁺, 2298.3170); 1171.6 (34%, [M+2Na]²⁺); (Found [M+2Na]²⁺, 1171.6477. C₁₃₀H₁₆₀Na₂N₃₂O₈ requires [*M*+2*Na*]²⁺, 1171.6441); 1160.7 (80%, [M+H+Na]²⁺); (Found [M+H+Na]²⁺, 1160.6560. C₁₃₀H₁₆₁NaN₃₂O₈ requires [*M*+*H*+*Na*]²⁺, 1160.6531); 1150.2 (100%, [M+2H]²⁺); (Found [M+2H]²⁺, 1149.6660. C₁₃₀H₁₆₂N₃₂O₈ requires [*M*+2*H*]²⁺, 1149.6621).

NOE data (CDCl₃) for **8a**.

			%	Enhancement	
Irradiated proton	1-H	2-H	4-H	Ph-H	Azabicyclooctyl-H
1-H		-8.7	-	-	-
2-Н	-6.3		-	-	-
4-H	-1.0	-		-2.2 (8 7.46)	-2.7 (δ 3.46)

1,1',1'',1'''-(Tricyclo[3.3.1.1^{3,7}]decane-1,3,5,7-tetrayltetrakis{4,1-phenylene[(2Z)-4-(adamantan-1-ylamino)but-2-ene-3,1-diyl]})tetrakis(3,7-dimethyl-3,7-dihydro-1*H*-purine-2,6-dione) (8b).

Prepared by general procedure D from **4a** in DMF and heating for 24h. Flash chromatography eluting with 10:1 v/v CHCl₃/MeOH gave the product **8b** (87%) as a colourless froth, mp 217-219°C; $\delta_{\rm H}$ (300 MHz, CDCl₃); 7.50 (4H, s, 4 × purine-H), 7.49 (8 H, d, *J* 7.6, 8 × phenyl-H), 7.36 (8 H, d, *J* 7.6, 8 × phenyl-H), 5.85 (4H, t, *J* 7.2, 4 × NCH₂*CH*=), 4.87 (8H, d, *J* 7.2, 4 × N*CH*₂CH=), 3.98 (12H, s, 4 × NMe), 3.85 (8H, s, 4 × =C*CH*₂N), 3.57 (12H, s, 4 × NMe), 2.65 (4H, br s, 4 × NH), 2.08 (28H, br s, 12 × adamantyl-CH + 6 × adamantyl-CH₂ + 4 × NH), 1.77 (24H, br s, 12 × adamantyl-CH₂), 1.66 (24H, br s, 12 × adamantyl-CH₂); δ_c (75 MHz, CDCl₃); 155.1, 151.4, 148.8, 148.6, 141.5, 141.2, 138.8, 126.3, 125.0, 124.1, 107.7, 51.3, 47.1, 42.2, 39.8, 39.0, 38.9, 36.8, 33.6, 29.8, 29.6; ν_{max} /cm⁻¹ (film); 2903, 2847, 2366, 1704, 1660, 1604, 1549, 1486, 1454, 1413, 1357, 13101286, 1233; *m*/z (ESI⁺) 1966.1097 (3%, [M+H]⁺); (Found [M+H]⁺, 1966.1097. C₁₁₈H₁₄₁N₂₀O₈ requires [*M*+*H*]⁺, 1966.1236); 983.6 (93%, [M+2H]²⁺); (Found [M+2H]²⁺, 983.5666. C₁₁₈H₁₄₂N₂₀O₈ requires [*M*+2*H*]²⁺, 983.5654); 656.0 (100%, [M+3H]³⁺); (Found [M+3H]³⁺, 656.0474. C₁₁₈H₁₄₃N₂₀O₈ requires [*M*+*3H*]³⁺, 656.0460).

 Tetramethyl
 $(2S,2'S,2''S)-2,2',2'',2'''-(tricyclo[3.3.1.1^{3,7}]decane-1,3,5,

 7-tetrayltetrakis{4,1-phenylene[(2Z)-4-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)but-2-ene-2,1-diyl]imino})tetrakis[3-(1H-indol-3-yl)propanoate] (8c).$

Prepared by general procedure D from 4a in MeCN and heating for 24h. Flash chromatography eluting with 9:1 v/v CHCl₃/MeOH gave the product 8c (45%) as a colourless froth, mp 129-131°C; $[\alpha]_D$ + 9.1; δ_H (300 MHz, CDCl₃); 7.54 (4H, d, J 7.6, 4 × indolyl-H), 7.44 (4H, s, 4 × purine-H), 7.31 (8 H, d, J 8.6, 8 × phenyl-H), 7.24 (8 H, d, J 8.6, 8 × phenyl-H), 7.17 (4H, dd, J 8.6and 1.0, 4 × indolyl-H), 7.05 (8H, m, 8 × indolyl-H), 6.89 (4H, d, J 1.9, 4 × indolyl-H), 5.82 (4H, t, J 6.8, 4 × NCH₂CH=), 4.79 (8H, d, J 6.8, 4 × NCH₂CH=), 9.95-3.90 (4H, m, CHCO₂Me), 3.90 (12H, s, $4 \times$ NMe), 3.75 (4H, d, J 6.7, $4 \times = CCH_4N$), 3.72 (4H, d, J 6.7, $4 \times = CCH_BN$), 3.65 (12H, s, CO₂Me), 3.52 (12H, s, $4 \times NMe$), 3.16 (4H, dd, J 14.3 and 6.6, $4 \times CH_A CHCO_2 Me$), 3.05 (4H, dd, J 14.3 and 6.6, $4 \times CH_B CHCO_2 Me$), 2.00 (16H, br s, $6 \times \text{adamantyl-CH}_2 + 4 \times \text{NH}$); δ_c (75 MHz, CDCl₃); 175.4, 155.0, 151.4, 148.8, 148.4, 141.5, 140.5, 138.6, 136.1, 127.4, 126.3, 124.8 (2 x C), 123.0, 121.8, 119.3, 118.8, 111.3, 111.1, 107.6, 61.7, 51.8, 47.1, 46.6, 39.6, 38.9, 33.6, 32.0, 29.7; v_{max}/cm^{-1} (film); 3330, 2926, 2853, 1701, 1659, 1549, 1456, 1355, 1233; *m/z* (ESI⁺) 2234.0 (10%, $[M+H]^+$; (Found $[M+H]^+$, 2234.0270. $C_{126}H_{129}N_{24}O_{16}$ requires $[M+H]^+$, 2234.0013); 1117.5 $(100\%, [M+2H]^{2+});$ (Found $[M+2H]^{2+}, 1117.5083.$ C₁₂₆H₁₃₀N₂₄O₁₆ requires $[M+2H]^{2+},$ 1117.5043); 745.3 (40%, [M+3H]³⁺); (Found [M+3H]³⁺, 745.3410. C₁₂₆H₁₃₁N₂₄O₁₆ requires $[M+3H]^{3+}$, 745.3386).

Tetramethyl (2*S*,2'*S*,2''*S*,2''*S*)-2,2',2'',2'''-(tricyclo[3.3.1.1^{3,7}]decane-1,3,5, 7-tetrayltetrakis{4,1-phenylene[(2*Z*)-4-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1*H*purin-1-yl)but-2-ene-2,1-diyl]imino})tetrakis(3-hydroxypropanoate) (8d).

Prepared by general procedure D from **4a** in MeCN and heating for 32h. Flash chromatography eluting with 10:1 v/v CHCl₃/MeOH gave the product **8d** (49%) as a colourless froth, mp 136-138°C; $[\alpha]_D + 1.3$; δ_H (300 MHz, CDCl₃); 7.50 (4H, s, 4 × purine-H), 7.44 (8H, d, *J* 8.5, 8 × phenyl-H), 7.38 (8H, d, *J* 8.5, 8 × phenyl-H), 5.91 (4H, t, *J* 7.1, 4 × NCH₂*CH*=), 4.95 (4H, dd, *J* 14.3 and 7.1, 4 × NCH_ACH=), 4.87 (4H, dd, *J* 14.3 and 7.1, 4 × NCH_BCH=), 3.98 (12H, s, 4 × NMe), 3.97 (4H, d, *J* 12.1, 4 × =CCH_AN), 3.87 (4H, dd, *J* 10.4 and 3.8, 4 × CHCH_AOH), 3.80 (4H, d, *J* 12.1, 4 × =CCH_BN), 3.75 (12H, s, 3 × CO₂Me), 3.63 (4H, dd, *J* 10.4 and 3.8, 4 × CHCH_BOH), 3.57 (12H, s, 4 × NMe), 3.58-3.51 (4H, m, 4 × NHCHCH₂), 2.07 (12H, br s, 6 × adamantyl-CH₂); δ_c (75 MHz, CDCl₃); 173.2, 155.1, 151.4, 148.9, 148.7, 141.6, 140.4, 138.4, 126.2, 125.1, 124.8, 107.7, 62.7, 62.5, 52.1, 47.1, 46.3, 39.6, 39.0, 33.7, 29.8; υ_{max} /cm⁻¹ (film); 3457, 2949, 1733, 1704, 1660, 1604, 1550, 1455, 1355, 1315, 1233; *m*/z (ESI⁺) 1837.8 (14%, [M+H]⁺); (Found [M+H]⁺, 1837.8143. C₉₄H₁₀₉N₂₀O₂₀ requires *MH*, 1837.8122); 919.4 (100%, [M+2H]²⁺); (Found [M+2H]²⁺, 919.4139. C₉₄H₁₁₀N₂₀O₂₀ requires *[M+2H]²⁺*, 919.4097); 613 (23%, [M+3H]³⁺); (Found [M+3H]³⁺, 613.2781. C₉₄H₁₁₁N₂₀O₂₀ requires *[M+2H]²⁺*, 919.4097); 613 (23%, [M+3H]³⁺); (Found [M+3H]³⁺, 613.2781. C₉₄H₁₁₁N₂₀O₂₀ requires *[M+3H]³⁺*, 613.2756).

Tetramethyl (2*S*,2'*S*,2''*S*,2''*S*)-2,2',2'',2'''-(tricyclo[3.3.1.1^{3,7}]decane-1,3,5, 7-tetrayltetrakis{4,1-phenylene[(2*Z*)-4-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1*H*- $purin-1-yl) but-2-ene-2, 1-diyl] imino (1-oxoethane-2, 1-diyl) imino \}) tetrak is (4-but) tetrak is$

methylpentanoate) (8e).

Prepared by general procedure D from 4a in MeCN and heating for 26h. Flash chromatography eluting with 20:1 v/v CHCl₃/MeOH gave the product 8e (55%) as a colourless froth, mp 106-108°C; $[\alpha]_D$ + 0.7; δ_H (300 MHz, CDCl₃); 7.66 (4H, d, J 8.2, 4 × CONH), 7.53 (4H, s, 4 × purine-H), 7.41 (8H, d, J 8.5, 8 × phenyl-H), 7.37 (8H, d, J 8.5, 8 × phenyl-H), 5.85 (4H, t, J 7.1, $4 \times \text{NCH}_2CH=$), 4.91 (4H, dd, J 14.3 and 7.1, $4 \times \text{NCH}_4CH=$), 4.83 (4H, dd, J 14.3 and 7.1, $4 \times \text{NCH}_B\text{CH}=$), 4.64 (4H, td, J 8.2 and 4.4, $4 \times \text{CONH}CH$), 3.99 (12H, s, 4 × purine 7-NMe), 3.93 (4H, d, J 12.9, 4 × = CCH_AN), 3.82 (4H, d, J 12.9, 4 × =CCH_BN), 3.68 (12H, s, $3 \times CO_2Me$), 3.58 (12H, s, $4 \times$ purine 3-NMe), 3.35 (8H, br s, $4 \times$ NHCH₂CO), 2.08 (12H, br s, 6 × adamantyl-CH₂), 2.04 (4H, br s, 4 × NH), 1.67-1.44 (12H, m, *CH*₂*CH*Me₂), 0.90 (12H, d, J 4.4, 4 × CHMe_A), 0.88 (12H, d, J 4.4, 4 × CHMe_B); δ_c (75 MHz, CDCl₃); 173.4, 171.9, 155.0, 151.4, 148.9, 148.6, 141.6, 140.7, 138.7, 126.5, 125.1, 125.0, 107.7, 52.2 (2C, Me and CH₂), 50.1, 47.9, 47.2, 41.2, 39.5, 39.0, 33.7, 29.8, 24.9, 23.0, 21.8: v_{max}/cm⁻¹ (film); 3334, 3008, 2955, 1742, 1705, 1660, 1604, 1549, 1512, 1452, 1355, 1315, 1234; m/z (ESI⁺) 2170.1 (6%, [M+H]⁺); (Found [M+H]⁺, 2170.1061. C₁₁₄H₁₄₅N₂₄O₂₀) requires *MH*, 2170.0946); 1085.6 (100%, $[M+2H]^{2+}$); (Found $[M+2H]^{2+}$, 1085.5578. $C_{114}H_{146}N_{24}O_{20}$ requires $[M+2H]^{2+}$, 1085.5567); 724.0 (63%, $[M+3H]^{3+}$); (Found $[M+3H]^{3+}$, 724.0418. $C_{114}H_{147}N_{24}O_{20}$ requires $[M+3H]^{3+}$, 724.0402).

1,1',1'',1'''-[Tricyclo[3.3.1.1^{3,7}]decane-1,3,5,7-tetrayltetrakis(4,1-phenylene{ (2Z)-4-[3-(3-isopropyl-5-methyl-4*H*-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]oct -8-yl]but-2ene-3,1-diyl})]tetrakis(2', 3', 5'-tri-*O*-acetyluridine) (8f).

Prepared by general procedure D from 4b in MeCN and heating for 5h. Flash column chromatography gradient eluting with EtOAc and then 2:1 v/v EtOAc/MeOH gave the product **8f** (56%) as a colourless froth, mp 134-136°C; $[\alpha]_D$ + 18.9 (*c*, 10 mg/1 mL CHCl₃); $\delta_{\rm H}$ (300 MHz, CDCl₃); 7.45 (8H, d, J 8.4, 8 × phenyl-H), 7.40 (8H, d, J 8.4, 8 × phenyl-H), 7.38 (4H, s, 4 \times pyrimidinyl 6-H), 6.00 (4H, d, J 4.6, 4 \times ribosyl 1-H), 5.83 (4H, s, 4 \times pyrimidinyl 5-H), 5.82 (4H, t, J 7.0, 4 × NCH₂CH=), 5.40-5.32 (8H, m, 4 × ribosyl 2-H + 4 × ribosyl 3-H), 4.86 (4H, dd, J 14.8 and 7.0, $4 \times NCH_ACH=$), 4.82 (4H, dd, J 14.8 and 7.0, $4 \times$ NCH_BCH=), 4.35 (12H, s, $4 \times \text{ribosyl} 4\text{-H} + 4 \times \text{ribosyl} 5\text{-CH}_2$), 4.26-4.21 (4H, m, 4×10^{-10} azabicyclooctyl-H), 3.62 (8H, s, $4 \times = CCH_2N$), 3.43 (8H, br s, $8 \times azabicyclooctyl-H$), 2.98-2.90 (4H, m, 4 × triazolyl 3-CH(CH₃)₂), 2.37 (12H, s, 4 × triazolyl 5-CH₃), 2.18-2.02 (28H, m, $16 \times azabicyclooctyl-H + 6 \times adamantyl-CH_2$), 2.13 (12H, s, $4 \times ribosyl OMe$), 2.12 (12H, s, 4 \times ribosyl OMe), 2.09 (12H, s, 4 \times ribosyl OMe), 1.65 (16H, br d, J 7.7, 16 \times azabicyclooctyl-H), 1.32 (24H, d, J 6.7, 4 × triazolyl 3-CH(CH_3)₂); δ_c (75 MHz, CDCl₃); 170.1 (CO), 169.6 (2 × CO), 162.0, 159.1, 150.7, 150.67, 148.2, 141.0, 139.9, 137.5, 126.8, 125.2, 124.5, 102.8, 88.8, 79.6, 72.9, 69.9, 62.9, 58.7, 51.2, 47.3 (2 x C), 39.6, 39.0, 37.4, 26.6, 25.7, 21.6, 20.8, 20.5, 12.9 (One aliphatic carbon could not be located due to peak overlaps); v_{max}/cm^{-1} (film); 2934, 1750, 1711, 1669, 1512, 1455, 1386, 1228; m/z (ESI⁺) 3058.5 (2%, [M+H]⁺); (Found [M+H]⁺, 3058.4522. C₁₆₂H₂₀₁N₂₄O₃₆ requires *MH*, 3058.4630); 1551.7 (100%, [M+2Na]²⁺); (Found [M+2Na]²⁺, 1551.7152. C₁₆₂H₂₀₀Na₂N₂₄O₃₆ requires $[M+2Na]^{2+}$, 1551.7171); 1529.7 (61%, [M+2H]²⁺); (Found [M+2H]²⁺, 1529.7358. C₁₆₂H₂₀₂N₂₄O₃₆ requires $[M+2H]^{2+}$, 1529.7351).

1,1',1'',1'''-(Tricyclo[3.3.1.1^{3,7}]decane-1,3,5,7-tetrayltetrakis{4,1-phenylene[(2*Z*)-4-(8-fluoro-1,3,4,5-tetrahydro-2*H*-pyrido[4,3-*b*]indol-2-yl)but-2-ene-3,1diyl]})tetrakis(2', 3', 5'-tri-*O*-acetyluridine) (8g).

Prepared by general procedure D from **4b** in MeCN and heating for 3h. Flash column chromatography eluting with 30:1 v/v EtOAc/MeOH gave the product **8g** (62 %) as a colourless froth, mp 144-146°C; $[\alpha]_D + 24.7$ (*c*, 12 mg/1 mL CHCl₃); δ_H (300 MHz, CDCl₃); 8.02 (4H, br s, 4 × NH), 7.38 (8H, d, *J* 7.9, 8 × phenyl-H), 7.36 (4H, d, *J* 8.2, 4 × pyrimidinyl 6-H), 6.98 (8H, d, *J* 7.9, 8 × phenyl-H), 7.07 (4H, dd, *J* 8.6 and 4.5, 4 × pyridoindolyl-H), 6.98 (4H, dd, *J* 9.5 and 1.8, 4 × pyridoindolyl-H), 6.76 (4H, dt, *J* 9.1 and 2.3, 4 × pyridoindolyl-H), 6.04 (4H, d, *J* 4.4, 4 × ribosyl 1-H), 5.85 (4H, t, *J* 6.4, 4 × NCH₂*CH*=), 5.82 (4H, d, *J* 8.2, 4 × pyrimidinyl 5-H), 5.34 (8H, dd, *J* 8.7 and 6.1, 4 × ribosyl 2-H + 4 ×

ribosyl 3-H), 4.81 (8H, d, *J* 6.4, $4 \times NCH_2CH=$), 4.33 (12H, s, $4 \times ribosyl 4-H + 4 \times ribosyl 5-CH_2$), 3.76 (8H, br s, $4 \times =CCH_2N$), 3.64 (8H, br s, $4 \times pyridoindolyl 1-CH_2$), 2.81 (8H, br s, $4 \times pyridoindolyl-CH_2$), 2.12 (12H, s, $4 \times ribosyl OMe$), 2.11 (12H, s, $4 \times ribosyl OMe$), 2.05 (12H, s, $4 \times ribosyl OMe$), 1.85 (12H, br s, $6 \times adamantyl-CH_2$); δ_c (75 MHz, CDCl₃); 170.4 (CO), 169.8 (2 x CO), 162.2, 157.7 (*J* 232.2), 150.9, 148.6, 140.3, 139.6, 137.4, 134.6, 132.5, 126.6 (*J* 9.2), 126.57, 125.9, 125.0, 111.2 (*J* 9.2), 109.0 (*J* 4.5), 108.8 (*J* 25.3), 103.8, 102.9 (*J* 25.3), 88.5, 79.9, 73.1, 70.2, 63.2, 49.8, 49.3, 47.1, 40.0, 39.0, 29.9, 23.8, 21.0, 20.7, 20.6; v_{max}/cm^{-1} (film); 3373, 3023, 2929, 1748, 1712, 1667, 1483, 1455, 1372, 1325, 1229; *m*/z (ESI⁺) 2882.1 (10%, [M+H]⁺); (Found [M+H]⁺, 2882.0786. C₁₅₄H₁₅₇F₄N₁₆O₃₆ requires *MH*, 2882.0877); 1441.5 (100%, [M+2H]²⁺); (Found [M+2H]²⁺, 1441.5480. C₁₅₄H₁₅₈F₄N₁₆O₃₆ requires [*M*+2H]²⁺, 1441.5475); *m*/z (ESI⁺) 961.4 (100%, [M+3H]³⁺); (Found [M+3H]³⁺, 961.4. C₁₅₄H₁₅₉F₄N₁₆O₃₆ requires [*M*+3H]³⁺, 961.3674).

NOE data	(CDCl ₃)	for 8g .
----------	----------------------	-----------------

			%	Enhancement	
Irradiated proton	1-H	2-Н	4-H	Ph-H	pyridoindolyl-H
1-H		-11.4	-4.6	-	-1.7 (δ 3.64)
2-Н	-7.3		-	-6.5 (δ 7.38)	-
4-H	-7.0	-		-7.9 (δ 7.38)	-4.9 (δ 3.64) -5.8 (δ 2.81) -2.1 (δ 2.60)

 $\label{eq:2.1} 1,1',1'''-[Tricyclo[3.3.1.1^{3,7}]decane-1,3,5,7-tetrayltetrakis(4,1-phenylene \{(2Z)-4-[3-(3-isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]oct-8-yl]but-2-ene-3,1-diyl\})]tetrakis(3',5'-di-O-acetylthymidine) (8h).$

Prepared by general procedure D from 4c in MeCN and heating for 4h. Flash chromatography gradient eluting with 4:1 v/v EtOAc/MeOH and then 1:1 v/v EtOAc/MeOH gave the product **8h** (69%) as a colourless froth, mp 146-148°C; $[\alpha]_D + 2.6$ (c, 11 mg/1 mL CHCl₃); $\delta_{\rm H}$ (300 MHz, CDCl₃); 7.46 (8H, d, J 8.6, 8 × phenyl-H), 7.37 (8H, d, J 8.6, 8 × phenyl-H), 7.29 (4H, s, 4 × pyrimidinyl 6-H), 6.37 (4H, dd, J 5.6 and 8.4, 4 × deoxyribosyl 1-H), 5.85 (4H, t, J 6.7, $4 \times \text{NCH}_2CH=$), 5.22 (4H, dd, J 4.5and 2.1, $4 \times \text{deoxyribosyl 3-H}$), 4.87 (8H, d, J 6.7, $4 \times \text{NCH}_2\text{CH}=$), 4.37 (4H, dd, J 12.2 and 3.6, $4 \times \text{deoxyribosyl 5-H}_A$), 4.35 (4H, dd, J 12.2 and 3.6, $4 \times$ deoxyribosyl 5-H_B), 4.27-4.24 (8H, m, $4 \times$ azabicyclooctyl-H + 4 × deoxyribosyl 4-H), 3.67 (8H, s, 4 × = CCH_2N), 3.44 (8H, br s, 8 × azabicyclooctyl-H), 2.98-2.93 (4H, m, 4 \times triazolyl 3-CH(CH₃)₂), 2.51 (4H, dd, J 5.6 and 1.5, 4 \times deoxyribosyl 2-H_A), 2.46 (4H, dd, J 5.6 and 1.5, $4 \times$ deoxyribosyl 2-H_B), 2.37 (12H, s, $4 \times$ triazolyl 5-CH₃), 2.23-2.05 (28H, m, $16 \times azabicyclooctyl-H + 6 \times adamantyl-CH₂), 2.14$ (12H, s, 4 \times deoxyribosyl OMe), 2.12 (12H, s, 4 \times deoxyribosyl OMe), 1.96 (12H, s, 4 \times pyrimidinyl 5-Me), 1.66 (16H, br d, J 7.9, 16 × azabicyclooctyl-H), 1.32 (24H, d, J 6.9, 4 × triazolyl 3-CH(*CH*₃)₂); δ_c (75 MHz, CDCl₃); 170.8, 170.6, 163.4, 159.5, 151.1, 151.0, 148.6, 141.2, 140.3, 133.2, 127.1, 125.9, 124.9, 111.2, 85.9, 82.5, 74.5, 64.3, 59.1, 51.6, 47.7 (2 x C), 40.2, 39.4, 37.9, 37.8, 27.1, 26.1, 22.0, 21.3, 21.2, 13.9, 13.3 ; v_{max}/cm⁻¹ (film); 3333, 2932, 1746, 1703, 1668, 1645, 1513, 1467, 1366, 1235; m/z (ESI⁺) 2904.5 (8%, [M+Na]⁺); (Found [M+Na]⁺, 2904.4779. C₁₅₈H₂₀₀NaN₂₄O₂₈ requires *MNa*, 2904.4856); 2882.5 (15%, $[M+H]^+$; (Found $[M+H]^+$, 2882.4986. $C_{158}H_{201}N_{24}O_{28}$ requires *MH*, 2882.5037); 1493.7 (68%, $[M+2Na]^{2+}$); (Found $[M+2Na]^{2+}$, 1463.7397. $C_{158}H_{200}NaN_{24}O_{28}$ requires $[M+2Na]^{2+}$, 1463.7374); 1441.8 (100%, $[M+2H]^{2+}$); (Found $[M+2H]^{2+}$, 1441.7615. $C_{158}H_{202}N_{24}O_{28}$ requires $[M+2H]^{2+}$, 1441.7555).

			%	Enhancement	
Irradiated proton	1-H	2-H	4-H	Ph-H	Azabicyclooctyl-H
1-H		-9.5	-1.1	-	-
2-Н	-5.1		-	-	-
4-H	-2.1	-		-1.9 (δ 7.46)	-4.3 (δ 3.44)

NOE data (CDCl₃) for **8h**.

 $1,1',1'',1'''-(Tricyclo[3.3.1.1^{3,7}] decane-1,3,5,7-tetrayltetrakis{4,1-phenylene[(2Z)-4-(8-fluoro-1,3,4,5-tetrahydro-2H-pyrido[4,3-b]indol-2-yl)but-2-ene-3,1-diyl]}) tetrakis(3', 5'-di-O-acetylthymidine) (8i).$

Prepared by general procedure D from **4c** in MeCN and heating for 6h. Flash column chromatography eluting with 20:1 v/v EtOAc/MeOH gave the product **8i** (74%) as a colourless froth, mp 155-157°C; $[\alpha]_D$ + 6.2 (*c*, 11 mg/1 mL CHCl₃); δ_H (300 MHz, CDCl₃); 8.18 (4H, br s, 4 × NH), 7.36 (8H, d, *J* 8.1, 8 × phenyl-H), 7.26 (4H, s, 4 × pyrimidinyl 6-H), 7.13 (8H, d, *J* 8.1, 8 × phenyl-H), 7.02 (4H, dd, *J* 8.5 and 4.4, 4 × pyridoindolyl-H), 6.95 (4H,

dd, J 9.6 and 1.9, $4 \times$ pyridoindolyl-H), 6.73 (4H, dt, J 9.2 and 2.4, $4 \times$ pyridoindolyl-H), 6.36 (4H, dd, J 7.9 and 5.9, 4 × deoxyribosyl 1-H), 5.85 (4H, t, J 6.5, 4 × NCH₂CH=), 5.20 (4H, dd, J 4.4 and 1.8, 4 × deoxyribosyl 3-H), 4.82 (8H, d, J 6.5, 4 × NCH₂CH=), 4.38 (4H, dd, J 12.2 and 3.7, 4 \times deoxyribosyl 5-H_A), 4.30 (4H, dd, J 12.2 and 3.7, 4 \times deoxyribosyl 5-H_B), 4.23 (4H, dd, J 5.8 and 3.2, 4 × deoxyribosyl 4-H), 3.76 (8H, br s, 4 × = CCH_2N), 3.61 $(8H, br s, 4 \times pyridoindolyl 1-CH_2), 2.77 (8H, br s, 4 \times pyridoindolyl-CH_2), 2.50-2.43 (16H, br s, 4 \times pyridoindolyl 1-CH_2), 2.77 (8H, br s, 4 \times pyridoindolyl-CH_2), 2.50-2.43 (16H, br s, 4 \times pyridoindolyl-CH$ br m, $4 \times$ pyridoindolyl-CH₂ + 4 × deoxyribosyl 2-CH₂), 2.12 (12H, s, 4 × deoxyribosyl OMe), 2.10 (12H, s, 4 × deoxyribosyl OMe), 1.95 (12H, s, 4 × pyrimidinyl 5-Me), 1.77 (12H, br s, $6 \times$ adamantyl-CH₂); δ_c (75 MHz, CDCl₃); 169.3, 169.1, 161.8, 156.3 (J 232.2), 149.5, 147.2, 138.9, 138.3, 133.2, 131.5, 131.2, 125.2 (J 9.2), 125.15, 124.7, 123.6, 109.7 (J 9.2), 109.5, 107.4 (J 4.5), 107.3 (J 25.2), 101.4 (J 23.0), 84.3, 80.9, 73.0, 62.7, 54.5, 48.6, 47.9, 45.7, 38.8, 37.5, 36.4, 22.3, 19.7, 19.66, 12.3; v_{max}/cm⁻¹ (film); 3346, 2927, 1744, 1702, 1643, 1465, 1366, 1325, 1232; m/z (ESI⁺) 2706.1 (2%, $[M+H]^+$); (Found $[M+H]^+$, 2706.1237. $C_{150}H_{157}F_4N_{16}O_{28}$ requires *MH*, 2705.1284); *m/z* (ESI⁺) 1353.6 (59%, [M+2H]²⁺); (Found $[M+2H]^{2+}$, 1353.5679. $C_{150}H_{158}F_4N_{16}O_{28}$ requires $[M+2H]^{2+}$, 1353.5678); 902.7 (100%, $[M+3H]^{3+}$; (Found $[M+3H]^{3+}$, 902.7141. C₁₅₀H₁₅₉F₄N₁₆O₂₈ requires $[M+3H]^{3+}$, 902.7143).

References

- H. B. Lazrek, J. W. Engels, W. Pfleiderer, *Nucleosides and Nucleotides*, 1998, 17, 1851-1856.
- 2. J. Kuang, S. Ma, J. Org. Chem. 2009, 74, 1763-1765.
- D. Bruyere, R. Grigg, J. Hinsley, R. K. Hussain, S. Korn, C. Orgaz De La Cierva, V. Sridharana, J. Wanga, *Tetrahedron Lett.* 2003, 44, 8669-8672.
- 4. A. Casaschi, R. Grigg, J. M. Sansano, Tetrahedron 2000, 56, 7553-7560.
- 5. J. W. Daly, W. L. Padgett, M. T. Shamim, J. Med. Chem. 1986, 29, 1305-1308.

School of Chemistry Mass Spectrometry Service

Fig. (1): HRMS of **8a** using autosampler technique.

Fig. (3): HRMS of **8c** using autosampler technique.

Fig. (4): HRMS of **8d** using autosampler technique.

School of Chemistry Mass Spectrometry Service

Fig. (5): HRMS of **8e** using autosampler technique.

Fig. (6): HRMS of **8f** using syringe pump technique.

Fig. (7): HRMS of **8f** using autosamplar technique.

Fig. (8): HRMS of 8g using syringe pump technique.

Fig. (9): HRMS of **8g** using autosamplar technique.

School of Chemistry Mass Spectrometry Service

Fig. (10): HRMS of **8h** using syringe pump technique.

Fig. (11): HRMS of **8i** using syringe pump technique.

Comment	EE-95	Operator	Tanva	
Sample Name	112735	Acquisition Date	15/12/2010 09:42:35	1
Analysis Name	D:\Data\December2010\112735 1-A,7_01 12065.d			UNIS
Method	steve 200-2500 lc.m			LE
Instrument	micrOTOF Source Type ESI Ion Polarity Posit	Scan Begin	50 m/z Scan End 2500 m/z	

Fig. (12): HRMS of **8i** using autosamplar technique.