Supplementary Information

Cu_{1.94}S nanocrystal seed mediated solution-phase growth of unique Cu₂S-PbS heteronanostructures

Tao-Tao Zhuang, Feng-Jia Fan, Ming Gong and Shu-Hong Yu*

Experimental Section

Materials. The chemicals sodium diethyldithiocarbamate $(Na(S_2CNEt_2))$, Pb $(NO_3)_2$, copper(II) acetylacetonate $(Cu(acac)_2)$ and dodecanethiol (DDT) were purchased from the Shanghai Reagent Company (P. R. China).

Synthesis of Pb(S_2CNEt_2)₂ (*Pb*(*dedc*)₂). In a typical synthesis of lead diethyldithiocarbamate, NaS₂CNEt₂(2 mmol) and Pb(NO₃)₂(1 mmol) were dissolved in ionized water (50 ml), respectively. Then, Pb(NO₃)₂ aqueous solution was dropwise added to NaS₂CNEt₂ solution, washed at least 3 times with ionized water and ethanol followed by drying.

Synthesis of $Cu_{1.94}S$ *nanocrystals.* The synthesis of the copper sulfide nanocrystals was based on previously published procedures.¹ In a typical procedure, 0.25 mmol (0.065 g) Cu(acac)₂ was dissolved by 15 ml dodecanethiol (DDT) in a three-neck flask with magnetic stirring under the protection of nitrogen gas and heated at 200 for 20 min. with the increase of temperature, the reaction mixture changed from turbid yellow (~25) to turbid white (~110), transparent yellow (~150) and turbid brown (200 , 10 min) lastly. After reaction, the flask was naturally cooled to room temperature. The resulting Cu_{1.94}S nanoparticles were collected by centrifugation, washed with ethanol and hexane to remove the unreacted precursors and DDT.

*Synthesis of Cu*₂*S-PbS heteronanostructures.* In a typical synthesis, Cu_{1.94}S nanocrystals were first prepared as described above, 0.25 mmol (0.129 g) Pb(dedc)₂ was then swiftly added under vigorously stirring for about 10-30 min at this temperature. The mixture solution turned black at once, indicating the formation of PbS. The two-component nanocrystals were washed and precipitated using ethanol and hexane.

Synthesis of PbS nanocrystals. The synthesis of lead sulfide nanocrystals was accomplished by directly

heating a dodecanethiol (15 ml) solution of $Pb(dedc)_2$ (0.25 mmol, 0.129 g) with magnetic stirring under the protection of nitrogen gas at 200 for 30 min.

Laster irradiation and temperature measurement. To better investigate the photothermal conversion properties of the as-obtained $Cu_{1.94}S$ and Cu_2S -PbS heterostructure nanocrystals, 0.5 mg ml⁻¹ nanocrystals n-hexane solution was ready for subsequent measurement. An 808 nm continuous-wave NIR laster (MDL-808-2W) with a laser spot size of 8×5 mm was used to measure photothermal conversion effect. A thermocouple was immersed in the suspension to measure the increase in temperature.

Characterization. The samples were characterized by powder X-ray power diffraction (XRD), using a Philips X'Pert PRO SUPER X-ray diffractometer equipped with graphite monochromaticized Cu K α radiation ($\lambda = 1.54056$ Å). The operation voltage and current were kept at 40 kV and 400 mA, respectively. TEM and HRTEM were performed on Hitachi H-7650 and JEOL-F2010 with an acceleration voltage of 200 KV. HAADF-STEM and STEM EDS element mapping was carried out on Oxford Inca equipped on JEOL-F2010. Optical absorption spectra of nanocrystals dispersed in hexane were measured at room temperature using a DUV—3700 UV-vis-NIR spectrometer. Photothermal conversion effect was measured with an 808 nm continuous-wave NIR laser (MDL-808-2W) with the power density of 2 W cm⁻² and the laser spot size of 8×5 mm.

Fig. S1 Typical TEM images of the nanocrystals obtained by pyrolysis of 0.25 mmol $Cu(acac)_2$ in 15 ml DDT when reaction temperature was raised to (c) 210 °C,(d) 230 °C, (e) 250 °C for 20 min, and at 200 °C for (a) 0 min, (f) 90 min. (b) XRD pattern of the sample shown in (a).

Fig. S2 EDS spectrum of Cu_2S -PbS heteronanostructures. The Mo and C elements are attributed to molybdenum grid and carbon film, respectively.

Fig. S3 XRD patterns of the samples obtained after reaction for 10 min with different molar ratio of Cu/Pb: black (1/0.5), red (1/1), green (1/1.5) and blue (1/2).

Fig. S4 (a) XRD pattern and (b) TEM image of irregularly shaped PbS nanocrystals obtained by pyrolysis of Pb(dedc)₂ in DDT without $Cu_{1.94}S$ nanocrystals. Note: red lines in (a) is PbS Standard data (JCPDS No. 78-1901).

Fig. S5 TEM image of as-prepared heteronanostructures after reaction for 10 min with the molar ratio of Cu/Pb (1/2).

Fig. S6 Absorption spectra of $Cu_{1.94}S$ (black), and Cu_2S -PbS (red) heteronanostructures dispersed in n-hexane, the weak peak at ~1400 nm is related to the absorption of n-hexane.

Fig. S7 The photothermal response of PbS nanocrystals with a concentration of 0.5 mg ml⁻¹ by NIR light.

Fig. S8 The photothermal response of $Cu_{1.94}S$ nanocrystals with different concentration by NIR light.

Reference

S1. W. Han, L. Yi, N. Zhao, A. Tang, M. Gao and Z. Tang, J. Am. Chem. Soc., 2008, 130, 13152-13161.