Supplementary Information

C_{aryl}-C_{alkyl} bond formation from Cu(ClO₄)₂-mediated oxidative cross coupling reaction between arenes and alkyllithium reagents through structurally well-defined Ar-Cu(III) intermediates

Zu-Li Wang, Liang Zhao, Mei-Xiang Wang*

The Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China

wangmx@mail.tsinghua.edu.cn

Table of Contents

1. General Information	.2
2. Experimental Details	.2
3. Characterization of Products	4
4. X-ray Structure of 4f	.9
5. Copies of ¹ H and ¹³ C NMR Spectra of Products	9

S1

1. General Information

Chemical shifts were reported in ppm versus tetramethylsilane with either tetramethylsilane or the residual solvent resonance as an internal standard. Melting points were uncorrected. All solvents were dried according to standard procedures prior to use. All other major chemicals were obtained from commercial sources and used without further purification.

2. Experimental details

The synthesis of aryl-copper(III) complexes follows our previous reported procedure (Yao, B.; Wang, D.-X.; Huang, Z.-T.; and Wang, M.-X. *Chem. Commun.* **2009**, 2899).

General procedure for the reaction between aryl-Cu(III) complexes 2 and alkyl lithium reagents 3: Alkyllithium reagent 3 (1 mmol) in THF solution was added to the solution of aryl-copper(III) complex 2 (0.5 mmol) in THF (25 ml) at 0 °C. The mixture was kept stirring at 0 °C for 10 minutes and then at room temperature for 45 minutes. The reaction was quenched by adding a saturated aqueous ammonium chloride solution (5 mL), followed by the addition of saturated aqueous EDTA solution (10 ml). The mixture was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic layer was washed with brine (20 mL), dried with anhydrous MgSO₄, and concentrated under vacuum. The residue was chromatographed with a silica gel column using a mixture of petroleum ether, ethyl acetate, and dichloromethane (12:1:2) as mobile phase to afford pure product 4 and 1 (see Table 1). Compounds 4 were fully characterized by means of spectroscopic data and microanalysis. X-ray single crystal structure of **4f** was also obtained.

General procedure for the reaction between aryl-Cu(III) complexes 2a and alkyl lithium reagent 3i: To a cooled solution (-78 °C) of dimethyl malonate (1.0 mmol) in THF (10 ml) was

added *n*-BuLi (1.1mmol). After 0.5 h, the temperature of the reaction mixture was allowed to warm to room temperature. The resulting **3i** solution was then added to the solution of aryl-copper(III) complex **2a** (0.5 mmol) in THF (25 ml) at 0 °C. The mixture was kept stirring at 0 °C for 10 minutes and then at room temperature for 45 minutes. The reaction was quenched by adding a saturated aqueous ammonium chloride solution (5 mL), followed by the addition of saturated aqueous EDTA solution (10 ml). The mixture was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic layer was washed with brine (20 mL), dried with anhydrous MgSO₄, and concentrated under vacuum. The residue was chromatographed with a silica gel column using a mixture of petroleum ether, ethyl acetate, and dichloromethane (12:1:2) as mobile phase to afford pure product **4i**.

General procedure for the reaction between aryl-Cu(III) complexes 2b and ethyl cyanoacetate 3j: To a cooled solution (0 °C) of ethyl cyanoacetate (1.0 mmol) in THF (10 ml) was added NaH (1.2mmol). After 1.0 h, The resulting 3j solution was then added to the solution of aryl-copper(III) complex 2b(0.5 mmol) in THF (25 ml) at 0 °C. The mixture was kept stirring at 0 °C for 10 minutes and then at room temperature for 45 minutes. The reaction was quenched by adding a saturated aqueous ammonium chloride solution (5 mL), followed by the addition of saturated aqueous EDTA solution (10 ml). The mixture was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic layer was washed with brine (20 mL), dried with anhydrous MgSO₄, and concentrated under vacuum. The residue was chromatographed with a silica gel column using a mixture of petroleum ether, ethyl acetate, and dichloromethane (12:1:2) as mobile phase to afford major product 4j, then the major product 4j was recrystallized from methanol to afford the pure product 4j.

Synthesis of 4b from a one-pot reaction of 1a: Azacalix[1]arene[3]pyridine 1a (211 mg, 0.5

mmol) and Cu(ClO₄)₂•6H₂O (278 mg, 0.75 mmol) were dissolved in a mixture of chloroform (5 mL) and methanol (5 mL). The solution turned dark blue immediately with precipitation of dark purple precipitates. After about 90 minutes, the solvent was removed under vacuum, and THF (25 ml) was then add to aryl-copper(III) complex. At 0°C, *n*-BuLi **3c**(1.0 mmol) was added under N₂ protection, and resulting mixture was kept stirring for 10 minutes and then at room temperature for 45 minutes. The reaction was quenched by adding a saturated aqueous ammonium chloride (5 mL) followed by the addition of a saturated aqueous EDTA solution (10 ml), and then was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layer was washed with brine (20 mL), dried with anhydrous MgSO₄ and concentrated under vacuum. The residue was chromatographed with a silica gel column using a mixture of petroleum ether, ethyl acetate and dichloromethane (12:1:2) as mobile phase to give pure **4b** (51%).

3. Characterization of Products

4a: 98mg, 45%; mp 230-232 °C; ¹H NMR (400MHz, CDCl₃,) δ 7.39 (t, J = 8.0 Hz, 2H), 7.11 (t, J = 7.8 Hz, 1H), 6.96 (t, J = 7.8 Hz, 1H), 6.77 (d, J = 7.8 Hz, 2H), 6.55 (d, J = 7.8 Hz, 2H), 6.00 (d, J = 7.8 Hz, 2H), 5.97 (d, J = 7.8 Hz, 2H), 3.23 (s, 6H), 3.09 (s, 6H), 1.53 (s, 3H); ¹³C NMR (100MHz, CDCl3) δ 158.9, 158.7, 157.0, 147.3, 138.8, 137.3, 136.4, 126.6, 125.9, 120.8, 94.6, 93.9, 37.8, 36.1, 12.5; IR (KBr) v 1576, 1413 cm⁻¹; MALDI-TOF m/z 438 [M+H]⁺. HRMS(ESI) for C₂₆H₂₇N₇ (M+H)⁺: 438.2401. Found: 438.2395.

4b: 119mg, 50%; mp 182-184 °C; ¹H NMR (400MHz, CDCl₃) δ 7.40 (t, *J* = 7.8 Hz, 2H), 7.08 (t, *J* = 7.8 Hz, 2H), 6.67 (t, *J* = 7. 8 Hz, 2H), 6.75 (d, *J* = 7.8 Hz, 2H), 6.52 (d, *J* = 7.8 Hz, 2H), 6.01 (d, *J* = 7.8 Hz, 2H), 5.98 (d, *J* = 7.8 Hz, 2H), 3.24 (s, 6H), 3.13 (s, 6H), 1.96-1.91 (m, 2H), 1.18-1.03 (m, 4H), 0.67 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100MHz, CDCl₃) δ 158.8, 158.7, 157.1, 147.5, 141.5, 138.7, 137.2, 126.8, 126.3, 120.5, 94.8, 94.3, 39.1, 36.1, 31.7, 27.3, 23.2, 13.8; IR (KBr) v 1581, 1419 cm⁻¹; MALDI-TOF *m/z* 480 [M+H]⁺. Anal. Calcd. for C₂₉H₃₃N₇: C, 72.62; H, 6.94; N, 20.44. Found: C, 72.77; H, 7.10; N, 20.27.

4c: 110mg, 46%; mp 236-237 °C; ¹H NMR (300MHz, CDCl₃) δ 7.39 (t, J = 8.2 Hz, 2H), 7.09 (t, J = 7.8 Hz, 1H), 6.97 (t, J = 7.8 Hz, 1H), 6.75 (d, J = 7.8 Hz, 2H), 6.53 (d, J = 7.8 Hz, 2H), 6.01 (d, J = 7.8 Hz, 2H), 5.97 (d, J = 8.2 Hz, 2H), 3.23 (s, 6H), 3.13 (s, 6H), 0.63 (s, 9H); ¹³C NMR (100MHz, CDCl₃) δ 158.8, 158.6, 157.2, 147.4, 141.9, 138.7, 137.2, 126.9, 126.2, 120.5, 94.8, 94.4, 39.2, 36.1, 29.1, 22.9; IR (KBr) v 1581, 1420 cm⁻¹; GC-MASS *m*/*z* 480[M+H]⁺. HRMS(ESI) for C₂₉H₃₃N₇ (M+H)⁺: 480.2876. Found: 480.2874.

4d: 106mg, 42%; mp 260-262 C; ¹H NMR (400MHz, CDCl₃) δ 7.40 (t, *J* = 8.2 Hz, 2H), 7.04 (t, *J* = 7.8 Hz, 1H), 6.88 (t, *J* = 7.6 Hz, 1H), 6.71 (d, *J* = 7.8 Hz, 2H), 6.51 (d, *J* = 7.8 Hz, 2H), 6.03 (d, *J* = 8.2 Hz, 2H), 5.99 (d, *J* = 7.8 hz, 2H), 3.26 (s, 6H), 3.12 (s, 6H), 1.55 (s, 2H), -0.27 (s, 9H); ¹³C NMR (100MHz, CDCl₃) δ 158.6, 158.5, 156.7, 146.7, 140.6, 138.6, 136.8, 124.8, 124.1, 120.4, 95.3, 94.9, 39.6, 35.9, 16.7, 0.95; IR (KBr) v 1578, 1422 cm⁻¹; GC-MASS *m*/*z* 510[M+H]⁺. HRMS(ESI) for C₂₉H₃₅N₇Si (M+H)⁺: 510.2796. Found:510.2804.

4e: 101mg, 45%; mp 151-152 °C; ¹H NMR (400MHz, CDCl₃,) δ 7.38 (t, J = 8.0 Hz, 2H), 7.14 (t, J = 7.8 Hz, 1H), 6.60-6.53 (m, 4H), 6.00 (d, J = 7.8 Hz, 2H), 6.95 (d, J = 7.8 Hz, 2H), 6.00 (d, J = 8.2 Hz, 2H), 3.24 (s, 6H), 3.08 (s, 6H), 2.23 (s, 3H), 1.49 (s, 3H); ¹³C NMR (100MHz, CDCl₃) δ 158.9, 158.8, 157.0, 147.0, 138.8, 136.5, 135.0, 132.9, 127.4, 120.7, 94.5, 93.9, 37.7, 36.1, 20.8, 12.2; IR (KBr) v 1584, 1414 cm⁻¹; ESI-MS: m/z 452 [M+H] ⁺. HRMS(ESI) for C₂₇H₃₀N₇ (M+H)⁺: 452.2557. Found: 452.2558.

S6

4f: 144mg, 55%; mp 245-246 C; ¹H NMR (400MHz, CDCl₃) δ 7.39 (t, *J* = 8.0 Hz, 2H), 7.05 (t, *J* = 7.5 Hz, 1H), 6.54 (s, 2H), 6.53 (d, *J* = 8.7 Hz, 2H), 6.03 (d, *J* = 8.2 Hz, 2H), 5.98 (d, *J* = 8.2 Hz, 2H), 3.26 (s, 6H), 3.09 (s, 6H), 2.21 (s, 3H), 1.49 (s, 2H), -0.20 (s, 9H); ¹³C NMR (100MHz, CDCl₃) δ 158.8, 158.7, 157.0, 146.3, 138.8, 137.2, 136.4, 133.4, 125.7, 120.5, 95.4, 95.0, 39.6, 36.1, 20.7, 16.4, 0.19; IR (KBr) v 1582, 1421 cm⁻¹; ESI-MS: *m/z* 524 [M+H] ⁺. HRMS(ESI) for C₃₀H₃₈N₇Si (M+H)⁺: 524.2952. Found: 524.2941. An X-ray-quality single crystal of **4f** was obtained by slow evaporation of the solution in a mixture of ethyl acetate and methanol at room temperature.

4g: 125mg, 49%; mp 120-121 °C; ¹H NMR (400MHz, CDCl₃) δ 7.40 (t, *J* = 8.0 Hz, 2H), 7.34 (t, *J* = 7.5 Hz, 1H), 6.76 (s, 2H), 6.58 (d, *J* = 7.8 Hz, 2H), 6.03 (d, *J* = 8.2 Hz, 2H), 5.98 (d, *J* = 8.2 Hz, 2H), 3.24 (s, 6H), 3.10 (s, 6H), 1.91 (t, *J* = 8.0 Hz, 2H), 1.15-1.01 (m, 4H), 0.65 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100MHz, CDCl₃) δ 158.7, 157.0, 148.5, 140.4, 138.9, 137.0, 127.4, 120.6, 95.4, 94.4, 38.7, 36.1, 31.4, 27.0, 23.2, 13.7; IR (KBr) v 1569, 1420 cm⁻¹; ESI-MS: *m*/*z* 514(100%) [M+H] ⁺; 516 (43%) [M+2+H] ⁺. HRMS(ESI) for C₂₉H₃₃ClN₇ (M+H)⁺: 514.2488. Found: S7

514.2480.

4h: 144mg, 53%; mp 256-257 C; ¹H NMR (400MHz, CDCl₃) δ 7.41 (t, *J* = 8.0 Hz, 2H), 7.25 (t, *J* = 7.8 Hz, 1H), 6.73 (s, 2H), 6.58 (d, *J* = 7.7 Hz, 2H), 6.06 (d, *J* = 8.2 Hz, 2H), 6.00 (d, *J* = 8.2 Hz, 2H), 3.26 (s, 6H), 3.09 (s, 6H), 1.51 (s, 2H), -0.18 (s, 9H); ¹³C NMR (100MHz, CDCl₃) δ 158.7, 158.6, 156.8, 147.5, 139.9, 139.0, 136.9, 128.3, 125.5, 120.6, 95.7, 95.7, 39.5, 36.0, 16.7, 0.14; IR (KBr) v 1572, 1422 cm⁻¹; ESI-MS: *m*/*z* 544 (100%) [M+H]⁺; 546 (42%) [M+2+H]⁺. HRMS(ESI) for C₂₉H₃₅N₇Si (M+H)⁺: 544.2406. Found: 544.2409.

4i: 116mg, 42%; mp 182-183°C; ¹H NMR (400MHz, CDCl₃) δ 7.42 (t, *J* = 8.0 Hz, 2H), 7.09 (t, *J* = 6.6 Hz, 1H), 7.05 (t, *J* = 6.6 Hz, 1H), 6.79 (d, *J* = 7.7 Hz, 2H), 6.41 (d, *J* = 7.8 Hz, 2H), 6.15 (d, *J* = 7.8 Hz, 2H), 6.05 (d, *J* = 8.2 Hz, 2H), 4.37 (s, 1H), 3.26 (s, 6H), 3.22 (s, 6H), 3.01 (s, 6H); ¹³C NMR (100MHz, CDCl₃) δ 169.2, 159.3, 158.7, 156.9, 147.3, 138.9, 136.6, 133.3, 128.9, 127.6, 118.4, 97.7, 95.9, 51.5, 51.2, 37.8, 36.5; IR (KBr) v 1750, 1727, 1574, 1422 cm⁻¹; ESI-MS: *m/z* 554[M+H] ⁺. HRMS(ESI) for C₃₀H₃₂N₇O (M+H)+: 554.2510. Found: 554.2500.

4j: 76mg, 35%; mp 180-181°C; ¹H NMR (400MHz, CDCl₃) δ 7.47 (t, *J* = 8.3 Hz, 1H), 7.43 (t, *J* = 7.8 Hz, 1H), 7.12 (t, *J* = 7.3 Hz, 1H), 6.70 (s, 1H), 6.66 (s, 1H), 6.49 (d, *J* = 7.3 Hz, 1H), 6.44 (d, *J* = 7.8 Hz, 1H), 6.15 (d, *J* = 8.2 Hz, 1H), 6.12 (dd, *J* = 7.8, 1.4 Hz, 2H), 6.06 (d, *J* = 7.8 Hz, 1H), 4.61 (s, 1H), 3.85-3.80 (m, 1H), 3.69-3.65 (m, 1H), 3.23 (s, 3H), 3.22 (s, 3H), 3.11 (s, 6H), 2.27 (s, 3H), 1.04 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100MHz, CDCl₃) δ 165.3, 159.0, 158.9, 158.8, 158.6, 157.4, 157.1, 147.0, 139.8, 139.0, 135.9, 128.6, 128.4, 127.3, 119.5, 118.8, 115.5, 97.6, 97.0, 95.8, 95.5, 61.8, 38.3, 38.0, 36.5, 36.3, 36.1, 29.7, 21.2, 13.9; IR (KBr) v 2247, 1734, 1577, 1421 cm⁻¹; GC-MS: *m*/z 548[M]⁺. HRMS(ESI) for C₃₀H₃₂N₇O (M+H)⁺: 549.2721. Found: 549.2721.

4. X-ray structure of 4f

5. Copies of ¹H and ¹³C NMR Spectra of Products

