Polarised Phosphorescent Emission in an Organoplatinum(II)based Liquid-crystalline Polymer

Álvaro Díez, Stephen J. Cowling and Duncan W. Bruce*

Supplementary Information

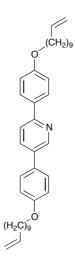


Figure S1 Analogue of 2 without the fused C₅ ring

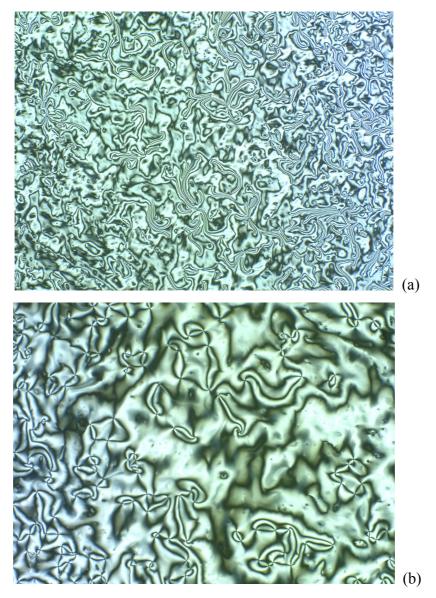


Figure S2 (a) SmC phase (204 $^{\circ}$ C on cooling) and (b) SmI phase (167 $^{\circ}$ C on cooling) of the compound in Fig. S1.

Synthesis

2,5-Di{4-(undec-10-enyloxyphenyl)}cyclopentenopyridine (1).

2,5-Di(4-hydroxyphenyl)cyclopentenopyridine (0.400 g, 1.32 mmol) was added to a solution of 11-bromo-1-undecene (0.7 cm³, 3.18 mmol) and potassium carbonate (1.83 g, 13.2 mmol) in DMF (60 cm³). The dark solution was stirred and heated at 95 °C for 12 h. After cooling to room temperature, the mixture was dropped into H_2O (50 cm³) and the resultant precipitate was filtered and washed with EtOH (2 × 5 cm³) and acetone (4 cm³). **1** was obtained as a brown solid (0.550 g, 68%).

¹H NMR $\delta_{\rm H}$ (399.78 MHz, CDCl₃): 8.49 (1H, s, H⁶), 7.73 (2H, d, J(H-H) = 8.8 Hz, AAXX'), 7.40 (2H, d, J(H-H) = 8.7 Hz, AA'XX'), 6.98 (4H, dd, 3J (H-H) = 8.8 Hz, 4J (H-H) = 2.2 Hz, AA'XX'), 5.81 (2H, m, CH=CH₂), 4.96 (4H, m, CH=CH₂), 4.00 (4H, m, OCH₂), 3.14 (2H, t, CH₂ cyclopent), 3.01 (2H, t, CH₂ cyclopent), 2.04 (6H, m, 2H cyclopent + 4H CH₂), 1.80 (4H, m, CH₂), 1.48 (4H, m, CH₂), 1.30 (20H, br m, CH₂). MS(ESI+) m/z (%): 608.4 (100) [M⁺]. Calcd. for C₄₂H₅₇NO₂ (607.44): C 82.97, H 9.46, N 2.30; found C 83.07, H 9.29, N 2.36.

Complex 4.

Compound 2 (0.500 g, 0.822 mmol) was added over a yellow-pink suspension of $[PtCl_2(dms)_2]$ (0.321 g, 0.822 mmol) in deoxygenated ethoxyethanol (70 cm³). The mixture was heated to reflux (125 °C) and stirred overnight. The solvent was then removed and the intermediate dms complex, [Pt(L)Cl(dms)] (3) was collected by addition of EtOH as a dark solid (0.560 g, 0.622 mmol, 76%). Without further purification, Na(acac) (0.087 g, 0.622 mmol) in a mixture of acetone/CH₂Cl₂ (2:1, 45 cm³), was added to the dark solid obtained. The resultant suspension was stirred overnight at room temperature and then the solvent was removed, CH_2Cl_2 was added and the suspension filtered through celite. Complex 4 was obtained as a yellow solid after evaporation of the solvent and purification by column chromatography on silica using CHCl₃ as eluent (0.213 g, 38%).

¹H NMR $\delta_{\rm H}$ (399.78 MHz, CDCl₃): 8.82 (1H, d, ³J(Pt-H) = 36.0 Hz, H⁶), 7.51 (1H, d, ³J(H-H) = 7.51 Hz, Ar), 7.37 (2H, d, J = 8.7 Hz, AA'XX'), 7.18 (1H, d, ³J(H-H) = 2.6 Hz, H^x),

6.99 (2H, d, J = 8.7 Hz, AA'XX'), 6.66 (1H, dd, ${}^{3}J(H-H) = 8.6$ Hz, ${}^{4}J(H-H) = 2.6$ Hz, Ar), 5.81 (2H, m, CH=), 5.44 (1H, s, CH acac), 4.97 (4H, m, =CH₂), 4.08 (2H, t, ${}^{3}J(H-H) = 6.6$ Hz, OCH₂), 4.01 (2H, t, ${}^{3}J(H-H) = 6.5$ Hz, OCH₂), 3.36 (2H, t, ${}^{3}J(H-H) = 7.3$ Hz, CH₂ cyclopenten), 3.02 (2H, t, ${}^{3}J(H-H) = 7.6$ Hz, CH₂ cyclopenten), 2.18 (2H, m, CH₂ cyclopenten), 2.04 (4H, m, CH₂), 1.99 (3H, s, CH₃ acac), 1.94 (3H, s CH₃ acac), 1.81 (4H, m, CH₂), 1.48 (4H, m, CH₂), 1.31 (20H, br m, CH₂). MS(MALDI+) m/z (%): 801.4 (100) [(M – acac)⁺], 900.4 (18) [M⁺]. Calcd. for C₄₇H₆₃NO₄Pt (900.44): C 62.64, H 7.05, N 1.56; found C 62.55, H 7.04, N 1.65.

Polymer 5.

Over a pale yellow suspension of complex 4 (0.15 g, 0.166 mmol) in dry toluene (1.5 cm³), 1,1,3,3-tetramethyldisiloxane (42 μ l, 0.166 mmol) and a solution of [PtCl₂(COD)] in dichloromethane (1% w/w, 30 μ l) were added. The temperature was increased to 50 °C and the resultant solution was stirred overnight. The polymer 4 was then isolated as a pale yellow solid by precipitation in methanol, before being purified by successive precipitations from methanol and air dried (0.169 g, 91%).

¹H NMR $\delta_{\rm H}$ (399.78 MHz, CDCl₃): 8.76 (1H, br s, H⁶), 7.43 (1H, br s, Ar), 7.35 (2H, br s, AA'XX'), 7.15 (1H, br s, H^x), 6.96 (2H, br s, AA'XX'), 6.60 (1H, br s, Ar), 5.43 (1H, s, CH acac), 4.01 (4H, m, OCH₂), 3.29 (2H, br s, CH₂ cyclopenten), 2.98 (2H, br s, CH₂ cyclopenten), 2.13 (2H, m, CH₂ cyclopenten), 1.98 (3H, s, CH₃ acac), 1.93 (3H, s CH₃ acac), 1.81 (4H, m, CH₂), 1.47 (4H, m, CH₂), 1.28 (28H, br m, CH₂), 0.53 (4H, m, CH₂-Si), 0.06 (12H, s, CH₃, siloxane), 0.02 (6H, s, CH₃, siloxane). Calcd. for C₅₃H₈₃NO₆PtSi₃ (1108.52): C 57.37, H 7.55, N 1.26; found C 57.66, H 7.29, N 1.28.