Supporting Information

for

Direct synthesis of alkylsilanes by platinum-catalyzed coupling of hydrosilanes and iodoalkanes

Hikaru Inubushi, Hitoshi Kondo, Aldes Lesbani, Mariko Miyachi, Yoshinori Yamanoi,* and Hiroshi Nishihara*

Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Table of contents

1. Spectroscopic characterization of products	S2
2. References 5. ¹ H NMR spectra of products	S4
	S 5
4. ¹³ C NMR spectra of products	S21
5. ¹ H NMR study of the reaction mechanism	\$37
6. Plausible reaction mechanism	S38

1. Spectroscopic characterization of products

dimethyl(*n*-butyl)phenylsilane (1):¹ Condition A. Yield: 60%. Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.52–7.50 (m, 2H), 7.36–7.34 (m, 3H), 1.35–1.27 (m, 4H), 0.87 (t, 3H, *J* = 7.0 Hz), 0.76–0.73 (m, 2H), 0.26 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 139.7 (C_q), 133.5 (CH), 128.7 (CH), 127.7 (CH), 26.6 (CH₂), 26.1 (CH₂), 15.4 (CH₂), 13.8 (CH₃), -3.1 (CH₃). EI-MS *m/z* 192 (M⁺).

(*n*-butyl)ethylmethylphenylsilane (2): Condition B. Yield: 45%. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.51–7.47 (m, 2H), 7.36–7.32 (m, 3H), 1.33–1.24 (m, 4H), 0.94 (t, 3H, *J* = 7.6 Hz), 0.86 (t, 3H, *J* = 7.1 Hz), 0.78–0.72 (m, 4H), 0.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.7 (C_q), 133.8 (CH), 128.7 (CH), 127.6 (CH), 26.7 (CH₂), 26.0 (CH₂), 13.8 (CH₃), 13.4 (CH₂), 7.4 (CH₃), 5.8 (CH₂), -5.6 (CH₃). EI–MS *m/z* 206 (M⁺). Anal. Calcd for C₁₃H₂₂Si: C, 75.65; H, 10.74. Found: C, 75.38; H, 10.88.

diphenyl(*n*-butyl)methylsilane (3):² Condition B. Yield: 55%. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.52–7.49 (m, 4H), 7.35–7.30 (m, 6H), 1.38–1.33 (m, 4H), 1.09–1.04 (m, 2H), 0.88–0.84 (m, 3H), 0.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.5 (C_q), 134.4 (CH), 129.0 (CH), 127.8 (CH), 26.6 (CH₂), 26.0 (CH₂), 13.9 (CH₂), 13.7 (CH₃), -4.5 (CH₃). EI–MS *m/z* 254 (M⁺).

dimethyl(*n*-butyl)(4-methoxyphenyl)silane (4): Condition B. Yield: 45%. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, 2H, J = 8.8 Hz), 6.89 (d, 2H, J = 8.8 Hz), 3.79 (s, 3H), 1.30–1.24 (m, 4H), 0.84 (t, 3H, J = 6.8 Hz), 0.72–0.67 (m, 2H), 0.21 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 160.2 (C_q), 134.9 (CH), 130.6 (C_q), 113.4 (CH), 55.0 (CH3), 26.6 (CH₂), 26.1 (CH₂), 15.6 (CH₂), 13.8 (CH₃), -2.8 (CH₃). FAB–MS *m*/*z* 222 (M⁺). FAB–HRMS Calcd for C₁₃H₂₂OSi: 222.1440. Found: 222.1448 (M⁺).

butyldimethyl(4-trifluoromethylphenyl)silane (5): Condition C. Yield: 79%. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.63–7.57 (m, 4H), 1.35–1.26 (m, 4H), 0.88–0.85 (t, 3H, *J* = 6.9 Hz), 0.78–0.74 (m, 2H), 0.28 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 144.8 (C_q), 133.8 (CH), 130.7 (CF₃-C_q, q, *J* = 32.0 Hz), 124.3 (CF₃, q, *J* = 272.1 Hz), 124.2 (CF₃-C_q-CH, q, *J* = 3.7 Hz), 26.5 (CH₂), 26.0 (CH₂), 15.2 (CH₂), 13.7 (CH₃), -3.2 (CH₃). EI–MS *m*/*z* 260 (M⁺). Anal. Calcd for C₁₃H₁₉F₃Si: C, 59.97; H, 7.36. Found: C, 59.68; H, 7.40.

butyldimethyl(2-thiophenyl)silane (6): Condition D. Yield: 71%. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (dd, 1H, J = 2.3 Hz, 0.5 Hz), 7.25 (dd, 1H, J = 1.6 Hz, 0.4 Hz), 7.19 (dd, 2H, J = 2.3 Hz, 1.6 Hz), 1.36–1.31 (m, 4H), 0.87 (d, 3H, J = 7.1 Hz), 0.79–0.75 (m, 2H), 0.30 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 139.2 (C_q), 134.1 (CH), 130.3 (CH), 128.0 (CH), 26.4 (CH₂), 26.0 (CH₂), 16.3 (CH₂), 13.7 (CH₃), 1.8 (CH₃). EI-MS *m*/*z* 198 (M⁺). Anal. Calcd for C₁₀H₁₈SSi: C, 60.54; H, 9.14. Found: C, 60.28; H, 9.05.

dimethyl(*n*-octyl)phenylsilane (7):³ Condition E. Yield: 83% (alkylated product: reduced product = 90: 10). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.58 (m, 2H), 7.45–7.42 (m, 3H), 1.42–1.34 (m, 12H), 0.98 (t, 3H, *J* = 7.0 Hz), 0.85 (t, 2H, *J* = 7.8 Hz), 0.35 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 139.7 (C_q), 133.6 (CH), 128.7 (CH), 127.7 (CH), 33.7 (CH₂), 32.0 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 23.9 (CH₂), 22.7 (CH₂), 15.7 (CH₂), 14.1 (CH₃), -3.0 (CH₃). EI–MS *m/z* 248 (M⁺).

dimethylphenyl(3-phenylpropyl)silane (8):⁴ Condition E. Yield: 50% (alkylated product: reduced product = 63: 37). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.49–7.47 (m, 2H), 7.35–7.32 (m, 3H), 7.27–7.24 (m, 2H), 7.17–7.12 (m, 3H), 2.61 (t, 2H, *J* = 7.6 Hz), 1.67–1.60 (m, 2H), 0.81–0.77 (m, 2H), 0.25 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 142.5 (C_q), 139.4 (C_q), 133.5 (CH), 128.7 (CH), 128.4 (CH), 128.2 (CH), 127.7 (CH), 125.6 (CH), 39.7 (CH₂), 25.9 (CH₂), 15.5 (CH₂), -3.1 (CH₃). EI–MS *m/z* 254 (M⁺).

trimethylphenylsilane (9):⁵ Condition F. Yield (GC): 83%. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.55–7.52 (m, 2H), 7.38–7.35 (m, 3H), 0.28 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 140.5 (C_q), 133.3 (CH), 128.8 (CH), 127.7 (CH), -1.1 (CH₃). EI–MS *m/z* 150 (M⁺).

1,4-bis(butyldimethylsilyl)benzene (10):⁶ Condition G. Yield: 14%. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (s, 2H), 2.09–2.01 (m, 3H), 1.35–1.31 (m, 4H), 0.87 (t, 3H), 0.76–0.72 (m, 2H), 0.24 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 140.2 (C_q), 132.6 (CH), 26.6 (CH₂), 26.1 (CH₂), 15.3 (CH₂), 13.8 (CH₃), -3.1 (CH₃). EI–MS *m/z* 312 (M⁺).

dimethylphenyl(4,4,4-trifluorobutyl)silane (11): Condition B. Yield: 58%. Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.50–7.49 (m, 2H), 7.36–7.35 (m, 3H), 2.10–2.01 (m, 3H), 1.60–1.54 (m, 2H), 0.81–0.78 (m, 2H), 0.28 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 138.5 (C_q), 133.5 (CH), 129.1 (CH), 127.9 (CH), 127.0 (CF₃, q, *J* = 276.9 Hz), 37.2 (<u>CH₂-CF₃, q, *J* = 27.7 Hz}), 16.7 (<u>CH₂-CH₂-CF₃, q, *J* = 2.4 Hz}), 15.3 (CH₂), -3.3 (CH₃). EI-MS *m/z* 246 (M⁺). Anal. Calcd for C₁₂H₁₇F₃Si: C, 58.51; H, 6.96. Found: C, 58.21; H, 7.10.</u></u>

methyl 4-(dimethylphenylsilyl)butanoate (12): Condition E. Yield: 71%. Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.51–7.49 (m, 2H), 7.36–7.34 (m, 3H), 3.65 (s, 3H), 2.32 (t, 2H, J = 7.4 Hz), 1.69–1.61 (m, 2H), 0.79–0.75 (m, 2H), 0.27 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 174.0 (C_q), 138.9 (C_q), 133.5 (CH), 128.9 (CH), 127.7 (CH), 51.4 (CH₃), 37.6 (CH₂), 19.7 (CH₂), 15.5 (CH₂), -3.2 (CH₃). EI–MS *m/z* 236 (M⁺); Anal. Calcd for C₁₃H₂₀O₂Si: C, 66.05; H, 8.53. Found: C, 65.80; H, 8.51.

4-(dimethyl(phenyl)silyl)butyronitrile (13): Condition B. Yield: 68%. Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.50–7.48 (m, 2H), 7.37–7.36 (m, 3H), 2.31 (t, 3H, *J* = 7.0 Hz), 1.68–1.61 (m, 2H), 0.91-0.88 (m, 2H), 0.30 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 138.0 (C_q), 133.4 (CH), 129.1 (CH), 127.9 (CH), 119.7 (C_q), 20.7 (CH₂), 20.5 (CH₂), -3.3 (CH₃). FAB–MS *m/z* 202 ([M–H]⁺); HRMS Calcd for C₁₂H₁₆NSi: 202.1052. Found: 202.1064 ([M–H]⁺).

(3-chloropropyl)dimethylphenylsilane (14):⁷ Condition B. Yield: 58%. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.52–7.48 (m, 2H), 7.36–7.33 (m, 3H), 3.57 (t, 2H, *J* = 7.0 Hz), 1.80–1.72 (m, 2H), 0.86–0.82 (m, 2H), 0.28 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 138.6 (C_q), 133.5 (CH), 129.0 (CH), 127.8 (CH), 47.9 (CH₂), 27.8 (CH₂), 13.4 (CH₂), -3.2 (CH₂). EI–MS *m/z* 212 (M⁺).

benzyldimethyl(*n*-butyl)silane (15):⁸ Condition B. Yield: 55%. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.38 (m, 2H), 7.26 (t, 1H, *J* = 7.3 Hz), 7.19 (d, 2H, *J* = 6.8 Hz), 2.27 (s, 2H), 1.52–1.44 (m, 4H), 1.07 (t, 3H, *J* = 7.0 Hz), 0.72–0.68 (m, 2H), 0.15 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 140.5 (C_q), 128.1 (CH), 128.1 (CH), 123.8 (CH), 26.6 (CH₂), 26.0 (CH₂), 25.6 (CH₂), 14.4 (CH₂), 13.8 (CH₃), -3.6 (CH₃). EI–MS *m/z* 206 (M⁺).

(4-ethoxyphenyl)[3-(4-fluoro-3-phenoxyphenyl)propyl]dimethylsilane (16):⁵ Condition B. Yield: 42% (alkylated product: reduced product = 55: 45). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, 2H, *J* = 8.7 Hz), 7.30 (dd, 2H, *J* = 7.6 Hz, 8.1 Hz), 7.08–7.03 (m, 2H), 6.96 (d, 2H, *J* = 7.8Hz), 6.88–6.82 (m, 4H), 4.03 (q, 2H, *J* = 7.0 Hz), 2.52 (t, 2H, *J* = 7.6 Hz), 1.59–1.53 (m, 2H), 1.40 (t, 3H, *J* = 7.0 Hz), 0.72–0.69 (m, 2H), 2.07 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 159.6 (C_q), 157.6 (C_q), 152.6 (C_q, d, *J* = 246.5 Hz), 142.9 (C_q, d, *J* = 11.7 Hz), 139.4 (C_q, d, *J* = 3.7 Hz), 134.9 (CH), 129.7 (C_q), 129.6 (CH), 124.7 (CH, d, *J* = 7.0 Hz), 122.8 (CH), 121.9 (CH), 117.0 (C_q), 116.5 (CH, d, *J* = 8.1 Hz), 114.0 (CH), 63.1 (CH₂), 38.8 (CH₂), 25.9 (CH₂), 15.5 (CH₂), 14.8 (CH₃), -2.9 (CH₃), EI–MS *m/z* 408 (M⁺).

Conditions

A: 1-iodobutane (1.0 mmol), dimethylphenylsilane (3.0 mmol), $(iPr)_2EtN$ (1.0 mmol), $Pt(P(tBu)_3)_2$ (0.05 mmol), CH_3CN (2.0 mL)

B: iodoalkane (0.5 mmol), hydrosilane (1.0 mmol), $(iPr)_2EtN$ (1.0 mmol), $Pt(P(tBu)_3)_2$ (0.025 mmol), CH_3CN (1.0 mL).

C: iodoalkane (0.5 mmol), hydrosilane (1.25 mmol), $(iPr)_2EtN$ (1.0 mmol), $Pt(P(tBu)_3)_2$ (0.025 mmol), CH_3CN (1.0 mL).

D: iodoalkane (0.5 mmol), hydrosilane (1.5 mmol), $(iPr)_2EtN$ (1.5 mmol), $Pt(P(tBu)_3)_2$ (0.025 mmol), CH_3CN (1.0 mL).

E: iodoalkane (0.5 mmol), hydrosilane (2.0 mmol), $(iPr)_2EtN$ (2.0 mmol), $Pt(P(tBu)_3)_2$ (0.025 mmol), CH_3CN (1.0 mL).

F: iodoalkane (0.5 mmol), hydrosilane (2.5 mmol), $(iPr)_2EtN$ (2.5 mmol), $Pt(P(tBu)_3)_2$ (0.025 mmol), CH_3CN (1.0 mL).

2. References

1. J. W. Wilt, W. K. Chwang, C. F. Dockus, N. M. Tomiuk, J. Am. Chem. Soc. 1978, 100, 5534.

2. E. Morita, K. Murakami, M. Iwasaki, K. Hirano, H. Yorimitsu, K. Oshima, *Bull. Chem. Soc. Jpn.* 2009, **82**, 1012.

3. M. Rubin, T. Schwier, V. Gevorgyan, J. Org. Chem. 2002, 67, 1936.

4. T. Takeda, N. Nozaki, T. Fujiwara, Tetrahedron Lett. 1998, 39, 3533.

5. This compound is commercially available.

6. T. Baker, S. E. Lewis, Synth. Commun. 2010, 40, 2747.

7. I. Fleming, R. Henning, D. C. Parker, H. E. Pault, P. E. J. Sanderson, J. Chem. Soc. Perkin Trans. 1 1995, 4, 317.

8. A. Maercker, R. Stoetzel, Chem. Ber. 1987, 120, 1965.

3. ¹H NMR spectra of products

4. ¹³C NMR spectra of products

5. ¹H NMR study of the reaction mechanism

Fig. S1 ¹H NMR study of the reaction of dimethylphenylsilane with iodomethane in CD₃CN in the presence of $(iPr)_2NEt$ and $Pt(P(tBu)_3)_2$ at 25 °C. $Pt(P(tBu)_3)_2$:PhMe₂SiH: $(iPr)_2NEt$:CH₃I = 1:2:2:2, 3 h.

6. Plausible reaction mechanism

Fig. S2 Plausible reaction mechanism.