Supporting Information for

Cascade Fuctionalization of Unsaturated Bond-Containing Polymers Using Ambident Agents Possessing both Nitrile *N*-Oxide and Electrophilic Functions

Yasuhito Koyama*, Kaori Miura, Sumitra Cheawchan, Akishige Seo, and Toshikazu

Takata*

Department of Organic and Polymeric Materials, Tokyo Institute of Technology

2-12-1 (H-126), Ookayama, Meguro, Tokyo 152-8552, Japan

^{*}To whom correspondance should be addressed.

E-mail: ykoyama@polymer.titech.ac.jp, ttakata@polymer.titech.ac.jp

1. General methods

Equipments. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded on a JEOL AL-400 spectrometers using tetramethylsilane as an internal standard. MALDI–TOF MS spectra were measured with a Shimadzu AXIMA-CFR mass spectrometer using a dithranol matrix. FAB HRMS spectra were measured with a JEOL JMS-700 mass spectrometer. Melting points were measured with a Stuart Scientific SMP3. SEC analyses were carried out on JASCO PU-2080 plus pump with a JASCO UV-1570 (UV detector) and JASCO RI-1530 (RI detector) equipped with a consecutive linear polystylene gel columns TOSO TSK gel GMHXL and G5000HXL at 30 °C. TGA analyses were carried out on a Shimadzu TGA-50 instrument at N₂ atmosphere (flow rate of 50 mL/min) to determine 5% weight decomposition temperature (*T*_{d5}) at which 5% weight loss was observed. DSC analyses were carried out with a Shimadzu DSC-60 instrument at N₂ atmosphere (flow rate of 50 mL/min) with liquid N₂ as a refrigerant to determine glass transition temperature (*T*_g).

Materials. For NMR analyses, deuterated solvents with trimethylsilane by Across Organics Inc. were used. Wako $\text{Gel}^{\text{®}}$ C-400HG (Wako Chemical Inc.) was used for silica gel chromatography. Other reagents and solvents commercially available were used without further purification unless otherwise noted. All compounds given below bear the same formula numbers as used in the main text. Compounds unlabeled in the main text are labeled with letters [**A**–**E**].

2. Chemical Synthesis

2-(Glycidyl oxy)-1-naphthaldehyde (B)

2-Hydroxy-1-naphthaldehyde (**A**) (17.1 g, 99.0 mmol) was dissolved in epichlorohydrin (196 mL, 2.47 mol). Benzyl triethylammonium chloride (2.26 g, 9.94 mmol) was added to the reaction mixture. The mixture was refluxed for 15 min. The reaction mixture was cooled to room temperature, diluted with CHCl₃, and washed with distilled water. The organic layer was dried over MgSO₄, filtered, and evaporated in vacuo. To the residue was added a small amount of 2-propanol to rapidly give the product as solids, which were filtered and washed with 2-propanol to yield **B** as white solids (16.1 g, 71.4%).

B: white solids, m.p. 97.4–98.9 °C (lit. 102-104 °C)¹

¹H NMR (400 MHz, CDCl₃, 298 K) δ 10.9 (s, 1H, n), 9.24 (d, *J* = 8.8 Hz, 1H, a), 7.99 (d, *J* = 7.3 Hz, 1H, f), 7.74 (d, *J* = 8.6 Hz, 1H, d), 7.62–7.58 (m, 1H, b), 7.43–7.39 (m, 1H, c), 7.21 (d, *J* = 9.3 Hz, 1H, g), 4.46 (dd, *J*₁ = 2.7 Hz, *J*₂ = 11.2 Hz, 1H, i), 4.13 (dd, *J*₁ = 5.6 Hz, *J*₂ = 11.2

Hz, 1H, i), 3.41–3.38 (m, 1H, j), 2.93 (dd, $J_1 = 4.1$ Hz, $J_2 = 4.7$ Hz, 1H, k), 2.78 (dd, $J_1 = 2.7$ Hz, $J_2 = 4.7$ Hz, 1H, k) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K) δ 191.7, 162.7, 137.5, 131.3, 129.9, 128.7, 128.2, 125.0, 124.9, 117.1, 113.5, 70.2, 49.9, 44.4 ppm; IR (KBr) v 2997 (C-H (aliphatic), epoxy), 2925 (C-H (aromatic)), 2879 (C-H (aliphatic)), 2800 (C-H, aldehyde), 1665 (C=O), 1619, 1592, 1512 (C=C), 1336 (C-H, aldehyde), 1270 (C-O, as, Ar-O-R) , 1246 (C-O, s, epoxy), 1062 (C-O, s, Ar-O-R), 875 (C-O, as, epoxy), 813 (C-H) cm⁻¹.

<u>2–(Glycidyloxy)–1–naphthaldoxime (C)</u>

Aldehyde **B** (5.03 g, 21.9 mmol) was dissolved in ethanol (110 mL). A solution of $CH_3COONa \cdot$ $3H_2O$ (4.48 g, 32.9 mmol) and $NH_2OH \cdot HCl$ (2.29 g, 32.9 mmol) in water (110 mL) was added to the mixture at room temperature which stirred for 4 h to precipitated white products. The suspension was diluted with water. The precipitates were filtered and washed with water to give **C** as white solids (5.36 g, 100 %).

C: white solids, m.p. 102.2-103.6 °C

¹H NMR (400 MHz, CDCl₃, 298 K) δ 8.90 (s, 1H, n), 8.77 (d, *J* = 8.8 Hz, 1H, a), 8.17 (s, 1H, o), 7.85 (d, *J* = 9.3 Hz, 1H, f), 7.78 (d, *J* = 8.3 Hz, 1H, d), 7.56–7.52 (m, 1H, b), 7.42–7.38 (m, 1H, c), 7.24 (d, *J* = 8.6 Hz, 1H, g), 4.39 (dd, *J*₁ = 3.0 Hz, *J*₂ = 11.2 Hz, 1H, i), 4.15 (dd, *J*₁ = 5.6 Hz, *J*₂ = 11.2 Hz, 1H, i), 3.44–3.40 (m, 1H, j), 2.94 (dd, *J*₁ = 4.5 Hz, *J*₂ = 4.9 Hz 1H, k), 2.79 (dd, *J*₁ = 2.7 Hz, *J*₂ = 4.9 Hz, 1H, k) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K) δ 155.8, 147.5, 132.1, 131.6, 129.5, 128.3, 127.9, 125.6, 124.4, 114.5, 114.3, 70.6, 50.2, 44.7 ppm; IR (KBr) *v* 3483 (O-H), 3078 (C-H (aliphatic), epoxy), 3009 (C-H (aromatic)), 2930 (C-H (aliphatic)), 1686 (C=N), 1625, 1587, 1512 (C=C), 1287 (C-O, as, Ar-O-R), 1244 (C-O, s, epoxy), 1080 (C-O, s, Ar-O-R), 863 (C-O, as, epoxy), 811 (C-H) cm⁻¹; FAB-HRMS (*m*/*z*): calcd for C₁₉H₂₂O₄[M]⁺, 314.1518; found, 314.1517.

2-(Glycidyloxy)-1-naphthonitrile N-oxide (1)

Oxime **C** (3.00 g, 12.3 mmol) was dissolved in CHCl₃ (66 mL) at 0 °C. *N*-Chlorosuccinimide (NCS) (1.84 g, 13.5 mmol) and Et₃N (2.23 mL, 16.0 mmol) were added to this solution. After 6 h, the reaction was stopped by the addition of water. The organic layer was dried over MgSO₄, filtered, and evaporated in vacuo to give **C** (2.34 g, 78.8%) as yellow solids. The product was used for next reaction without further purifications.

C: yellow solids, m.p. 77.6-78.4 °C

¹H NMR (400 MHz, CDCl₃, 298 K) δ 7.99 (d, *J* = 8.5 Hz, 1H, a), 7.93 (d, *J* = 9.0 Hz, 1H, e), 7.82 (d, *J* = 8.3 Hz, 1H, d), 7.63–7.59 (m, 1H, b), 7.47–7.43 (m, 1H, c), 7.28 (d, *J* = 9.3 Hz, 1H, f), 4.50 (dd, *J*₁ = 3.0 Hz, *J*₂ = 11.5 Hz, 1H, g), 4.23 (dd, *J*₁ = 5.6 Hz, *J*₂ = 11.5 Hz, 1H, g), 3.46–3.42 (m, 1H, h), 2.97 (dd, *J*₁ = 4.7 Hz, *J*₂ = 4.4 Hz, 1H, i), 2.86 (dd, *J*₁ = 2.7 Hz, *J*₂ = 4.7 Hz, 1H, i) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K) δ 160.2, 133.9, 132.7, 128.7, 128.4, 125.1, 123.8, 120.4, 113.2, 96.9, 69.8, 49.9, 44.4 ppm; IR (NaCl) v 3059 (C-H(aliphatic), epoxy), 3005 (C-H(aromatic)), 2928 (C-H(aliphatic)), 2293 (C \equiv N), 1622, 1589, 1510 (C=C) 1313 (C \equiv N⁺-O⁻), 1275 (C-O, as, Ar-O-R), 1249 (C-O, s, epoxy), 1063 (C-O, s, Ar-O-R), 863 (C-O, as, epoxy), 815 (C-H) cm⁻¹; FAB-HRMS (*m*/*z*): calcd for C₁₄H₁₁NO₃[M]⁺, 241.0739; found, 241.0744.

<u>2–[5–(Ethoxycarbonil)pentyloxy]–1–naphthaldehyde (D)</u>

2-Hydroxy-1-naphthaldehyde (1) (5.00 g, 29.0 mmol) was dissolved in DMF (100 mL) and K_2CO_3 (6.04 g, 43.7 mmol) and ethyl 6–bromohexanoate (8.94 g, 40.1 mmol) was added to this solution. The mixture was stirred at 100 °C for 13 h. The reaction mixture was cooled to room temperature, diluted with ethylacetate and washed with distilled water and brine. The organic layer was dried

over MgSO₄, filtered, and evaporated in vacuo. The residue was recrystallized from hexane to give **D** (8.25 g, 90.4%) as colorless solids.

D: colorless solids, m.p. 65.0-66.1 °C

¹H NMR (400 MHz, CDCl₃, 298 K) δ 10.9 (s, 1H, s), 9.28 (d, *J* = 8.6 Hz, 1H, a), 8.03 (d, *J* = 9.2 Hz, 1H, f), 7.76 (d, *J* = 8.0 Hz, 1H, d), 7.63–7.59 (m, 1H, b), 7.43–7.39 (m, 1H, c), 7.26 (d, *J* = 9.2 Hz, 1H, g), 4.22 (t, *J* = 6.6 Hz, 2H, i), 4.14 (q, *J* = 7.1 Hz, 2H, o), 2.35 (t, *J* = 7.3 Hz, 2H, m), 1.94–1.87 (m, 2H, j), 1.77–1.69 (m, 2H, l), 1.60–1.53 (m, 2H, k), 1.26 (t, *J* = 7.1 Hz, 3H, p) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K) δ 191.9, 173.4, 163.5, 137.4, 131.5, 129.7, 128.3, 128.1, 124.8, 124.6, 116.6, 113.4, 69.1, 60.2, 34.1, 28.9, 25.5, 24.5, 14.2 ppm; IR (KBr) v 2946 (C-H(aromatic)), 2861 (C-H(aliphatic)), 2803 (C-H, aldehyde), 1733 (C=O, ester), 1671 (C=O, aldehyde), 1377 (C-H, aldehyde), 1252 (C-O, as, Ar-O-R), 1178 (C-O, as, ester), 1057 (C-O, s, Ar-O-R), 825 (C-H) cm⁻¹; FAB-HRMS (*m/z*): calcd for C₁₄H₁₃NO₃[M]⁺, 243.0895; found, 243.0896.

<u>2–[5–(Ethoxycarbonil)pentyloxy]–1–naphthaldoxime (E)</u>

Aldehyde **D** (406 mg, 1.29 mmol) was dissolved in ethanol (6 mL). A solution of $CH_3COONa \cdot$ $3H_2O$ (263 mg, 1.94 mmol) and $NH_2OH \cdot HCI$ (146 mg, 2.10 mmol) in water (6 mL) was added to the mixture at room temperature which stirred at room temperature for 4 h to precipitate white powders. The suspension was diluted with water and the precipitates were filtered and washed with water to give **E** as white solids (404 mg, 95.0%).

E: white solids, m.p. 88.5-91.4 °C

¹H NMR (400 MHz, CDCl₃, 298 K) δ 8.87 (s, 1H, s), 8.78 (d, *J* = 8.8 Hz, 1H, a), 8.12 (s, 1H, t), 7.84 (d, *J* = 9.2 Hz, 1H, f), 7.77 (d, *J* = 8.1 Hz, 1H, d), 7.54–7.50 (m, 1H, b), 7.39–7.35 (m, 1H, c), 7.22 (d, *J* = 9.2 Hz, 1H, g), 4.17–4.10 (m, 4H, i and o), 2.36 (t, *J* = 7.3 Hz, 2H, m), 1.90–1.83 (m, 2H, j), 1.77–1.69 (m, 2H, i), 1.59–1.51 (m, 2H, k), 1.25 (t, 3H, p) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K) δ 173.8, 156.2, 147.4, 131.8, 131.6, 129.0, 128.2, 127.7, 125.4, 123.9, 113.8, 113.7, 69.2, 60.3, 34.2, 29.0, 25.6, 24.6, 14.2 ppm; IR (KBr) *v* 2988 (C-H(aromatic)), 2941 (C-H(aliphatic)), 1692 (C=O, ester), 1268 (C-O, as, Ar-O-R), 1180 (C-O, as, ester), 1066 (C-O, s, Ar-O-R), 818 (C-H) cm⁻¹; FAB-HRMS (*m/z*): calcd for $C_{19}H_{23}NO_4Na$ [M+Na]⁺, 352.1525; found, 352.1519.

2-[5-(Ethoxycarbonil)pentyloxy]-1-naphthonitril N-oxide (2)

Oxime **E** (88.2 mg, 0.268 mmol) was dissolved in CHCl₃ (30 mL)at 0 °C. NCS (38.2 mg, 0.325 mmol) and Et₃N (50 μ L, 0.36 mmol) were added to this solution. After 6 h, the reaction was stopped by the addition of water. The organic layer was dried over MgSO₄, filtered, and evaporated in vacuo to give **2** (81.9 mg, 79.3%) as yellow solids. The product was used for next reaction without further purifications.

2: yellow solids, m.p. 58.9-60.0 °C

¹H NMR (400 MHz, CDCl₃, 298 K) δ 7.97 (d, *J* = 8.0 Hz, 1H, a), 7.91 (d, *J* = 8.0 Hz, 1H, f), 7.81 (s, *J* = 8.0 Hz, 1H, d), 7.61–7.57 (m, 1H, b), 7.42 (t, 1H, c), 7.24 (t, 1H, g), 4.20 (t, *J* = 8.0 Hz 2H, i), 4.14 (q, 2H, o), 2.37 (t, *J* = 8.0 Hz 2H, m), 1.94–1.87 (m, 2H, j), 1.78–1.71 (m, 2H, l), 1.62–1.54 (m, 2H, k), 1.26 (t, 3H, p) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K) δ 173.6, 160.8, 134.2, 132.7, 128.7, 128.5, 128.3, 125.7, 123.9, 113.1, 69.2, 60.3, 34.1, 28.8, 25.6, 25.4, 14.2 ppm; IR (KBr) *v* 2942 (C-H(aromatic)), 2871 (C-H(aliphatic)), 2291 (C≡N), 1731 (C=O, ester), 1273 (C-O, as, Ar-O-R), 1217 (C-O, as, ester), 1062 (C-O, s, Ar-O-R), 810 (C-H) cm⁻¹; FAB-HRMS (*m/z*): calcd for C₁₉H₂₁NO₄Na [M+Na]⁺, 350.1368; found, 350.1372.

Oxadiazole (3)

Nitrile *N*-oxide **1** (50.0 mg, 0.21 mmol) and isobutyronitrile (188 μ L, 2.10 mmol) were dissolved in DMF (400 μ L) and stirred at 90 °C for 4 h. The mixture was cooled to room temperature, and directly purified on alumina silica gel column chromatography (eluent: AcOEt/ CHCl₃/ hexane = 2/ 1/ 3, *R*_f = 0.5). **3** was obtained as a brown oil (99.0 %).

¹H NMR (400 MHz, CDCl₃, 298 K) δ 7.95 (d, *J* = 12 Hz, 1H, a), 7.81 (d, *J* = 8.0 Hz, 1H, f), 7.67 (d, *J* = 8.0 Hz, 1H, d), 7.48–7.44 (m, 1H, b), 7.40–7.36 (m, 1H, c), 7.33 (d, *J* = 8.0 Hz, 1H, g), 4.36 (dd, *J*₁ = 4.0 Hz, *J*₂ = 12 Hz, 1H, i), 4.15 (dd, *J*₁ = 8.0 Hz, *J*₂ = 12.0 Hz, 1H, i), 3.41–3.34 (m, 1H, p), 3.31–3.27 (m, 1H, j), 2.81 (t, 1H, j), 2.71 (dd, *J*₁ = 2.7 Hz, *J*₂ = 4.0 Hz, 1H, k), 1.52 (d, *J* = 8.0 Hz, 6H, q) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K) δ 183.7, 165.2, 155.3, 133.0, 132.4, 129.1, 128.1, 127.6, 124.4, 124.3, 115.0, 111.5, 70.5, 50.1, 44.5, 27.6, 20.3 ppm; IR (NaCl) v 1250 (C-O, s, epoxy), 903 (C-O, as, epoxy) cm⁻¹; FAB-HRMS (*m/z*): calcd for C₁₈H₁₈N₂O₃Na [M+Na]⁺, 333.1215; found, 333.1220.

Oxadiazole (4a)

Oxadiazole **3** (39.8 mg, 0.128 mmol) and diethylamine (14 μ L, 0.136 mmol) was dissolved in CHCl₃ (1.3 mL) and stirred at 50 °C for 48 h. The mixture was evaporated in vacuo to give **4a** as a brown oil (quant.).

¹H NMR (400 MHz, CDCl₃, 298 K) δ 7.98 (d, *J* = 8.0 Hz, 1H, a), 7.94 (d, *J* = 8.0 Hz, 1H, d), 7.83 (d, *J* = 8.0 Hz, 1H, d), 7.51–7.47 (m, 1H, b), 7.42–7.40 (m, 1H, c), 7.37 (d, *J* = 8.0 Hz, 1H, g), 4.36 (dd, *J*₁ = 4.0 Hz, *J*₂ = 12 Hz, 1H, i), 4.18 (dd, *J*₁ = 4.0 Hz, *J*₂ = 12 Hz, 1H, i), 4.02–3.97 (m, 1H, j), 3.41–3.34 (m, 1H, p), 2.58–2.52 (m, 6H, k), 1.52 (d, *J* = 8.0 Hz, 1H, q), 1.01 (t, 6H, r) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K) δ 183.6, 165.2, 155.9, 132.6, 129.0, 128.1, 127.7, 124.3, 115.1, 73.3, 67.1, 55.6, 47.6, 29.6, 27.6, 20.2, 11.7 ppm; IR (NaCl) *v* 3363 (O–H), 1271 (C–N) cm⁻¹; FAB-HRMS (*m/z*): calcd for C₂₂H₂₉N₃O₃Na [M+Na]⁺, 406.2107; found, 406.2111.

Oxadiazole (4b)

Phenol (32.7 mg, 0.347 mmol) was dissolved in DMF (1.6 mL) and K₂CO₃ (61.0 mg, 0.441 mmol) and Oxadiazole **3** (101 mg, 0.322 mmol) was added to this solution. The mixture was stirred at 120 °C overnight. The reaction mixture was cooled to room temperature, diluted with CHCl₃ and washed with distilled water and brine. The organic layer was dried over MgSO₄, filtered, and evaporated in vacuo. The residue was purified on alumina silica gel column chromatography (eluent: AcOEt/ CHCl₃/ hexane = 2/ 1/ 2, $R_f = 0.5$) to give **4b** as a brown oil (quant.).

¹H NMR (400 MHz, CDCl₃, 298 K) δ 8.15 (d, *J* = 12 Hz, 1H, a), 7.98 (d, *J* = 8.0 Hz, 1H, f), 7.83 (d, *J* = 8.0 Hz, 1H, d), 7.52–7.50 (m, 1H, b), 7.44–7.42 (m, 1H, c), 7.35 (d, *J* = 8.0 Hz, 1H, g), 7.30–7.25 (m, 2H, r), 6.98–6.90 (m, 2H, s and t), 4.57 (dd, *J*₁ = 2.4 Hz, *J*₂ = 8.0 Hz, 1H, i), 4.39–4.36 (m, 2H, i and j), 4.12–4.03 (m, 2H, k), 3.39–3.35 (m, 1H, p), 1.51 (d, *J* = 4.0 Hz, 6H, q) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K) δ 183.7, 165.0, 158.4, 156.2, 133.0, 132.3, 129.5, 129.3, 128.3, 128.0, 124.6, 124.5, 121.0, 115.6, 114.4, 110.8, 73.0, 68.6, 68.1, 27.6, 20.2, 20.1 ppm; IR (NaCl) v 3359 (O–H), 1244 (O–Ar), 1063 (O–Ar) cm⁻¹; FAB-HRMS (*m/z*): calcd for C₂₄H₂₄N₂O₄Na [M+Na]⁺, 427.1634; found, 427.1649.

Oxadiazole (4c)

Butanethiol (35 μ L, 0.327 mmol) was dissolved in DMF (1.6 mL) and K₂CO₃ (60.0 mg, 0.434 mmol) and Oxadiazole **3** (100 mg, 0.322 mmol) was added to this solution. The mixture was stirred at 120 °C overnight. The reaction mixture was cooled to room temperature, diluted with CHCl₃ and washed with distilled water and brine. The organic layer was dried over MgSO₄, filtered, and evaporated in vacuo. The residue was purified on alumina silica gel column chromatography (eluent: AcOEt/ CHCl₃/ hexane = 2/ 1/ 3, $R_{\rm f}$ = 0.5) to give **4c** as a brown oil (quant.).

¹H NMR (400 MHz, CDCl₃, 298 K) δ 8.11 (d, *J* = 8.0 Hz, 1H, a), 7.99 (d, *J* = 8.0 Hz, 1H, f), 7.83 (d, *J* = 8.0 Hz, 1H, d), 7.52–7.49 (m, 1H, b), 7.44–7.42 (m, 1H, c), 7.35 (d, *J* = 8.0 Hz, 1H, g), 4.50 (dd, *J*₁ = 2.8 Hz, *J*₂ = 8 Hz, 1H, i), 4.26–4.22 (m, 1H, i), 4.08–4.03 (m, 1H, j), 3.40–3.37 (m, 1H, j), 3.39–3.35 (m, 1H, p), 2.74–2.66 (m, 1H, k), 2.57 (t, *J* = 8.0 Hz, 2H, r), 1.59–1.37 (m, 10H, q, s and t), 0.90 (t, *J* = 8.0 Hz, 6H, u) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K) δ 183.7, 165.1, 156.1, 133.1, 133.0, 132.4, 129.3, 128.3, 127.9, 124.6, 124.5, 124.4, 115.5, 110.9, 74.0, 69.6, 34.5, 32.6, 31.7, 27.6, 21.9, 20.2, 13.7 ppm; IR (NaCl) *v* 3375 (O–H), 667 (C–S) cm⁻¹; FAB-HRMS (*m/z*): calcd for C₂₂H₂₉N₂O₃S [M+Na]⁺, 401.1899; found, 406.1900.

Oxadiazole (4d)

To a mixture of oxadiazole **3** (100 mg, 0.322 mmol) and benzoic acid (41.3 mg, 0.338 mmol) in CH_3CN (1.6 mL) was added Bu_4NBr (3.1 mg, 9.67 μ mol). The mixture was refluxed overnight. The reaction mixture was cooled to room temperature, diluted with $CHCl_3$ and washed with

distilled water and brine. The organic layer was dried over MgSO₄, filtered, and evaporated in vacuo. The residue was purified on preparative silica gel column chromatography (eluent: AcOEt/ CHCl₃/ hexane = 2/1/3, $R_{\rm f} = 0.5$) to give **4d** as a pale red oil (117.2 mg, 84%).

¹H NMR (400 MHz, CDCl₃, 298 K) δ 8.05 (d, *J* = 8.0 Hz, 1H, a), 7.93 (d, *J* = 8.0 Hz, 2H, m), 7.85 (d, *J* = 8.0 Hz, 1H, f), 7.69 (d, *J* = 8.0 Hz, 1H, d), 7.44–7.38 (m, 2H, b and c), 7.32–7.27 (m, 3H, n and o), 7.16 (d, *J* = 8.0 Hz, 1H, g), 4.38–4.20 (m, 5H, i, j, and k), 3.26 (hept, *J* = 8.0 Hz, 1H, s), 1.39 (d, *J* = 8.0 Hz, 6H, t) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K) δ 183.7, 166.3, 164.9, 156.1, 133.01, 132.97, 132.2, 129.7, 129.5, 129.2, 128.3, 128.2, 127.9, 124.54, 124.47, 115.4, 110.8, 72.7, 68.4, 65.0, 27.5, 20.04,19.97 ppm; IR (NaCl) v 3364, 3062, 2978, 2940, 2879, 1722, 1716, 1622, 1598, 1568, 1505, 1463, 1393, 1347, 1270, 1112, 1071, 1026, 902, 813, 750, 712 cm⁻¹; MALDI–TOF MS (*m/z*): calcd for C₂₅H₂₄N₂NaO₅ [M+Na]⁺ 455.16; found 454.96.

Typical procedure for modification of natural rubber (NR)

NR (50.6 mg, M_w 1250000) was dissolved in CHCl₃ (2 mL) and nitrile *N*-oxide **1** (179 mg, 0.742 mmol) was added to this solution. The solution was refluxed for 24 h. The mixture was reprecipitated from methanol (200 mL) and product was obtained (quant.).

(Table 2, entry 4)

¹H NMR (400 MHz, CDCl₃, 298 K) δ 8.11–7.00 (m, a–f), 5.00 (s, α), 4.38–3.96 (m, g), 3.74–3.27 (m, h and j), 2.94–2.65 (m, i), 1.63–0.93 (m, CH₃ of NR) ppm; IR (NaCl) v 1271 (C-O, s, epoxy), 898 (C-O, as, epoxy) cm⁻¹.

T_{d5} 253 °C, T_g −19 °C

(Table 2, entry 6)

¹H NMR (400 MHz, CDCl₃, 298 K) δ 7.97–7.33 (m, Ar of **2**), 5.13–4.90 (m, C<u>H</u>=C of NR), 4.11 (m, O–C<u>H</u>₂CH₂ of **6**), 2.32–0.88 (m, CH₂ and CH₃ of NR, O–CH2C<u>H</u>₂ and CH₃ of **2**) ppm; IR (KBr) v 1739 (C=O, s, ester), 1059 (C–C(=O)–O, as, ester) cm⁻¹.

T_{d5} 323 °C, T_g 143 °C

Typical procedure for modification of polyacrylonitrile (PAN)

PAN (50.1 mg, M_w 150000) was dissolved in DMF (2 mL) and nitrile *N*-oxide **1** (227 mg, 0.941 mmol) was added to this solution. The solution was mixed at 90 °C for 24 h. The mixture was reprecipitated from methanol (200 mL) and product was obtained (quant.).

(Table 1, entry 3)

¹H NMR (400 MHz, DMSO-*d*₆, 298 K) δ 8.12 (s, 1H, a), 7.94 (s, 1H, e), 7.54 (s, 1H, d), 7.38 (s, 3H, b,c and f), 4.44 (s, 1H, g), 4.01 (s, 1H, g), 3.64 (s, 1H, CH₂ of PAN), 3.21 (s, 3H, h and CH₂ of PAN), 2.88 (t, 1H, i), 2.73 (t, 1H, i), 2.23 (s, 4H, α), 2.00 (s, 2H, j) ppm. IR (KBr) v 1253 (C-O, s, epoxy), 901 (C-O, as, epoxy) cm⁻¹.

*T*_{d5} 291 °C, *T*_g 146 °C

(Table 1, entry 5)

¹H NMR (400 MHz, DMSO- d_6 , 298 K) δ 8.09–7.34 (m, Ar of **2**), 3.95 (m, O–C<u>H</u>₂CH₂ of **2**), 3.64–1.06 (m, C<u>H</u>C≡N and CH₂ of PAN, O–CH₂C<u>H</u>₂ and CH₃ of **2**) ppm; IR (KBr) v 1726 (C=O, s, ester), 1059 (C–C(=O)–O, as, ester) cm⁻¹.

T_{d5} 281 °C, T_g 145 °C

Typical procedure for modification of acylonitrile-butadiene rubber (NBR)

NBR (49.3 mg) was dissolved in CHCl₃ (2.0 mL) and nitrile *N*-oxide **1** (271.9 mg, 1.13 mmol) was added to this solution. The solution was refluxed for 24 h. The mixture was reprecipitated from methanol (200 mL) and product was obtained (244 mg, 91.0%).

(Table S1, entry 1)

¹H NMR (400 MHz, CDCl₃, 298 K) δ 8.02–7.00 (m, Ar of **1**), 4.52–3.28 (m, CH₂ and CH of **1**), 2.98–1.20 (s, CH₂ of **1**, CHC \equiv N and CH₂ of NBR) ppm; IR (KBr) v 1267 (C-O, s, epoxy), 864 (C-O, as, epoxy) cm⁻¹.

*T*_{d5} 282 °C, *T*_g 124 °C

(Table S1, entry 2)

¹H NMR (400 MHz, CDCl₃, 298 K) δ 8.00–7.31 (m, Ar of **2**), 4.25–4.04 (m, C<u>H</u>C≡N of NBR, O–C<u>H</u>₂CH₂ of **2**), 2.36–1.06 (m, CH₂ of NBR, O–CH₂C<u>H</u>₂ and CH₃ of **2**) ppm; IR (KBr) υ 1721 (C=O, s, ester), 1193 (C–C(=O)–O, as, ester) cm⁻¹.

*T*_{d5} 271 °C, *T*_g 140 °C

Typical procedure for modification of EPDM

EPDM (51.3 mg) was dissolved in CHCl₃ (137 μ L) and nitrile *N*-oxide **1** (17.6 mg, 0.0730 mmol) was added to this solution. The solution was was refluxed for 24 h. The mixture was reprecipitated from methanol (200 mL) and product was obtained (60.6 mg, 97.0%).

(Table S1, entry 3)

¹H NMR (400 MHz, CDCl₃, 298 K) δ 8.09–7.26 (m, Ar of 1), 5.23 (m, CH₃C<u>H</u>=C of EPDM),

4.42–4.11 (m, g), 3.70–3.33 (m, h), 2.93-2.72 (m, i), 2.39–0.83 (m, EPDM) ppm; IR (NaCl) v1215 (C-O, s, epoxy), 979 (C-O, as, epoxy) cm⁻¹. T_{d5} 309 °C, T_{g} 130 °C

(Table S1, entry 4)

¹H NMR (400 MHz, CDCl₃, 298 K) δ 8.10–7.29 (m, Ar of **2**), 5.20 (s, CH₃C<u>H</u>=C of EPDM), 4.27–4.08 (m, O–C<u>H₂</u>CH₂ of **2**), 3.67–0.83 (m, EPDM, O–CH₂C<u>H₂</u> and CH₃ of **2**) ppm; IR (NaCl) v 1732 (C=O, s, ester), 1216 (C–C(=O)–O, as, ester) cm⁻¹.

*T*_{d5} 309 °C, *T*_g 154 °C

Table S1. Results of modification of polymers.

polymer	O ⁻ N+ C OR (1.0 equ conditions	iv.)	DR	$R=\frac{1}{2}$								
entry	polymer	reagent	solvent	temp. (°C)	time (h)	yield (%)	conversion (%) ^{a)}	<i>T</i> d5 (°C)	T _g (°C)	Mn	M _w	$M_{\rm n}/M_{\rm w}$
	$\int_{0.33}^{\infty} ()_{0.6}$	1 7	CHCl₃	reflux	24	91	olefine : 100 CN : 44	282	124	_ c)	_ c)	_ c)
2	NBR NBR	2	CHCI3	reflux	24	71	olefine : 100 CN : 57	271	140	_ c)	_ c)	_ c)
³ {→ _x	∞ () , co () EPDM ×+y = 0.	1 0.1 9	CHCl ₃	reflux	24	97	68	309	130	59000	119000	2.03
4	EPDM	2	CHCI3	reflux	24	83	60	309	154	79000	228000	2.88

a) Conversion ratio of unsaturated bonds. b) Not measured. c) Not estimated.

Synthesis of internal alkyne-containing polymer

To a solution of 4,4-diphenylmethane diisocyanate (MDI, 300 mg, 1.20 mmol) and 2-butyne-1,4-diol (86.0 μ L, 1.20 mmol) in DMF (1.0 mL) was added dibutyltindilaurate (35.5 μ L,

0.060 mmol) and the mixture was stirred at room temperature for 1 h. The mixture was warmed to 100 °C, stirred for 1 h, warmed to 160 °C, and stirred for 1 h. The reaction mixture was cooled to room temperature and poured into MeOH to give precipitates. The resulting precipitates were filtered and dried in vacuo to give the internal alkyne-containing polyurethane (393.6 mg, 98%) as a brown solid; M_w 10000, M_w/M_n 1.8 on the basis of polystyrene standards (eluent: DMF); no T_g was observed in a range from room temperature to 220 °C; T_{d5} 272 °C; ¹H NMR (400 MHz, DMSO-d₆, 298 K) δ 9.74 (s, 2H), 7.32 (d, J = 8.4 Hz, 4H), 7.09 (d, J = 8.4 Hz, 4H), 4.80 (s, 4H), 3.78 (s, 2H) ppm; IR (KBr) υ 3322, 3127, 3034, 2940, 1906, 1709, 1599, 1527, 1413, 1367, 1316, 1226, 1154, 1054, 1017, 914, 848, 816, 764, 616, 510 cm⁻¹.

Typical procedure for the modification of internal alkyne-containing polyurethane with 2

To a solution of internal alkyne-containing polymer (100 mg, 0.297 mmol) in DMF (0.3 mL) was added **2** (97.6 mg, 0.297 mmol) and the mixture was warmed to 90 °C and stirred for 13 h. The mixture was cooled to room temperature and poured into MeOH to give precipitates. The resulting precipitates were filtered and dried in vacuo to give the corresponding isoxazole-containing polymer (171 mg, 87%, >99% conversion) as a brown solid; no T_g was observed in a range from room temperature to 105 °C; T_{d5} 263 °C; ¹H NMR (400 MHz, CDCl₃, 298 K) δ 7.87–6.98 (m), 5.57–4.63 (m), 4.98 (brd), 3.74 (brd), 2.20 (brd), 1.76 (brd), 1.59 (brd), 1.50 (brd), 1.20 (brd) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K) δ 174.6, 164.9, 160.1, 159.9, 159.6, 155.0, 153.3, 136.6, 136.3, 135.9, 133.5, 129.4, 129.0, 124.7, 124.3, 119.2, 115.4, 110.9, 69.5, 68.7, 56.1, 40.6, 34.3, 28.9, 25.6, 24.7, 14.4, 14.0 ppm; IR (KBr) υ 3319, 3055, 2942, 1733, 1597, 1538, 1457, 1435, 1414, 1373, 1311, 1221, 1151, 1055, 1018, 914, 849, 812, 736 cm⁻¹.

Modification of NR exploiting epoxy group

Epoxycontaining–NR (100 mg) and 4–(heptadecafluorooctyl)aniline (192 mg, 0.376 mmol) was dissolved in DMF (1.0 mL), and the solution was stirred at 120 °C for 24 h. The reaction mixture was cooled to room temperature and reprecipitated from water. The product was washed with hexane several times and dried in vacuo to give product (124 mg) as a brown solid.

¹H NMR (400 MHz, CDCl₃, 298 K) δ 8.01–7.12 (m, Ar of **1** and aniline), 5.00 (s, –C<u>H</u>=C(CH₃)– of NR), 4.27–2.61 (m, epoxy, OH, NH and CH₂ of **1** and NR), 1.63–0.93 (m, CH₃ of NR) ppm; ¹⁹F NMR (400 MHz, CDCl₃, 298 K) δ –28.8 (s, 2H, Ar–C<u>F₂</u>), –40.6 (s, 2H, Ar–CF₂C<u>F₂</u>), –41.2 (s, 8H, CF₂), –42.0 (s, 2H, –C<u>F₂</u>CF₃), –45.4 (s, 3H, –CF₂C<u>F₃</u>) ppm; IR (NaCl) υ 3376 (O–H and N–H), 1515 (N–H), 1337 (C–N), 1242 (–CF₂–), 754 (–CF₃) cm⁻¹.

Typical procedure for cross-linking of modified NR (Table 2, entry 3)

Epoxy-modified NR (Table 1, entry 4, 1.21 g, 0.332 mmol) and N,N'-diethyl-1,6diaminohexane (34 μ L, 0.166 mmol) were dissolved in CHCl₃ (12 mL), the solution was degassed by using diaphragm pump. The mixture was heated at 40 °C on the electrical hot plate in open for 24 h. The cross-linked NR was washed by immersion in CHCl₃ for 6 h and dried in vacuo. Finally, the cross-linked NR was yielded 709 mg (99%).

Table S2. Evaluations of cross-linked

entry	amount of linker (mol%)	swelling ratio (%) ^a	degree of cross-link (%) ^b	yield (%)	7 _{d5} (°С) ^ь	τ _g (°C) ^b
1	5	930	0.41	87	338	- 57
2	25	540	1.2	98	340	- 57
3	50	380	2.5	99	340	- 56

a) swollen in toluene, $(W_s-W_d)/W_d$. b) molar ratio of cross-linked alkenes / feedalkenes. b) under N₂. NR: $T_{d5} = 345$ °C, $T_q = -65$ °C

Table S3. Results of stress–strain measurement of cross–linked NR	íS.
---	-----

entry	amount of cross–linker (mol%)	degree of cross–link (%) ^a	Young's modulus (%) ^b	tensile strength ^c (MPa)	elongation ^d (%)
ref.	_	_	0.62	6.34	1100
1	25	1.2	0.50	5.04	698
2	50	2.5	0.86	5.20	452

a) molar ratio of cross–linked alkenes / feedalkenes. b) stress when strain is 100%. c) maxima of the stress. d) maxima of the strain.

 $^{13}\mathrm{C}$ NMR spectrum of $\boldsymbol{\mathsf{B}}$ (100 MHz, CDCl_3, 298 K)

IR spectrum of **B** (KBr)

IR spectrum of C (KBr)

IR spectrum of **D** (KBr)

IR spectrum of \mathbf{E} (KBr)

 $^1\mathrm{H}$ NMR spectrum of $\mathbf{2}$ (400 MHz, CDCl₃, 298 K)

 $^{13}\mathrm{C}$ NMR spectrum of $\mathbf{2}$ (100 MHz, CDCl₃, 298 K)

IR spectrum of **2** (KBr)

 $^{13}\mathrm{C}$ NMR spectrum of **3** (100 MHz, CDCl₃, 298 K)

IR spectrum of 4a (NaCl)

 $^{13}\mathrm{C}$ NMR spectrum of **4b** (100 MHz, CDCl₃, 298 K)

 $^{13}\mathrm{C}$ NMR spectrum of 4c (100 MHz, CDCl_3, 298 K)

¹H NMR spectra of modified NR (with reagent **1**, (a) 2 h (Table 2, entry 2), (b) 24 h (entry 3), (c) 96 h (entry 4), and (d) 72 h (entry 5, 3.0 equiv of **1** were used for this reaction.)) (400 MHz, $CDCl_3$, 298 K)

IR spectra of modified NR (with reagent **1**, (a) 2, (b) 24, and (c) 96 h) (KBr)

¹H NMR spectra of modified NR (with reagent **2**)(400 MHz, CDCl₃, 298 K)

IR spectrum of modified NR (with reagent 2) (KBr)

 $^1\mathrm{H}$ NMR spectra of modified PAN (with reagent 1, (a) 1, (b) 4, (c) 24, and (d) 96 h) (400 MHz, DMSO, 298 K)

IR spectra of modified PAN (with reagent 1, (a) 1, (b) 4, (c) 24, and (d) 96 h) (KBr)

K)

IR spectrum of modified PAN (with reagent 2) (KBr)

IR spectrum of modified NBR (with reagent 1) (KBr)

 $^1\mathrm{H}$ NMR spectrum of modified NBR (with reagent **2**) (400 MHz, CDCl₃, 298 K)

IR spectrum of modified NBR (with reagent **2**) (KBr)

 $^1\mathrm{H}$ NMR spectrum of modified EPDM (with reagent 1) (400 MHz, CDCl_3, 298 K)

IR spectrum of modified EPDM (with reagent $\boldsymbol{1}$) (KBr)

 $^1\mathrm{H}$ NMR spectrum of modified EPDM (with reagent **2**) (400 MHz, CDCl_3, 298 K)

IR spectrum of modified EPDM (with reagent 2) (KBr)

 $^1\mathrm{H}$ NMR spectrum of internal alkyne-containing polyure thane (400 MHz, DMSO-d_6, 298 K)

IR spectrum of internal alkyne-containing polyurethane (KBr)

 ^{1}H NMR spectrum of modified polyurethane with 2 (400 MHz, CDCl₃, 298 K)

 $^{13}\mathrm{C}$ NMR spectrum of modified polyure thane with $\mathbf{2}$ (100 MHz, CDCl₃, 298 K)

IR spectrum of modified polyurethane with 2 (KBr)

Stress-strain curves of virgin and cross-linked NRs.

References

- D. Janeliunas, M. Daskeviciene, T. Malinauskas, V. Getautis, *Tetrahedron.* 2009, 65, 8407–8411.
- (2) D. S. Campbell, J. Appl. Polym. Sci., 1970, 14, 1409-1419.