Supporting Information

A Versatile Molecular Beacon-like Probe for Multiplexed Detection Based on Fluorescence Polarization and Its Application for Resettable Logic Gate

Min Zhang, Huynh-Nhu Le, Ping Wang, and Bang-Ce Ye*

Experimental Section

Reagents and materials. The oligonucleotides used in this study were synthesized by Sangon Biotech Co. Ltd. (Shanghai, China) with the following sequences: P_1 : 5'-FAM-(CH₂)₆-CCCTAACCCTAACCCTAACCCT-3'; **P**₂: 5'-TATAATAAATTTTAAATAT-(CH₂)₆-FAM-3'. The following metal salts: AgNO₃, $Mg(NO_3)_2$, $Cu(NO_3)_2$, $Mn(Ac)_2$, $Zn(Ac)_2$, $Cr(NO_3)_3$, $Pb(NO_3)_2$, $Ni(NO_3)_2$, $Co(Ac)_2$, $Cd(NO_3)_2$, $Fe(NO_3)_3$, $Hg(Ac)_2$, $Ca(Ac)_2$, $CrCl_3$, $Ba(NO_3)_2$, $Al(NO_3)_3$, $NaNO_3$ and KNO₃ were reagent-grade and purchased from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). Cysteine and other 19 amino acids were purchased from Sigma-Aldrich (St. Louis, MO). Ethylenedaminetetraaceticacid (EDTA) disodium salt dehydrate was purchased from Pharmacia Biotech Inc. (Uppsala, Sweden). $10 \times$ HEPES buffer (100 mM HEPES, 1 M NaNO₃, pH 7.4) was prepared using metal-free reagents in distilled water purified by a Milli-Q water purification system (Millipore Corp., Bedford, MA) with an electrical resistance of 18.2 M Ω . All chemicals used in this work were of analytical reagent and obtained from commercial sources and directly used without additional purification. All buffers were prepared using metal-free reagents in distilled water purified by a Milli-Q water purification system.

Instrumentation. Fluorescence was measured in a fluorescence microplate reader (Bio-Tek Instrument, Winooski, USA) using a black 384 well microplate (Fluotrac 200, Greiner, Germany). Fluorescence polarization was measured in а fluorescence microplate reader (BioTek Instruments, Winooski, VT. USA) with an excitation wavelength at 485 nm and an emission wavelength 528 using a black 384-well microplate (Fluotrac 200, Greiner, at nm Germany).

Fig. S1 Circular dichroism (CD) spectra of 500 nM P_1 in the solution treated with (A) none (black line), 5 μ M Cu²⁺ (red line), 5 μ M Cu²⁺ and following 10 μ M Cys (green line).

Fig. S2 Selectivity analysis for Ag^+ and Hg^{2+} deteciton. Bars represent the FP value of (A) 100 nM P₁ and (B) 100 nM P₂ toward the presence of 2 μ M Ag⁺ and 5 μ M other metal ions including Cu²⁺, Pb²⁺, Fe³⁺, Cr³⁺, Cd²⁺, Ba²⁺, Mn²⁺, Mg²⁺, Co²⁺, Zn²⁺, Ni²⁺, Al³⁺, Na⁺, Ca²⁺, K⁺ and Hg²⁺.

Fig. S3 Selectivity analysis for cysteine (Cys) detection. Bars represent the FP value of 100 nM P_1 solution containing (A) 2 μ M Ag⁺ and (B) 10 μ M Hg²⁺ toward the presence of 10 μ M Cys and other 19 amino acids, respectively. (C) Bars represent the FP value of 100 nM P_2 solution containing 10 μ M Hg²⁺ toward the presence of 10 μ M Cys and other 19 amino acids, respectively.

Table ST Comparison of the different probes (F1 and F2) for metal for sensing		
Probe	Metal ion	Fitting equation
P ₁	Ag^+	Boltzmann sigmoidal equation (the fitting range from 0-2 μ M):
		$Y = 44.29 + 68.11/[1 + \exp(0.49 - X)/0.24], R^2 = 0.996;$
		Linear equation (the fitting range from 0-1 µM):
		$Y = 56.01X + 50.84, R^2 = 0.991;$
		where Y is the FP value and X is the concentration of Ag^+
	Hg^{2+}	Two phase association equation (the fitting range from 0-60 μ M):
		$Y = 47.76 + 27.66 [1 - \exp(-1.18X)] + 67.26 [1 - \exp(-0.1X)], R^2 = 0.995;$
		Linear equation (the fitting range from 0-1 µM):
		$Y = 27.76X + 48.37, R^2 = 0.952;$
		where Y is the FP value and X is the concentration of Hg^{2+}
P ₂	Hg^{2+}	Boltzmann sigmoidal equation (the fitting range from 0-2 μ M):
		$Y = 42.23 + 85.38/[1 + \exp(0.46 - X)/0.21; R^2 = 0.993;$
		Linear equation (the fitting range from 0-1 µM):
		$Y = 80.39X + 48.94, R^2 = 0.991;$
		where Y is the FP value and X is the concentration of Hg^{2+}

Fable S1 Comparison of the different probes (P_1 and P_2) for metal ion sensing

Fig. S4 Differentiation of Ag^+ and Hg^{2+} by relative fluorescence polarization decrease efficiency upon the sample treated with EDTA (50 μ M). x-axis: total ions concentration (nM); y-axis: the concentration proportions of Ag^+ and Hg^{2+} ; z-axis: the fluorescence polarization decrease efficiency.

Fig. S5 Plot of FP value of 100 nM P_2 probe corresponding to the Hg²⁺ concentration in the range 0–2 μ M with a Boltzmann sigmoidal equation: $Y = 42.23 + 85.38/[1 + \exp(0.46 - X)/0.21]$, where Y is the FP value and X is the concentration of Ag⁺ (regression coefficient R^2 =0.993). Inset: magnification of the plot of FP value of 100 nM P_2 probe corresponding to the Hg²⁺ concentration in the range 0–1 μ M with a linear equation: Y = 80.39X + 48.94, R^2 =0.991. Using the P_2 probe, Hg²⁺ could be detected at concentrations as low as 0.01 μ M based on three times signal-to-noise level of the blank sample (3 σ).

Fig. S6 Reversible switching of the logic systems consisting of the MB-like P_1 probe (100 nM) between the on and off states through the alternating addition of 10 μ M Hg²⁺ and 10 μ M Cys.