Electronic Supplementary Information for:

New excited state intramolecular proton transfer (ESIPT) dyes based on naphthalimide and observation of triplet excited states

Jie Ma,^{*a,b*} Jianzhang Zhao,^{*a*}* Pei Yang,^{*a*} Dandan Huang,^{*a*} Caishun Zhang^{*a*} and Qiuting Li^{*a*}

 ^a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
^b College of Chemistry and Chemical Engineering, Qiqihaer University, Qiqihaer 161006, Heilongjiang, P. R. China.

E-mail: zhaojzh@dlut.edu.cn

Group homepage: http://finechem.dlut.edu.cn/photochem

General.

All the chemicals used in synthesis are analytical pure and were used as received. Solvents were dried and distilled. NMR spectra were recorded on a 400 MHz Varian Unity Inova NMR spectrophotometer. ¹³C NMR spectra were recorded on the same instrument (100 MHz) with total proton decoupling. Mass spectra were recorded with Q-TOF Micro MS spectrometer. UV-Vis absorption spectra were measured with a HP8453 UV-visible spectrophotometer. Fluorescence spectra were recorded on Shimadzu 5301 PC spectrofluorometer.

The nanosecond time-resolved transient absorption (TA) spectra were measured on LP 920 laser flash photolysis spectrometer (Edinburgh Instruments, UK) and the signals were recorded on a Tektronix TDS 3012B oscilloscope. The lifetime values were obtained by monitoring the decay trace of the transients at a specific wavelength with the LP900 software. All samples in flash photolysis experiments were deaerated with argon for ca. 15 min before measurement and the argon gas flow was kept during the measurement.

The density functional theory (DFT) calculations were used for optimization of the geometries for both singlet states and triplet states. All the calculations were performed with Gaussian 09W.¹

^{1.} M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, et al., GAUSSIAN 09 (Revision A.1), Gaussian, Inc., Wallingford, CT, 2009.

Experimental Section

Synthesis:

Scheme S1. Synthesis of N-1, N-2, N-3, N-4 and HBT. a) trimethylsilylacetylene, CuI, Pd(PPh₃)₂Cl₂, PPh₃, NEt₃, reflux, 6 h; b) TBAF, THF; c) 2-aminothiophenol, MeOH ; d) *n*-C₄H₉Br, K₂CO₃, DMF; e) Pd(PPh₃)₂Cl₂, PPh₃, CuI, NEt₃, reflux, 6 h; f) Pd(PPh₃)₂Cl₂, PPh₃, CuI, NEt₃, reflux, 6 h; g) Pd(PPh₃)₂Cl₂, PPh₃, CuI, NEt₃, reflux, 8 h; h) Pd(PPh₃)₄, PPh₃, CuI, NEt₃, reflux, 8 h; i) 2-aminothiophenol, MeOH.

Synthesis Procedures

Synthesis of compound 2-(5'-ethnyl-2'-hydroxyphenyl)benzothiazole (3)

2 (100 mg, 0.69 mmol) and 2-aminothiophenol (170 mg, 1.30 mmol) were mixed in methanol (10 mL) and stirred for 6 h at 30 °C. Methanol was evaporated under reduced pressure and the residue was purified by column chromatography (silica gel, petroleum /CH₂Cl₂, 3:1, v / v) to give the product as white solid. Yield: 62.2 mg, 36.0 %. Mp: 143.7–144.6 °C. ¹H NMR (400 MHz, CDCl₃/CD₃OD): δ 8.02 (d, 1H, *J* = 8.4 Hz), 7.95 (d, 1H, *J* = 8.0 Hz), 7.87 (s, 1H), 7.55–7.43 (m, 3H), 7.08 (d, 1H, *J* = 8.4 Hz), 3.07 (s, 1H). TOF HRMS EI⁺ ([C₁₅H₉NOS]⁺): calcd *m*/*z* = 251.0408.

Synthesis of compound 3. 4. 2-(5'-ethnyl-2'-butoxyphenyl)benzothiazole (4)

The mixture of compound **3** (50 mg, 0.20 mmol), K₂CO₃ (50 mg, 0.36 mmol) and *N*,*N*-dimethyl formamide (0.25 mL) were stirred at room temperature, then *n*-butyl bromide (122 mg, 0.90 mmol) was added. The mixture were stirred at 50 °C for 4 h, then the resulting solution was added dropwise into ice water. The mixture was extracted with CH₂Cl₂. The organic layer was washed with water and then dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure then the crude product was purified by column chromatography (silica gel, petroleum : CH₂Cl₂, 1 : 1, v/v) to give the product as white solid. Yield: 50 mg, 81.4%. M. p. 134.2–135.4 °C. ¹H NMR (400 MHz, CDCl₃/CD₃OD): δ 8.73 (s, 1H), 8.11 (d, 1H, *J* = 8.0 Hz), 7.95 (d, 1H, *J* = 8.0 Hz), 7.56 (d, 1H, *J* = 8.8 Hz), 7.52 (t, 1H, *J*₁ = 7.2 Hz, *J*₂ = 8.0 Hz), 7.40 (t, 1H, *J*₁ = 8.0 Hz, *J*₂ = 7.2 Hz), 7.00 (d, 1H, *J* = 8.8 Hz), 4.24–4.21 (m, 2H), 3.04 (s, 1H), 2.04–1.99 (m, 2H), 1.66–1.61 (m, 2H), 1.06 (t, 3H, *J* = 7.2 Hz). TOF HRMS EI⁺ ([C₁₉H₁₇NOS]⁺): calculated *m/z* = 307.1031, found *m/z* = 307.1031.

Synthesis of compound 9-Butyl-3-iodo-9H-carbazole-naphthalimide (6)

4-ethynylnaphthalimide (166.0 mg, 0.50 mmol), 9-butyl-3, 6-diiodo-9H-carbazole (715.0 mg, 1.5 mmol), CuI (10.0 mg, 0.05 mmol), Pd(PPh₃)₂Cl₂ (3.5 mg, 0.05 mmol), triphenylphosphine (5.0 mg, 0.02 mmol), and dry triethylamine (60 mL) were mixed, then the mixture was refluxed under N₂ for 8 h. Then the reaction mixture was filtered and the organic phase was evaporated under reduced pressure. The residue was purified through column chromatography (silica gel, hexane: CH₂Cl₂ = 1:2, v/v). A yellow solid was obtained. Yield: 110.0 mg, 31.6 %. M.p.: 141.0 – 142.6 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.83 (d, 1H, *J* = 8.0 Hz), 8.66 (d, 1H, *J* = 4.0 Hz), 8.57 (d, 1H, *J* = 8.0 Hz), 8.44 (s, 1H), 8.37 (s, 1H), 7.98–7.95 (m, 1H), 7.79–7.76 (m, 1H), 7.45 (d, 1H, *J* = 8.0 Hz), 7.24 (d, 2H, *J* = 8.0 Hz), 4.32–4.29 (m, 2H), 4.16–4.12 (m, 2H), 1.97–1.95 (m, 1H), 1.89–1.85 (m, 2H), 1.42–1.26 (m, 10H), 0.98–0.87 (m, 9H). ESI–MS C₃₈H₃₇N₂O₂I Calculated *m/z* = 680.1900, found *m/z* = 680.1901.

Synthesis of compound N-1

Under argon atmosphere, Pd(PPh₃)₂Cl₂ (2.4 mg, 0.003 mmol, 3.0 mol%), PPh₃(1.3 mg, 0.005 mmol, 5.0 mol%), CuI (1.0 mg, 0.005 mmol, 5.0 mol%), TEA (2 mL, 1.40 mmol) and **5** (50 mg, 0.15 mmol) were added to a solution of **3** (25.0 mg, 0.10 mmol) in anhydrous THF (5 mL). The mixture was stirred at 70 °C for 6 h. The resulting solution was cooled to rt., the solvent was removed under reduced pressure and the compound was purified by column chromatography (silica gel, CH₂Cl₂ as the eluent) to give the product as yellow solid. Yield: 34 mg, 67.7%. M.p.: 236.3–237.3 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.71 (d, 1H, *J* = 12 Hz), 8.61 (d, 1H, *J* = 8 Hz), 8.53 (d, 1H, *J* = 12 Hz), 7.98–7.89 (m, 4H), 7.81 (t, 1H, *J* = 8 Hz), 7.64 (d, 1H, *J* = 8 Hz), 7.50 (t, 1H, *J* = 8 Hz), 7.43–7.39 (m, 1H), 7.14 (d, 1H, *J* = 4 Hz), 4.14 (t, 2H, *J* = 8 Hz), 1.70–1.66 (m, 2H), 1.45–1.39 (m, 2H), 0.94 (t, 3H, *J* = 8 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 168.1, 164.0, 163.8, 159.0, 151.6, 136.2, 132.6, 132.3, 132.0, 131.6, 130.6, 130.4, 128.7, 128.6, 127.6, 127.5, 127.1, 126.1, 123.1, 122.4, 121.7, 118.7, 117.2, 113.5, 98.5, 94.6, 85.8, 40.4, 30.4, 20.6, 14.0. TOF HRMS EI⁺ calcd ([C₃₁H₂₂N₂O₃S]): calculated *m*/*z* = 502.1351, found *m*/*z* = 502.1353.

Synthesis of compound N-2

N-2 was obtained following the procedure similar to that of **N-1**, except benzene acetylene (50.0 mg, 0.49 mmol) was used instead of **3**. Yellow solid, yield: 67.3 mg, 38.9%. ¹H NMR (400 MHz, CDCl₃): δ 8.66 (d, 1H, *J* = 8 Hz), 8.57 (d, 1H, *J* = 8 Hz), 8.48 (d, 1H, *J* = 4 Hz), 7.88 (d, 1H, *J* = 8 Hz), 7.76 (t, 1H, *J* = 8 Hz), 7.62–7.59 (m, 2H), 7.37 (t, 3H, *J* = 4 Hz), 4.14 (t, 2H, *J* = 8 Hz), 1.69–1.62 (m, 2H), 1.43–1.33 (m, 2H), 0.91 (t, 3H, *J* = 8 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 164.1, 163.9, 132.5, 132.1, 131.7, 130.9, 130.5, 129.6, 128.8, 128.2, 127.7, 127.6, 123.1, 122.4, 122.3, 99.2, 94.6, 86.4, 40.5, 30.4, 20.6, 14.0.

Synthesis of compound N-3

N-3 was obtained following the procedure similar to that of **N-1**, except **4** (50.0 mg, 0.16 mmol) was used instead of **3**. Yellow solid, yield: 28 mg, 30.8%. Mp: 217.8–218.9°C. ¹H NMR (400 MHz, CDCl₃): δ 8.92 (s, 1H), 8.82 (d, 1H, *J* = 8 Hz), 8.66 (d, 1H, *J* = 4 Hz), 8.58 (d, 1H, *J* = 8 Hz), 8.16 (s, 1H), 8.00–7.95 (m, 2H), 7.87 (d, 1H, *J* = 8 Hz), 7.76 (d, 1H, *J* = 8 Hz), 7.55 (d, 1H, *J* = 8 Hz), 7.42 (t, 1H, *J* = 8 Hz), 7.13 (d, 1H, *J* = 8 Hz), 4.30 (t, 2H, *J* = 4 Hz), 4.20 (t, 2H, *J* = 8 Hz), 2.10–2.04 (m, 2H), 1.77–1.65 (m, 4H), 1.50–1.44 (m, 2H), 1.08 (t, 3H, *J* = 4 Hz), 0.99 (t, 3H, *J* = 8 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 164.2, 163.9, 157.4, 135.2, 133.3, 132.7, 131.7, 130.7, 130.5, 128.2, 127.9, 127.5, 126.3, 125.1, 123.1, 123.0, 122.0, 121.5, 115.1, 112.7, 98.9, 86.0, 69.6, 40.5, 31.3, 30.4, 29.9, 20.6, 19.7, 14.0. TOF HRMS EI⁺: ([C₃₅H₃₀N₂O₃S]) calculated *m/z* = 558.1977, found *m/z* = 558.1984.

Synthesis of compound N-4

Under argon atmosphere, Pd (PPh₃)₄ (12.0 mg, 0.01mmol), CuI (1.0 mg, 0.005 mmol) and **6** (68.0 mg, 0.1 mmol) were added to a solution of **3** (25.0 mg, 0.1 mmol) in anhydrous TEA (15 mL). The mixture was stirred at 90 °C for 8 h. The resulting solution was cooled to rt., removed the solvent under reduced pressure and the compound was purified by column chromatography (silica gel, CH₂Cl₂ and petroleum as the eluent) to give the product as yellow solid. Yield: 27 mg, 33.8%. M.p.: > 250 °C. ¹H NMR (400 MHz, CDCl₃): δ 12.75 (s, 1H), 8.85 (d, 1H, *J* = 8 Hz), 8.67 (m, 1H), 8.65 (d, 1H, *J* = 4 Hz), 8.58 (d, 1H, *J* = 8 Hz), 8.43 (d, 1H, *J* = 4 Hz), 8.36 (d, 1H, *J* = 4 Hz), 8.03 (d, 1H, *J* = 8 Hz), 7.99 (d, 1H, *J* = 8 Hz), 7.94 (d, 1H, *J* = 4 Hz), 7.87 (t, 1H, *J* = 8 Hz), 7.80 (d, 1H, *J* = 8 Hz), 7.73–7.69 (m, 2H), 7.60 (d, 1H, *J* = 8 Hz), 7.53 (t, 1H, *J* = 4 Hz), 7.47 (d, 1H, *J* = 8 Hz), 7.43 (d, 1H, *J* = 8 Hz), 7.13 (d, 1H, *J* = 8 Hz), 4.32–4.29 (m, 2H), 4.19–4.08 (m, 2H), 1.94–1.87 (m, 1H), 1.75–1.68 (m, 2H), 1.47–1.38 (m, 10H), 1.01–0.95 (m, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 168.68, 164.57, 164.30, 157.92, 151.77, 141.11, 140.50,135.84, 132.76, 132.54, 131.61, 131.48, 131.04, 130.61, 129.97, 128.34, 128.26, 126.95, 125.90, 124.84, 124.20, 123.07, 122.79, 122.51, 122.38, 121.72, 121.59, 118.37, 116.98, 115.68, 114.39, 112.86, 109.35, 109.29, 101.20, 94.57, 89.58, 87.26, 85.49, 65.71, 44.35, 43.32, 38.11, 31.23, 30.92, 30.72, 28.87, 24.23, 23.25, 20.68, 19.34, 14.27. MALDI-HRMS: [C₅₃H₄₆N₃O₃S+H⁺] Calcd *m*/*z* = 804.3260, found *m*/*z* = 804.3288.

Synthesis of compound HBT

Salicylaldehyde (250 mg, 2.0 mmol) and 2-aminothiophenol (500 mg, 4.0 mmol) were combined in methanol (20

mL) and stirred for 12 h at 30 °C. Then methanol was evaporated under reduced pressure and the compound was purified by column chromatography (silica gel, petroleum / CH₂Cl₂, 3 : 1, v / v) to give the product as white solid. Yield: 107 mg, 23.6%. ¹H NMR (400 MHz, CDCl₃): δ 12.52 (s, 1H), 8.00 (d, 1H, *J* = 8 Hz), 7.91 (d, 1H, *J* = 8 Hz), 7.71 (d, 1H, *J* = 8 Hz), 7.51 (d, 1H, *J* = 8 Hz), 7.43–7.36 (m, 2H), 7.12 (d, 1H, *J* = 8 Hz), 6.96 (t, 1H, *J* = 8 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 169.5, 158.1, 152.0, 132.9, 128.6, 126.8, 125.7, 122.3, 121.7, 119.7, 118.0, 116.9.

Fig. S1 ¹H NMR of compound 3 (CDCl₃, 400 MHz).

Fig. S2 TOF HRMS EI^+ of compound **3**.

Fig. S3 ¹H NMR of compound 4 (CDCl₃, 400 MHz).

Fig. S4 TOF HRMS EI^+ of compound **4**.

Fig. S5 ¹H NMR of compound 6 (CDCl₃, 400 MHz).

Fig. S6 TOF HRMS EI^+ of compound **6**.

Fig. S7 ¹H NMR of compound N–1 (CDCl₃, 400 MHz).

Fig. S8¹³C NMR of compound **N–1** (CDCl₃, 100 MHz).

Fig. S9 TOF HRMS EI^+ of compound N-1.

Fig. S10 ¹H NMR of compound **N–2** (CDCl₃, 400 MHz).

Fig. S11 13 C NMR of compound N–2 (CDCl₃, 100 MHz).

Fig. S12 ¹H NMR of compound N–3 (CDCl₃, 400 MHz).

Fig. S13 13 C NMR of compound N–3 (CDCl₃, 100 MHz).

Fig. S14 TOF HRMS EI⁺ compound **N–3**.

Fig. S15 ¹H NMR of compound **HBT** (CDCl₃, 400 MHz).

Fig. S16¹³C NMR of compound HBT (CDCl₃, 100 MHz).

Fig. S17¹H NMR of compound N-4 (CDCl₃, 400 MHz).

Fig. S18 ¹³C NMR of compound **N-4** (CDCl₃, 100 MHz).

Fig. S19 MALDI-HRMS of compound N-4.

Fig. S20 (a) Nanosecond time-resolved transient absorption difference spectra of N-1 in *deaerated* methanol (λ_{ex} = 355 nm) and (b) decay traces of the transient absorption at 380 nm; $c = 2.0 \times 10^{-5}$ M; 20 °C.

Fig. S21 (a) Nanosecond time-resolved transient absorption difference spectra of N-1 in *aerated* methanol ($\lambda_{ex} = 355$ nm) and (b) decay traces of the transient absorption at 380 nm; $c = 2.0 \times 10^{-5}$ M; 20 °C.

Fig. S22 (a) Nanosecond time-resolved transient absorption difference spectra of HBT in aerated benzene ($\lambda_{ex} = 355$ nm) and (b) decay traces of the transient absorption at 340 nm; $c = 2.0 \times 10^{-5}$ M; 20 °C.

Fig. S23 (a) Nanosecond time-resolved transient absorption difference spectra of HBT in deaerated benzene ($\lambda_{ex} = 355 \text{ nm}$) and (b) decay traces of the transient absorption at 340 nm; $c = 2.0 \times 10^{-5} \text{ M}$; 20 °C.

Fig. S24 (a) Nanosecond time-resolved transient absorption difference spectra of **HBT** in aerated methanol ($\lambda_{ex} = 355$ nm) and (b) decay traces of the transient absorption at 340 nm; $c = 2.0 \times 10^{-5}$ M; 20 °C.

Fig. S25 (a) Nanosecond time-resolved transient absorption difference spectra of HBT in deaerated methanol ($\lambda_{ex} = 355$ nm) and (b) decay traces of the transient absorption at 340 nm; $c = 2 \times 10^{-5}$ M; 20 °C.

Fig. S26 (a) Nanosecond time-resolved transient absorption difference spectra of N-3 in deaerated benzene ($\lambda_{ex} = 355$ nm) and (b) decay traces of the transient absorption at 380 nm; $c = 2.0 \times 10^{-5}$ M; 20 °C.

Fig. S27 Potential energy curves from enol form to keto form of the compounds N-1 and N-4 at the Excited State and Ground State. The calculations are based on the optimized ground state geometry (S_0 state) at the B3LYP/6-31G(d)/ level using Gaussian 09W.

Table S1. Free energy changes for the transformation from enol form to keto form of the compounds at the Excited State and Ground States.

Compounds	ΔE / kJ mo	$\Delta E / kJ mol-1^{b}$	-1 ^b
N-1	9.1	-25.5	
N-4	9.7	-11.8	
^a At S ₀ (ground s	tate) state.	^b At S ₁ state.	

Comp.	Solvents	$\lambda_{abs}^{b}(nm)$	$\lambda_{\rm em}^{c}$ (nm)	\mathcal{E}^{d} (M ⁻¹ cm ⁻¹)
	CH_2Cl_2	390	545	34700
N-1	EtOAc	380	592	36900
	CH ₃ CN	396	h	34400
	CH_2Cl_2	375	434	26700
	EtOAc	370	424	26300
N-2	CH ₃ CN	371	443	25700
	MeOH	374	459	23600
	CH ₂ Cl ₂	392	483	17100
N 0	EtOAc	384	469	16800
N-3	CH ₃ CN	392	550	18000
	CH_2Cl_2	440	568	20500
N-4	EtOAc	428	548	20000
	CH ₃ CN	424	_ e	21100
HRT	CH_2Cl_2	337	517	20200
1101	EtOAc	335	363	20500
	CH ₃ CN	332	458	20000

Table S2. Photophysical Properties of Compounds N-1, N-2, N-3, N-4 and HBT in Different Solvents ^a

^{*a*} The excited wavelength for compound **N-1**, **N-2**, **N-3**, **N-4** and **HBT** were 370 nm, 350 nm, 370 nm, 410 nm and 315 nm. 1.0×10^{-5} M, 20 °C. ^{*b*} Absorption wavelength. ^{*c*} Fluorescence emission wavelength. ^{*d*} Molar extinction coefficient. ^{*e*} Weak signal.

Triplet state of compound N-1 (DFT//B3LYP/6-31G(d))

Symbolic Z-matrix:

Charge = 0 Multiplicity = 3

03			
С	-4.78143400	2.85559700	-0.00000500
С	-3.58856300	2.10434200	-0.00008800
С	-3.61487300	0.70942200	-0.00010200
С	-4.88635200	0.05010800	-0.00003600
С	-6.07115900	0.81481800	0.00004500
С	-6.01185700	2.22414000	0.00006200
Н	-4.72589900	3.94025000	0.00000500
Н	-2.63102000	2.61600400	-0.00014300
С	-2.40650700	-0.11532900	-0.00017800
С	-4.96256100	-1.37455200	-0.00005000
Н	-6.94098000	2.78215000	0.00012400
С	-3.76431500	-2.16616600	-0.00015000
С	-2.54454300	-1.56651000	-0.00021700
Н	-3.86832800	-3.24483200	-0.00017000
Н	-1.63542100	-2.15928600	-0.00029200
С	-7.39392900	0.15976500	0.00011000

С	-6.25490000	-2.04735700	0.00003200
Ν	-7.40148700	-1.23910200	0.00013100
С	-8.68989700	-1.93838900	0.00024400
Н	-9.47502300	-1.18622300	0.00036900
Н	-8.76821600	-2.57266600	-0.88611400
Н	-8.76800700	-2.57275200	0.88655700
0	-6.36890900	-3.27914700	0.00004500
0	-8.44338300	0.80462900	0.00022800
С	-1.14715900	0.43565400	-0.00019300
С	-0.00385000	0.90994700	-0.00019300
С	1.29180300	1.43779900	-0.00018700
С	2.41937200	0.58693000	-0.00010200
С	1.51388900	2.84611900	-0.00025300
С	3.72320100	1.08699400	-0.00008100
Н	2.25205900	-0.48555800	-0.00004800
С	2.79190600	3.35769800	-0.00022700
Н	0.65879800	3.51406300	-0.00031700
С	3.91524600	2.50428400	-0.00013800
Н	2.96999400	4.42796500	-0.00027200
0	5.12253200	3.07515600	-0.00011700
Н	5.81004900	2.34962200	-0.00004800
С	4.88540400	0.20227100	-0.00000200
С	7.05237200	-0.36562300	0.00014900
С	6.50358400	-1.66920500	0.00009800
С	8.44434200	-0.19292600	0.00024700
С	7.31948000	-2.80230200	0.00014300
С	9.25588700	-1.32068900	0.00029100
Н	8.86185200	0.80891400	0.00028500
С	8.69959300	-2.61250900	0.00024000
Н	6.89477400	-3.80096800	0.00010600
Н	10.33544000	-1.20414400	0.00036700
Н	9.35470600	-3.47857300	0.00027700
S	4.75198600	-1.56943200	-0.00001500
Ν	6.11526300	0.65136700	0.00009100

Z-keto form of N-1 (DFT//B3LYP/6-31G(d))

Symbolic Z-matrix:

Charge = 0 Multiplicity = 1

01			
С	-4.69493600	2.83425200	-0.00034000
С	-3.54950400	2.06132200	-0.00021200
С	-3.62547900	0.64716500	-0.00010500
С	-4.91422800	0.03306200	-0.00014000

С	-6.07761500	0.84581400	-0.00028200
С	-5.96460600	2.22610500	-0.00037000
Н	-4.61842400	3.91725900	-0.00041800
Н	-2.57072500	2.53061800	-0.00018500
С	-2.45608700	-0.19572800	0.00004500
С	-5.03225100	-1.37957200	-0.00002200
Н	-6.86979000	2.82384000	-0.00047500
С	-3.89094400	-2.16767000	0.00013500
С	-2.61758500	-1.58482800	0.00016300
Н	-4.00247200	-3.24683300	0.00023000
Н	-1.73574700	-2.21677200	0.00028200
С	-7.42720600	0.23067400	-0.00034000
C	-6 36312100	-2 01978200	-0.00004400
N	-7 47955300	-1 17153800	-0.00013400
C	-8 79210200	-1 82672900	-0.00000500
н	-9 55140600	-1.04871500	-0.00007500
п u	8 80160800	2 45750800	0.88653400
п	-8.89100800	-2.45730800	-0.88053400
н	-8.89154600	-2.45729100	0.88008500
0	-6.52126000	-3.23682400	0.00021800
0	-8.45382600	0.90177000	-0.00024900
С	-1.15491700	0.36437300	0.00008700
С	-0.02326800	0.82051900	0.00012900
С	1.29179500	1.34877800	0.00018000
С	2.40107500	0.51113100	0.00023800
С	1.51324300	2.76768200	0.00004700
С	3.71600400	1.02310200	0.00024000
Н	2.24277000	-0.56435300	0.00023200
С	2.77255800	3.29854400	0.00010100
Н	0.64728300	3.42393100	-0.00006700
С	3.95512800	2.47115400	0.00036600
Н	2.93047500	4.37263600	0.00001200
0	5.11770000	2.97935600	0.00022800
С	4.84497800	0.16274400	0.00018200
С	6.60282200	-1.62101500	0.00005100
С	7.11151700	-0.30909400	-0.00005200
С	7.45721400	-2.72235500	0.00000700
С	8.48913200	-0.07347000	-0.00019100
С	8.83184200	-2.48463400	-0.00012700
Н	7.06624000	-3.73458900	0.00008700
С	9.33937700	-1.17592400	-0.00022300
Н	8.87465200	0.94083300	-0.00028200
H	9.51664300	-3.32691400	-0.00015900
H N	10.41338700	-1.01811500	-0.00033700
IN C	0.09882000	0.03043300	-0.00003/00
з Н	4.03342700	1 68953500	-0.00023700
	0.11002700	1.56/25500	0.00020000