Chiral Brønsted Acid-Catalyzed Diastereo- and Enantioselective Synthesis of CF₃-Substituted Aziridines

Zhuo Chai, Jean-Philippe Bouillon and Dominique Cahard*

UMR CNRS 6014 C.O.B.R.A., Université et INSA de Rouen, 1 rue Tesnière, 76821 Mont Saint Aignan (France)

Supporting Information

Contents

General Information:	1
Typical procedure for the asymmetric aza-Darzens reaction of imines derived from	aryl glyoxal
hydrates:	1
Preparation of racemic products by Yb(OTf)3-catalyzed reactions	1
Characterizing data and copies of NMR spectroscopy and HPLC trace for chiral aziridine	s and related
compounds:	2
Characterization data for the trifluoroethylation product 4:	23
Asymmetric aza-Darzens reactions of preformed imines 7 and 8.	25
Conversion of <i>cis</i> -aziridine 3j into dipeptide 10	
Ring-opening of <i>cis</i> -aziridine 3j into isocysteine derivative 11	43
Tentative transition states for the stereoselective formation of the <i>cis</i> -aziridines	45
Conversion of <i>cis</i> -triazoline 6j to aziridine <i>trans</i> - 3j and a mechanistic proposal	46
References	46

General Information:

¹H (300 MHz), ¹³C (75.5 MHz) and ¹⁹F (282 MHz) NMR spectra were recorded on a Bruker AVANCE 300. Chemical shifts in NMR spectra are reported in parts per million with reference to solvent residues in CDCl₃ (7.26 for proton and 77.0 for carbon, internal standard) or CFCl₃ (external standard for fluorine). IR spectra were recorded on a Perkin-Elmer IRFT 1650 spectrometer. The enantiomeric excesses (ee's) were determined by HPLC analysis. HPLC analysis were performed on Agilent HPLC 1100 Series system, column DAICEL CHIRALCEL OD-H or OJ-H, mobile phase, *n*-heptane / 2-propanol, UV detector at 254 or 210 nm. Toluene was distilled from sodium benzophenone ketyl under a positive pressure of nitrogen. The substituted aryl glyoxal monohydrates were prepared using literature methods.¹

Typical procedure for the asymmetric aza-Darzens reaction of imines derived

from aryl glyoxal hydrates:

CAUTION: Trifluoromethyl diazomethane (CF₃CHN₂) is potentially explosive, although no accident occurred during the course of this study, in which this reagent was in situ generated and used in solution. To a 5-mL flask charged with CF₃CH₂NH₂HCl (30 mg, 0.22 mmol) and NaNO₂ (18 mg, 0.26 mmol) was added 0.6 mL of toluene and 20 μ L of distilled H₂O, and the resultant mixture was stirred vigorously at 0 °C for 1 h. Meanwhile, to another 5-mL flask charged with phenylglyoxal hydrate 1a (16.7 mg, 0.11 mmol), (S)-TRIP (2.1 mg, 2.5 mol%), anhydrous MgSO₄ (~250 mg) and p-anisidine (13.5 mg, 0.11 mmol) was added 0.5 mL of toluene and the mixture was stirred at r.t. for 1 h. Then, anhydrous MgSO₄ (~250 mg) was added to the *in situ* prepared CF₃CHN₂ solution and stirred at 0 °C for 2 min and the supernatant clear yellow solution was transferred via pipette to the second flask containing the in situ generated imine and the resulting mixture was stirred at r.t. for 12 h. At this time, a second batch of (S)-TRIP (1.7 mg, 2.0 mol%) was added to the reaction mixture and stirring was continued for another 12 h. The reaction mixture was diluted with CH₂Cl₂ (15 mL) and sat. NaHCO₃ (15 mL). After separation, the aqueous phase was extracted with CH_2Cl_2 (15 mL×2) and the combined organic phases were washed with brine, dried over anhydrous MgSO₄, concentrated and purified by column chromatography on silica gel eluting with $5\% \rightarrow 10\%$ (volume%) ethyl acetate in petroleum ether (bp 40-60 °C) to furnish the desired aziridine **3a**.

Preparation of racemic products by Yb(OTf)₃-catalyzed reactions

A similar procedure as above was adopted with the following exceptions: all the amount of solvent were doubled (0.05 M for imine); for the in of the imine, $(PhO)_2PO_2H$ (1 mol%) was used; after the mixing of the imine and CF_3CHN_2 solution, $Yb(OTf)_3$ (10 mol%) was added and the reaction was stirred at r.t. for 12 h. After the work-up, the residue was purified by column chromatography on silica gel eluting with 10% (volume%) ethyl acetate in petroleum ether (bp 40-60 °C) to furnish the desired aziridine product.

Characterizing data and copies of NMR spectroscopy and HPLC trace for chiral aziridines and related compounds:

Aziridine *cis*-**3a**^[2a,c] was obtained as a pale yellow solid in 65% yield using 2.5+2 mol% of **1a** at a time interval of 12 h; $[\alpha]^{22}$,_D = -297.9 (*c* 0.76, CH₂Cl₂); ee = 99.4%, **HPLC**: Daicel CHIRALCEL OD-H column, 20% IPA in *n*-heptane, 0.75

mL/min, $\lambda = 254$ nm, $t_R(major) = 13.6$ min, $t_R(minor) = 17.6$ min; **IR** (neat): 1684, 1508, 1240, 1138, 1037, 732, 688 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 8.11 (d, J = 7.6 Hz, 2H), 7.63 (m, 1H), 7.50 (m, 2H), 6.94 (AB, J = 8.9 Hz, 4H), 3.78 (s, 3H), 3.59 (d, J = 6.6 Hz, 1H), 3.13 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): 190.5, 156.6, 143.5, 135.2, 134.1, 128.8, 128.7, 123.2 (q, J = 274.6 Hz), 120.7, 114.6, 55.5, 45.6, 44.4 (q, J = 40.2 Hz); ¹⁹F NMR (282 MHz, CDCl₃): -67.8 (d, J = 5.1 Hz).

Characterizing data for *trans*-**3a** (obtained by repetitive purification of the corresponding collected fractions from the column chromatography purification of several different runs during the screen of the reaction conditions (see Table 1 in the main text).

Pale yellow solid; **IR** (neat): 2921, 1683, 1667, 1506, 1244, 1151, 802, 694 cm⁻¹; ¹**H NMR** (300 MHz, CDCl₃): δ 8.06 (d, J = 7.4 Hz, 2H), 7.68 (m, 1H), 7.56 (m, 2H), 6.73 (AB, J = 9.3 Hz, 4H), 4.33 (d, J = 2.2 Hz, 1H), 3.72 (s, 3H), 3.67 (dq, J = 2.2, 5.1 Hz, 1H); ¹³C **NMR** (75 MHz, CDCl₃): 189.6, 155.1, 137.8, 136.2, 133.3, 128.1, 127.5, 122.2 (q, J = 274.0 Hz), 120.0, 113.4, 54.3, 41.7 (q, J = 40.1 Hz), 39.7 (q, J = 1.1 Hz); ¹⁹F **NMR** (282 MHz, CDCl₃): -70.8 (d, J = 5.1 Hz). **HRMS (ESI)** Calculated for C₁₇H₁₅NO₂F₃ ([M+H]⁺): 322.1055, found: 322.1039.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2012

cis-Aziridine **3b**^[2a] was obtained as a pale yellow solid in 82% yield using 2.5+2 mol% of **1a** at a time interval of 12 h; $[\alpha]^{21}_{,D} = -170.3$ (*c* 1.51, CH₂Cl₂); ee = 99.6%; **IR** (neat): 2923, 1746, 1513,

1244, 1177, 1128, 1036, 825 cm⁻¹; **HPLC**: Daicel CHIRALCEL OD-H column, 20% IPA in *n*-heptane, 0.75 mL/min, λ =254 nm, t_R(major) = 18.3 min, t_R(minor) = 26.4 min; ¹H NMR (300 MHz, CDCl₃): δ 8.00 (d, *J* = 8.6 Hz, 2H), 7.65 (d, *J* = 8.6 Hz, 2H), 7.01 (AB, *J* = 8.9 Hz, 4H), 3.79 (s, 3H), 3.52 (d, *J* =

6.5 Hz, 1H), 3.10 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): 189.9, 156.7, 143.2, 134.0, 132.2, 130.2, 129.5, 123.1 (q, J = 274.6 Hz), 120.6, 114.7, 55.5, 45.3, 44.3 (q, J = 40.2 Hz); ¹⁹F NMR (282 MHz, CDCl₃): -67.8 (d, J = 5.1 Hz); **HRMS (ESI)** Calculated for C₁₇H₁₄NO₂F₃⁷⁹Br ([M⁷⁹Br +H]⁺): 400.0160, found: 400.0164.

Crystallographic data for **3b**: $C_{17}H_{13}BrF_3NO_2$: FW = 400.19; T = 293 K; Monoclinic, P 1 21 1; wavelength 0.71 Å; a = 7.6615(9), b = 5.6473(6), c = 19.224(2), $\alpha = 90^{\circ}$, $\beta = 93.0^{\circ}$, $\gamma = 90^{\circ}$; V = 830.59(16) Å³; Z = 2; absorption coefficient: 2.515; F (000) = 400; size: 0.5*0.1*0.1 mm; 1.06< θ <27.4; reflections collected 3297; goodness of fit on F2 1.073; final R indices: R1 = 0.0321, wR2 = 0.08. Full crystallographic data for this compound can also be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_ request /cif (CCDC 872137).

cis-Aziridine **3c** was obtained as a pale yellow oil in 78% yield using 2.5+2 mol% of **1a** at a time interval of 12 h; $[\alpha]^{22}_{,D} = -152.2$ (*c* 1.2, CH₂Cl₂); ee = 97.6%, **HPLC**: Daicel CHIRALCEL OD-H column, 20% IPA in *n*-heptane, 0.75

mL/min, $\lambda = 254$ nm, t_R(major) = 16.1 min, t_R(minor) = 19.6 min; **IR** (neat): 2921, 1698, 1509, 1241, 1145, 830, 750, 728 cm⁻¹; ¹**H NMR** (300 MHz, CDCl₃): δ 8.23 (t, J = 1.7 Hz, 1H), 8.04 (d, J = 7.8 Hz, 1H), 7.76-7.73 (m, 1H), 7.37 (t, J = 7.9 Hz, 1H), 6.92 (AB, J = 8.9 Hz, 4H), 3.78 (s, 3H), 3.52 (d, J = 6.5 Hz, 1H), 3.14 (m, 1H); ¹³**C NMR** (75 MHz, CDCl₃): 189.5, 156.7, 143.1, 137.0, 136.9, 131.6, 130.4, 127.2, 123.15, 123.1 (q, J = 274.5 Hz), 120.6, 114.7, 55.5, 45.4, 44.4 (q, J = 40.2 Hz); ¹⁹**F NMR** (282 MHz, CDCl₃): -67.7 (d, J = 5.1 Hz); **HRMS (ESI)** Calculated for C₁₇H₁₄NO₂F₃⁷⁹Br ([M⁷⁹Br +H]⁺): 400.0160, found: 400.0146.

mL/min, $\lambda = 254$ nm, $t_R(major) = 57.0$ min, $t_R(minor) = 62.5$ min; **IR** (neat): 2954, 1687, 1592, 1513, 1229, 1142, 833, 743 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 8.05 (d, J = 8.6 Hz, 2H), 7.47 (d, J = 8.6 Hz, 2H), 6.98 (AB, J = 8.9 Hz, 4H), 3.78 (s, 3H), 3.54 (d, J = 6.5 Hz, 1H), 3.12 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): 189.6, 156.7, 143.2, 140.7, 133.5, 130.1, 129.2, 123.1 (q, J = 274.6 Hz), 120.6, 114.7, 55.5, 45.3, 44.3 (q, J = 40.2 Hz); ¹⁹F NMR (282 MHz, CDCl₃): -67.8 (d, J = 6.1 Hz); **HRMS (ESI)** Calculated for C₁₇H₁₄NO₂F₃³⁵Cl ([M+H]⁺): 356.0665, found: 356.0671.

cis-Aziridine **3e** was obtained as a pale yellow oil in 71% yield using 2.5+2 mol% of **1a** at a time interval of 12 h; $[\alpha]^{23}_{,D} = -116.8 (c 1.44, CH_2Cl_2); ee = 95.8\%, HPLC: Daicel CHIRALCEL OD-H column, 20% IPA in$ *n*-heptane, 0.75

mL/min, $\lambda = 254$ nm, t_R(minor) = 19.3 min, t_R(major) = 20.8 min; **IR** (neat): 2928, 1698, 1509, 1238, 1145, 1033, 830, 768, 746 cm⁻¹; ¹**H NMR** (300 MHz, CDCl₃): δ 8.19 (d, J = 1.8 Hz, 1H), 7.96 (dd, J = 8.4, 1.8 Hz, 1H), 7.57 (d, J = 8.4 Hz, 1H), 6.93 (AB, J = 8.9 Hz, 4H), 3.78 (s, 3H), 3.52 (d, J = 6.6 Hz, 1H), 3.13 (m, 1H); ¹³**C NMR** (75 MHz, CDCl₃): 188.9, 156.8, 142.9, 138.9, 134.7, 133.6, 130.9, 130.6, 127.7, 123.0 (q, J = 274.6 Hz), 120.6, 114.7, 55.5, 45.2, 44.3 (q, J = 40.2 Hz); ¹⁹**F NMR** (282 MHz, CDCl₃): -67.7 (d, J = 5.1 Hz); **HRMS (ESI)** Calculated for C₁₇H₁₃NO₂F₃³⁵Cl₂ ([M+H]⁺): 390.0275, found: 390.0277.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

cis-Aziridine **3f**^[2a] was obtained as a pale yellow solid in 80% yield using 3+2 mol% of **1a** at a time interval of 16 h; $[\alpha]^{23}_{,D} = -167.3$ (*c* 1.0, CH₂Cl₂); ee = 99.6%, **HPLC**: Daicel CHIRALCEL OD-H column, 5% IPA in *n*-heptane, 0.75

mL/min, $\lambda = 254$ nm, $t_R(major) = 28.0$ min, $t_R(minor) = 30.7$ min; ¹H NMR (300 MHz, CDCl₃): δ 8.01 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.2 Hz, 2H), 6.93 (AB, J = 8.9 Hz, 4H), 3.78 (s, 3H), 3.57 (d, J = 6.6 Hz, 1H), 3.11 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): 190.0, 156.6, 145.2, 143.6, 132.7, 129.5, 128.8, 123.2 (q, J = 274.6 Hz), 120.7, 114.6, 55.5, 45.6, 44.3 (q, J = 40.2 Hz), 21.8; ¹⁹F NMR (282 MHz, CDCl₃): -67.8 (d, J = 6.1 Hz).

cis-Aziridine **3g**^[2a] was obtained as a pale yellow solid in 85% yield using 3+2 mol% of **1a** at a time interval of 16 h; $[\alpha]^{22}_{,D} = -200.1$ (*c* 0.69, CH₂Cl₂); ee = 99.3%, **HPLC**: Daicel CHIRALCEL OD-H column, 20% IPA in *n*-

heptane, 0.75 mL/min, λ = 254 nm, t_R(major) = 21.5 min, t_R(minor) = 26.3 min; ¹H NMR (300 MHz, CDCl₃): δ 8.09 (d, J = 8.8 Hz, 2H), 7.01 (AB, J = 8.8 Hz, 4H), 6.83 (d, J = 8.8 Hz, 2H), 3.87 (s, 3H), 3.77 (s, 3H), 3.54 (d, J = 6.6 Hz, 1H), 3.09 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): 188.8, 164.3, 156.5, 143.6, 131.0, 128.3, 123.3 (q, J = 274.5 Hz), 120.7, 114.6, 114.0, 55.5, 45.5, 44.2 (q, J = 39.6 Hz); ¹⁹F NMR (282 MHz, CDCl₃): -67.9 (d, J = 5.1 Hz).

Aziridine *cis*-**3h** was obtained as a pale yellow solid in 79% yield using 3+2 mol% of **1a** at a time interval of 16 h; $[\alpha]^{21}$,_D = -187.1 (*c* 2.24, CH₂Cl₂); dr = 39:1, ee = 99.3%, **HPLC**: Daicel CHIRALCEL OD-H column, 20% IPA in *n*-heptane,

0.75 mL/min, $\lambda = 210$ nm, $t_R(major) = 17.7$ min, $t_R(minor) = 26.4$ min; **IR** (neat): 2955, 1682, 1510, 1136, 1030, 833, 746 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.92 (s, 1H), 7.71 (d, J = 7.6 Hz, 1H), 7.59 (d, J = 8.4 Hz, 1H), 7.52 (t, J = 7.1 Hz, 1H), 7.32 (t, J = 7.5 Hz, 1H), 6.97 (AB, J = 8.9 Hz, 4H), 3.78 (s, 3H), 3.56 (d, J = 6.6 Hz, 1H), 3.10 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): 181.5, 156.7, 155.8, 150.7, 143.0, 129.1, 126.8, 124.1, 123.8, 123.0 (q, J = 274.5 Hz), 120.6, 116.3, 114.7, 112.5, 55.5, 45.1, 44.2 (q, J = 40.2 Hz); ¹⁹F NMR (282 MHz, CDCl₃): -67.5 (d, J = 6.1 Hz); HRMS (ESI) Calculated for $C_{19}H_{15}NO_3F_3([M+H]^+)$: 362.1004, found: 362.1020.

Characterization data for the trifluoroethylation product 4:

Compound **4**; White waxy solid; $[\alpha]^{20}_{,D} = +36.4$ (*c* 0.79, CH₂Cl₂); **IR** (neat): 2959, 2928, 2156, 2025, 1312, 1166, 980, 905, 745 cm⁻¹; ¹**H NMR** (300 MHz, CDCl₃): δ 7.96 (m, 4H), 7.54 (m, 2H), 7.34 (m, 4H), 7.07 (m, 4H), 4.23-4.07 (m, 1H), 3.58-3.41 (m, 1H), 2.94-2.87 (heptuplet, *J* = 6.9 Hz, 2H), 2.87-2.53 (m, 4H), 1.29 (d, *J* = 6.9 Hz, 12H), 1.26-1.21 (m, 12H), 1.09 (d, *J* = 5.4 Hz, 3H), 1.07 (d, *J* = 5.4 Hz, 3H), 1.01 (d, *J* = 6.8 Hz, 3H), 0.97 (d, *J* = 5.4 Hz, 3H); ¹³C **NMR** (75 MHz, CDCl₃, carbon signal of the CF₃ group was not observed):

147.9, 147.7, 146.9, 146.8, 146.2, 145.9, 145.1, 145.0, 143.8, 143.7, 131.7, 131.66, 131.2, 130.5, 130.45, 130.3, 130.2, 129.9, 129.6, 129.3, 127.4, 127.3, 126.4, 125.4, 125.1, 124.9, 120.8, 120.1, 119.8, 119.7, 119.0, 62.8 (dq, ${}^{2}J_{C-P} = 4.4$ Hz, ${}^{2}J_{C-F} = 40.0$ Hz), 33.4, 33.37, 30.3, 30.2, 30.0, 29.5, 25.7, 25.5, 24.4, 24.1, 23.13, 23.1, 23.06, 22.9, 22.2, 21.9, 21.8; ¹⁹F NMR (282 MHz, CDCl₃): -75.5 (pseudo t, J = 8.2 Hz); **HRMS (ESI)** Calculated for C₅₂H₅₉O₅F₃P ([M+OH]⁻): 851.4052, found: 851.4066.

Asymmetric aza-Darzens reactions of preformed imines 7 and 8.

$$\begin{array}{c} CF_{3}CH_{2}NH_{2} \cdot HCI \\ & \stackrel{+}{NaNO_{2}} \end{array} \xrightarrow{0 \circ C, 1h} \\ \begin{array}{c} PMP \\ PhCH_{3}/H_{2}O \\ (30:1) \end{array} \end{array} (CF_{3}CHN_{2}) \xrightarrow{7 \quad PMP} \\ \hline 1a (10 \text{ mol}\%) \end{array} \xrightarrow{0 \circ C} CF_{3} \xrightarrow{+} O \xrightarrow{K} H \xrightarrow{K} H \xrightarrow{K} CF_{3} \xrightarrow{R} O \xrightarrow{K} H \xrightarrow{K} Gi; R = OEt \\ \hline 3i; R = OEt \end{array}$$

To a 5-mL flask charged with $CF_3CH_2NH_2HCl$ (30 mg, 0.22 mmol) and $NaNO_2$ (18 mg, 0.26 mmol) was added 1.0 mL of toluene and 30 µL of distilled H_2O , and the resultant mixture was stirred vigorously at 0 °C for 1 h. Then, anhydrous $MgSO_4$ (~250 mg) was added to the *in situ* prepared CF_3CHN_2 solution and stirred at 0 °C for 2 min and the supernatant clear yellow solution was transferred via pipette to another 5-mL flask containing the imine **7**, (*S*)-TRIP (8.4 mg, 10 mol%), and anhydrous $MgSO_4$ (~250 mg) in 0.5 mL of CH_3CH_2CN and the mixture was stirred at RT for 6-12 h. The reaction mixture was diluted with CH_2Cl_2 (15 mL) and sat. NH_4Cl (15 mL). After separation, the aqueous phase was extracted with CH_2Cl_2 (15 mL×2) and the combined organic phases were washed with brine, dried over anhydrous $MgSO_4$, concentrated and purified by column chromatography on silica gel eluting with 5% \rightarrow 10% (volume%) ethyl acetate in petroleum ether (bp 40-60 °C) to furnish the desired products (*cis*-**3i**^[2a] and **6i** was an inseparable mixture). Product ratio: *cis*-**3i**:*trans*-**3i**:**6i** = 1.4:1:25.7.

Triazoline **6i** was obtained as a pale yellow viscous oil in 82 % yield (containing ~3.7% *cis*-**3i**); $[α]^{22}$, = +4.0 (*c* 2.15, CH₂Cl₂); ee = 95%, **HPLC**: Daicel CHIRALCEL OD-H column, 20% IPA in *n*-heptane, 0.5 mL/min, λ =210 nm, t_R(minor) = 10.8 min, t_R(major) = 13.1 min; **IR** (neat): 2925, 2851, 1745, 1516, 1467, 1179, 1126, 826 cm⁻¹; ¹**H NMR** (300 MHz, CDCl₃): δ 7.07 (AB, J = 8.9 Hz, 4H), 5.25 (m, 1H), 4.56 (d, J = 8.4 Hz, 1H), 4.24 (q, J = 7.2 Hz, 2H), 3.81 (s, 3H), 1.24 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): 167.8, 156.9, 132.5, 122.7 (q, J = 279.0 Hz), 117.7, 114.7, 82.1 (q, J = 29.7 Hz), 63.0, 57.8 (q, J = 2.2 Hz), 55.5, 13.9; ¹⁹F NMR (282 MHz, CDCl₃): -73.3 (d, J = 7.2 Hz); HRMS (ESI) Calculated for C₁₃H₁₅N₃O₃F₃ ([M+H]⁺): 318.1066, found: 318.1062.

The racemic product used for HPLC assay shown below was obtained with $Yb(OTf)_3$ (10 mol%) in toluene, which gave a product ratio of *cis*-**3i**:*trans*-**3i**:**6i** = 18.7:1:16.7.

Résultats d'intégration

2H), 3.76 (s, 3H), 3.43-3.37 (m, 2H), 1.14 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): 165.2, 156.1, 139.3, 122.9 (q, *J* = 274.0 Hz), 120.4, 114.4, 62.0, 55.4, 42.0 (q, *J* = 40.7 Hz), 39.3 (q, *J* = 1.7 Hz), 13.9; ¹⁹F NMR (282 MHz, CDCl₃): -71.1 (d, *J* = 3.0 Hz).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

To a 5-mL flask charged with $CF_3CH_2NH_2HCl$ (30 mg, 0.22 mmol) and $NaNO_2$ (18 mg, 0.26 mmol) was added 1.2 mL of toluene and 30 µL of distilled H_2O , and the resultant mixture was stirred vigorously at 0 °C for 1 h. Then, anhydrous $MgSO_4$ (~250 mg) was added to the *in situ* prepared CF_3CHN_2 solution and stirred at 0 °C for 2 min and the supernatant clear yellow solution was transferred via pipette to another 5-mL flask containing the imine **8**, (*S*)-TRIP (2.5 mg, 3 mol%), and anhydrous $MgSO_4$ (~250 mg) in 1.0 mL of toluene and the mixture was stirred at RT for 1 h. The reaction mixture was diluted with CH_2Cl_2 (15 mL) and sat. NH_4Cl (15 mL). After separation, the aqueous phase was extracted with CH_2Cl_2 (15 mL×2) and the combined organic phases were washed with brine, dried over anhydrous $MgSO_4$, concentrated and purified by column chromatography on

silica gel eluting with $15\% \rightarrow 50\%$ (volume%) ethyl acetate in petroleum ether (bp 40-60 °C) to furnish the desired products *trans*-**3j**, **6j** and *cis*-**3j** (product ratio: 1:6:6), sequentially.

 $\sim r$

Aziridine *trans*-**3j** was obtained as a white solid in 8% yield; ee = HBn 57%, **HPLC**: Daicel CHIRALCEL OD-H column, 20% IPA in *n*-heptane, 0.5 mL/min, λ =210 nm, t_R(minor) = 10.4 min, t_R(major) =

11.5 min; **IR** (neat): 3282, 2921, 1655, 1506, 1241, 1144, 864, 697 cm⁻¹; ¹**H** NMR (300 MHz, CDCl₃): δ 7.38-7.22 (m, 5H), 6.81 (AB, J = 9.1 Hz, 4H), 6.48 (brs, 1H), 4.51-4.31 (ABX, ${}^{3}J_{\text{H-H}} = 5.5$ Hz, ${}^{3}J_{\text{H-H}} = 6.1$ Hz, ${}^{2}J_{\text{H-H}} = 14.5$ Hz, 2H), 3.77 (s, 3H), 3.41 (d, ${}^{3}J_{\text{H-H}} = 2.1$ Hz, ${}^{3}J_{\text{H-F}} = 5.2$ Hz, 1H), 3.19 (d, J = 2.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): 163.9, 156.1, 138.7, 137.2, 128.8, 128.0, 127.9, 123.0 (q, J = 275.1 Hz), 120.5, 114.4, 55.4, 43.9, 41.9 (q, J = 39.1 Hz), 40.2; ¹⁹F NMR (282 MHz, CDCl₃): -69.0 (m); **HRMS (ESI)** Calculated for C₁₈H₁₈N₂O₂F₃ ([M+H]⁺): 351.1320, found: 351.1311. Conversion of **6j** to *trans*-**3j**:^[4]

To a stirred solution of **6j** (19 mg, 0.05 mmol) in dry CH₂Cl₂ (1.0 mL) placed in a dry ice-acetone bath (-78 °C) was added CF₃SO₃H (4.5 µL, 0.05 mmol) in 10 µL of CH₂Cl₂ dropwise. The resulting solution was stirred at this temperature for 2 h before 5 mL of sat. NaHCO₃ solution was added to quench the reaction. The reaction mixture was diluted with 5 mL of CH₂Cl₂, and the aqueous phase was extracted with CH₂Cl₂ (5 mL×2). The combined organic phases were washed with brine, dried over MgSO₄, concentrated and purified by column chromatography eluting with 15% \rightarrow 30% (volume%) ethyl acetate in petroleum ether (bp 40-60 °C) to furnish *trans*-**3j**, **6j**. Diagnostic ¹⁹F NMR signals for the presumed α -diazo byproduct: $\delta_F = -57.4$ (s). This byproduct was not isolated during the column chromatography, which might be due to its decomposition or isomerisation during this process. However, for the time being, we are unable to provide a rationale for the formation of small amount of the *cis*-**3j** in this process. See page S46 for a brief discussion on the mechanistic implication of this result.

Résultats d'intégration

(AB, J = 9.1 Hz, 4H), 6.66 (brs, 1H), 5.03 (m, 1H), 4.35 (d, J = 8.7 Hz, 1H), 4.28 (d, J = 5.7 Hz, 2H), 3.79 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): 167.1, 157.1, 136.7, 132.3, 128.8, 127.8, 127.5, 122.6 (q, J = 279.0 Hz), 117.8, 114.9, 82.8 (q, J = 30.2 Hz), 59.3, 55.5, 43.8; ¹⁹F NMR (282 MHz, CDCl₃): -73.2 (d, J = 7.1 Hz); HRMS (ESI) Calculated for C₁₈H₁₈N₄O₂F₃ ([M+H]⁺): 379.1382, found: 379.1386.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Aziridine *cis*-**3j** was obtained as a white solid in 46% yield; $[\alpha]^{21}$, = -118.4 (*c* 0.52, CH₂Cl₂); ee = 98.8%, **HPLC**: Daicel CHIRALCEL OJ-H column, 20% IPA in *n*-heptane, 0.75 mL/min, λ =210 nm, t_R(major) = 23.2 min, t_R(minor) = 35.6 min; **IR** (neat):

3302, 1659, 1508, 1243, 1140, 832, 697 cm⁻¹; ¹**H NMR** (300 MHz, CDCl₃): δ 7.27-7.17 (m, 5H), 6.85 (brs, 1H), 6.77 (AB, *J* = 8.9 Hz, 4H), 4.38 (d, *J* = 5.8 Hz, 2H) 3.66 (s, 3H), 3.00 (d, *J* = 6.8 Hz, 1H), 2.79 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): 164.8, 156.7, 142.5, 137.2, 128.7, 127.9, 127.6, 123.2 (q, *J* = 275.1 Hz), 120.5, 114.7, 55.5, 44.2 (q, *J* = 40.2 Hz), 43.5, 42.8 (q, *J* = 1.1 Hz); ¹⁹F NMR (282 MHz, CDCl₃): -67.3 (d, *J* = 6.1 Hz); **HRMS (ESI)** Calculated for C₁₈H₁₈N₂O₂F₃ ([M+H]⁺): 351.1320, found: 351.1335.

Conversion of cis-aziridine 3j into dipeptide 10

To a stirred solution of *cis*-**3j** (44.0 mg, 0.126 mmol) in 3.0 mL of CH₃CN was added $(NH_4)_2Ce(NO_3)_6$ (CAN) (173 mg, 0.315 mmol) in 0.9 mL of H₂O at 0 °C. After 45 min, the reaction mixture was diluted with 10 mL of CH₂Cl₂, 6 mL of sat. NaHCO₃ solution and 3 mL of sat. NaHSO₃ solution. After separation of the phases, the aqueous phase were extracted with CH₂Cl₂ (6 mL×4), and the combined organic phases were washed with brine, dried over MgSO₄ and concentrated by rotary evaporation. The residue was purified by column chromatography on silica gel eluting with 10% MeOH in CH₂Cl₂ containing 2% of Et₃N) to give the product **9** as a colorless solid in 82% yield. This procedure follows a literature method.^[2a]

To a stirred solution of **9** (23.8 mg, 0.097 mmol) in dry CHCl₃ (1.1 mL) was added L-Boc-Phe-OH (38.8 mg, 0.146 mmol), DIPEA (25 mg, 0.194 mmol) and BOP (64.5 mg, 0.146 mmol) at r.t., sequentially. After stirring for 1.5 h, the reaction mixture was diluted with 20 mL of CH₂Cl₂, washed with 20 mL of aqueous 10% citric acid solution, sat. NaHCO₃ solution and brine. After drying over MgSO₄, the solvent was removed by rotary evaporation to give the residue (crude ¹⁹F NMR analysis revealed a dr of 18.3:1) was purified by column chromatography on silica gel eluting with 10% (vol%) ethyl acetate in CH₂Cl₂) to give the diastereomerically pure dipeptide **10** as a white solid in 78% yield. This procedure follows a literature method.^[3]

Free *cis*-aziridine **9**; $[\alpha]^{22}_{,D} = -11.4$ (*c* 1.20, CH₂Cl₂); **IR** (neat): 3288, 1649, 1537, 1126, 911, 718, 694 cm⁻¹; ¹**H NMR** (300 MHz, CDCl₃): δ 7.28-7.16 (m, 5H), 6.81 (brs, 1H), 4.39 (dd, *J* = 14.6, 6.0 Hz, 1H), 4.24 (dd, *J* = 14.6, 5.5 Hz, 1H), 2.88 (m, 2H), 1.76 (brs, 1H); ¹³**C NMR** (75 MHz, CDCl₃): 165.4, 137.3, 128.6, 127.9, 127.6,

123.6 (q, J = 273.5 Hz), 43.4, 35.7 (q, J = 40.1 Hz), 34.8; ¹⁹F NMR (282 MHz, CDCl₃): -67.6 (d, J = 6.1 Hz); HRMS (ESI) Calculated for C₁₁H₁₂N₂OF₃ ([M+H]⁺): 245.0902, found: 245.0899.

Dipeptide **10** was obtained as a white solid (78% yield); $[\alpha]^{21}_{,D} = -10$ (*c* 0.91, CH₂Cl₂); **IR** (neat): 3337, 3033, 2939, 1721, 1684, 1665, 1527, 1148, 698 cm⁻¹; ¹**H NMR** (300 MHz, CDCl₃): δ 7.31-7.01 (m, 10H), 6.44 (brs, 1H), 5.00 (d, *J* = 6.7 Hz, 1H), 4.37-4.21 (m, 3H), 3.42 (m, 1H), 3.00-2.88 (m, 3H), 1.28(s, 9H); ¹³C **NMR** (75 MHz, CDCl₃): 182.3,

163.0, 155.5, 137.1, 135.2, 129.1, 128.8, 128.6, 128.1, 127.62, 127.60, 123.0 (q, J = 275.7 Hz), 81.1, 56.9, 43.6, 39.7 (q, J = 41.3 Hz), 38.9, 37.8, 28.1; ¹⁹F NMR (282 MHz, CDCl₃): -68.2 (d, J = 5.1 Hz); HRMS (ESI) Calculated for C₂₅H₂₈N₃O₄F₃Na ([M+Na]⁺): 514.1930, found: 514.1949.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Ring-opening of cis-aziridine 3j into isocysteine derivative 11

Under N₂, to a solution of *cis*-**3j** (11.7 mg, 36 µmol) in BnSH (85 µl, 0.72 mmol) was added fresh CF₃SO₃H (3.5µl, 40 µmol) at 0 °C. Then the reaction solution was stirred at r.t. for 24 h. After being diluted with 20 mL of CH₂Cl₂, the mixture was washed with 5% aqueous NaHCO₃ solution, distilled water and brine. The organic phase was dried over MgSO₄, concentrated and purified by column chromatography eluting with 8-25% (v%) EtOAc in petroleum ether (b.p. 40-60 °C) to give the isocysteine derivative **11** as a gel-like colorless semi-solid (15.3 mg, 90% yield); $[\alpha]^{16}_{,D} = -44.2$ (*c* 0.90, CH₂Cl₂); **IR** (neat): 3335, 2927, 1653, 1508, 1234, 1117, 732, 698 cm⁻¹; ¹H **NMR** (300 MHz, CDCl₃): δ 7.20-7.11 (m, 8H), 6.97 (m, 2H), 6.66 (AB, *J* = 9.2 Hz, 4H), 4.88-4.78 (m, 1H), 4.21 (d, *J* = 5.8 Hz, 2H), 3.93 (d, *J* = 11.2 Hz, 1H, disappeared after shaking with D₂O), 3.69 (AB, *J* = 13.3 Hz, 2H), 3.53 (d, *J* = 3.3 Hz, 1H); ¹³C **NMR** (75 MHz, CDCl₃): 167.9, 153.5, 139.2, 137.3, 136.3, 128.9, 128.7, 127.8, 127.5, 127.49, 125.5 (q, *J* = 285 Hz), 116.4, 114.8, 57.7 (q, *J* = 8.6 Hz), 55.6, 49.5, 44.1, 37.2; ¹⁹F **NMR** (282 MHz, CDCl₃): -72.4 (d, *J* = 8.2 Hz); **HRMS (ESI)** Calculated for C₂₅H₂₆N₂O₂F₃S ([M+H]⁺): 475.1667, found: 475.1682.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Tentative transition states for the stereoselective formation of the cis-aziridines

We presumed that the phosphoric acid catalyst **1a** may activate the imine through H-bond interaction.⁶ Then, the bulky substituents on the catalyst would drive the nucleophilic diazo species to attack the imine from the *Si* face. Probable steric repulsion between the diazo group and the R group of the imine as well as the bulky substituents on the catalyst may render the TS-II leading to *trans*-**3b** less favored.

Conversion of *cis*-triazoline 6j to aziridine *trans*-3j and a mechanistic proposal

Non-fluorinated triazoline compounds have been prepared using a distinct method by Johnston and co-workers to investigate the mechanism of Brønsted acid-promoted aza-Darzens reaction.⁴ In our case, the isolation of both the triazoline 6j and the cis/trans-aziridine 3j from the aza-Darzens reaction system allowed us to get some preliminary insights into the stereoselective formation process leading to **6j** in the reaction. Following Johnston's procedure, treatment of **6j** with triflic acid gave the *trans*aziridine 3j as the major product (see page S31 for experimental details). Interestingly, the optical purity of the starting material were well maintained in both *trans*-3j and the recovered 6j during this process. In addition, this result is also supportive of the assignment of the *cis*-configuration of the triazoline 6j. Thus, we presumed that the transformation from 6j to *trans*-3j might proceed through intermediate A followed by C-C bond rotation to conformer B and a highly stereospecific $S_N 2$ process. However, in light of the big difference of enantioselectivity between these two compounds (see Table 3 in the main text), the formation of *trans*-3j and triazoline 6j under the aza-Darzens reaction conditions might be via different independent stereochemical routes. Namely, the probable route from imine 8 and CF_3CHN_2 providing *trans*-3j through **B** is much less stereoselective compared to that leading to 6i. Considering the current lack of the mechanistic information of the aza-Darzens reaction with diazo compounds,⁴ the peculiar reactivity of the imine $\mathbf{8}$ identified in this work may make it a worthwhile substrate to study with other common diazo compounds to get more insights into the mechanism of this type of reactions.

References

- (a) D. L. V. Jagt, L.-P. B. Han, C. H. Lehman, J. Org. Chem., 1972, 37, 4100-4104; (b) A. Tafelska-Kaczmarek, A. Prewysz-Kwinto, K. Skowerski, K. Pietrasiak, A. Kozakiewicz, M. Zaidlewicz, *Tetrahderon:Asymmetry*, 2010, 21, 2244-2248.
- (a) S. K. Künzi, B. Morandi, E. M. Carreira, *Org. Lett.*, 2012, **14**, 1900-1901; (b) M. V. Spanedda,
 B. Crousse, S. Narizuka, D. Bonnet-Delpon, J.-P. Bégué, *Collect. Czech. Chem. Commun.*, 2002,
 67, 1359-1365; (c) T. Akiyama, S. Ogi, K. Fuchibe, *Tetrahedron Lett.*, 2003, **44**, 4011-4013.
- 3. D. P. Galonić, N. D. Ide, W. A. van der Donk, D. Y. Gin, J. Am. Chem. Soc., 2005, 127, 7359.
- 4. T. L. Troyer, H. Muchalski, K. B. Hong, J. N. Johnston, Org. Lett., 2011, 13, 1790-1792.
- 5. For an example proposing the isomerization of this type of compound: T. Akiyama, T. Suzuki, K. Mori, *Org. Lett.*, 2009, **11**, 2445-2447.
- 6. For a mechanistic study on the activation of imines by Brønsted acid catalysis: M. Fleischmann, D. Drettwan, E. Sugiono, M. Rueping, R. M. Gschwind, *Angew. Chem. Int. Ed.*, 2011, **50**, 6364-6369.