Electronic Supplementary Information

Very Bright Europium Complexes that Stain Cellular Mitochondria

James W. Walton^b, Adrien Bourdolle^a, Stephen J. Butler ^b, Marine Soulie^c, Martina Delbianco^b, Brian K. McMahon^b, Robert Pal^b, , Horst Puschmann^b, Jurriaan M. Zwier^c, Laurent Lamarque^c, Chantal Andraud^a, Olivier Maury^{* a} and David Parker ^{*b}.

^a University of Lyon 1, ENS Lyon, CNRS - UMR 5182, 46 Allée d'Italie 69364 Lyon, France.

^b Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK.

^c Cisbio Bioassays, Parc Marcel Boiteux, BP 84175, 30200 Codolet, France.

Mass Spectrometry and NMR Spectroscopy

Electrospray mass spectrometry was carried out on a Thermo Finnigan LTQ and accurate masses were recorded on a Thermo Finnigan LTQ-FT.

¹H- and ¹³C-NMR spectra were recorded on Varian spectrometers operating at magnetic inductions corresponding to ¹H frequencies at 200, 400, 500, 600 and 700 MHz, e.g. Mercury 400 at 9.4T (¹H at 399.97 MHz, ¹³C at 100.61 MHz), Mercury 200 at 4.7T, VNMRS-600 at 11.7T, Inova 600 at 14.1T, VNMRS-700 at 16.5T. Spectra were recorded in commercially available deuteriated solvents. All chemical shifts are given in ppm with coupling constants in Hz.

Optical Spectroscopy

Emission spectra were recorded using an ISA Jobin-Yvon Spex Fluorolog-3 luminescence spectrometer. Lifetime measurements were carried out with a Perkin Elmer LS55 spectrometer using FL Winlab software. Single-photon luminescence spectra were also recorded using an Edinburgh Instrument FLS920 Combined Fluorescence Lifetime and Steady state spectrophotometer that was equipped with a visible to near-infrared sensitive photomultiplier with a nitrogen flow cooled housing. A liquid nitrogen cryostat (77k, Oxford Instruments) was used to cool the complexes down to 77K.

Quantum yield measurements were calculated by comparison with two standards. For the standards and each of the unknowns, five solutions with absorbance values between 0.05 and 0.1 were used. The quantum yield was calculated according to the equation:

$$\Phi_{\chi} = \Phi_r \cdot \frac{A_r}{A_{\chi}} \cdot \frac{E_{\chi}}{E_r} \cdot \frac{I_r}{I_{\chi}} \cdot \frac{\eta_{\chi}^2}{\eta_r^2}$$

where *r* and *x* refer to reference and unknown respectively; *A* is the absorbance at λ_{ex} ; *E* is the corrected integrated emission intensity; *I* is the corrected intensity of excitation light; *h* is the refractive index of solution.

HPLC

The analytical HPLC (High-performance liquid chromatography) was performed on a Thermo-Scientific Spectra System P1000XR equipped with diode array detector UV1000. The preparative HPLC was performed on a Shimadzu LC-8A equipped with a UV/vis detector SPD. Various chromatographic systems were employed for analytical and preparative HPLC:

System A: HPLC (Waters XBridge RP-C₁₈ column, 3.5 μ m, 4.6 × 100 mm) with 0.2% aq. trifluoroacetic acid pH 1– MeCN (v/v) as eluents [isocratic 15% MeCN (2 min), linear gradient from 15 to 100% MeCN (18 min), isocratic 100% MeCN (4 min)] at a flow rate of 1 mL min⁻¹ and UV detection at 330 nm.

System B: HPLC (Waters XBridge RP-C₁₈ column, 5 μ m, 50 × 150 mm) with 0.2% aq. Trifluoroacetic acid pH 1– MeCN (v/v) as eluents [isocratic 15% MeCN (2 min),

linear gradient from 15 to 100% MeCN (23 min), isocratic 100% MeCN (4 min)] at a flow rate of 100 mL min⁻¹ and UV detection at 330 nm.

System C: HPLC (Macherey-Nagel Nucleodur Hilic column, 5 μ m, 4 × 250 mm) with aq. ammonium acetate 100 mM, pH 5.3 – MeCN (v/v) as eluents [isocratic 97% MeCN (3 min), linear gradient from 97 to 80% MeCN (20 min), isocratic 20% MeCN (5 min)] at a flow rate of 0.8 mL min⁻¹ and UV detection at 330 nm.

System D: HPLC (Macherey-Nagel Nucleodur Hilic column, 5 μ m, 21 × 250 mm) with aq. ammonium acetate 100 mM, pH 5.3 – MeCN (v/v) as eluents [isocratic 97% MeCN (4 min), linear gradient from 97 to 80% MeCN (24 min), isocratic 20% MeCN (5 min)] at a flow rate of 14 mL min⁻¹ and UV detection at 330 nm.

Confocal Microscopy and Cell Spectral Imaging

Details of cell culture, epifluorescence microscopy and assessment of complex toxicity using the MTT assay of mitochondrial redox function have been reported elsewhere. ^{7,8} Cell images and co-localisation experiments were obtained using a Leica SP5 II microscope. In order to achieve excitation with maximal probe emission, the microscope was coupled by an optical fibre to a Coherent 355nm CW (Nd:YAG) laser, operating at 12mW power. A HeNe or Ar ion laser was used when commercially available organelle-specific stains (e.g. MitotrackerGreenTM) were used to corroborate cellular compartmentalization. The microscope was equipped with a triple channel imaging detector, comprising two conventional PMT systems and a HyD hybrid avalanche photodiode detector. The latter part of the detection system, when operated in the BrightRed mode, is capable of improving imaging sensitivity above 550 nm by 25%, reducing signal to noise by a factor of 5. The pinhole was always determined by the Airy disc size, calculated from the objective in use, using the lowest excitation wavelength. Scanning speed was adjusted to 100 Hz in a unidirectional mode, to ensure both sufficient light exposure and time to collect the emitted light from the lanthanide based optical probes. Spectral imaging on this Leica system is possible with the xy λ -scan function, using the smallest allowed spectral band-pass (5nm) and step-size (3nm) settings. However, spectral imaging in NIH 3T3

cells was achieved using a custom built microscope (modified Zeiss Axiovert 200M), using a LDPlanNeofluar 20x Ph2Korr objective combined with a low voltage 365 nm pulsed UV LED focused, collimated excitation source (1.2W). For rapid spectral acquisition the microscope was equipped at the X1 port with a Peltier cooled 2D-CCD detector (Ocean Optics) used in an inverse 100 Hz time gated sequence. The spectrum was recorded from 400-800 nm with a resolution of 0.24 nm and the final spectrum was acquired using an averaged 10,000 scan duty cycle.

ESI Figure 1 Cell microscopy images of NIH 3T3 cells: *top left*: 1h incubation with [Eu.L^{2b}], λ_{exc} 355 nm, observing 605 to 720 nm; *top right*: following addition of Mitotracker Green (added for the last 30 min., 0.5 μ M), λ_{exc} 488 nm, observing 505-535 nm; *bottom right*: merged image showing co-localisation, with a Pearson coefficient of 0.85.

Synthesis of Eu complexes of L^{1a} and L^{1b} (Scheme 1)

Scheme 1

Compounds **1a**, **1b** and **2** were published as reported in: Bourdolle, A.; Allali, M.; Mulatier, J.-C.; Le Guennic, B.; Zwier, J.; Baldeck, P. L.; Bünzli, J.-C.G.; Andraud, C.; Lamarque, L.; Maury, O. *Inorg. Chem.* **2011**, *50*, 4987-4999.

Methyl 6-(hydroxymethyl)-4-((4-methoxyphenyl)ethynyl)picolinate 3a

To a solution of 1-ethynyl-4-methoxybenzene (133 mg, 1mmol) in dry THF (10 mL) and Et₃N (5 mL) was added methyl 6-(hydroxymethyl)-4-iodopicolinate (294 mg, 1 mmol). The solution was degassed with argon for 45 min and to this mixture were added CuI (37 mg, 0.2 mmol) and Pd(PPh₃)₂Cl₂ (68 mg, 0.1 mmol) under argon. The dark brown mixture was heated at 70°C for 4 h. The mixture was concentrated and the residue dissolved in CH₂Cl₂ (50 mL) and washed with saturated aqueous NH₄Cl (2 ×

50 mL), and brine (50 mL). The organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography on silica (CH₂Cl₂/MeOH 99/1 to 95/5 in 0.5% increment) yielding a light yellow solid (241 mg, 68%). ¹H NMR (CDCl₃, δ): 8.07 (s, 1H), 7.59 (s, 1H), 7.49 (d, ³*J* = 8.9 Hz, 2H), 6.90 (d, ³*J* = 8.9 Hz, 2H), 4.85 (s, 2H), 4.00 (s, 3H), 3.84 (s, 3H); ¹³C NMR (100.6MHz, CDCl₃, δ): 165.4, 160.7, 160.6, 147.3, 134.0, 133.8, 125.8, 125.4, 114.4, 113.8, 96.0, 85.3, 64.7, 55.5, 53.1.(HRMS⁺) 298.1075 [M + H]⁺ (C₁₇H₁₆NO₄ requires 298.1079). R*f*: 0.6 (silica, DCM/MeOH, 90/10).

Methyl 4-((4-methoxyphenyl)ethynyl)-6-(((methylsulfonyl)oxy)methyl)picolinate 4a

To a solution of methyl 6-(hydroxymethyl)-4-((4-methoxyphenyl)ethynyl)picolinate **3a**, (241 mg, 0.8 mmol) and Et₃N (246 mg, 2.4 mmol) in dry THF (10 mL), was added dropwise methanesulfonyl chloride (139 mg, 1.2 mmol) at 5°C. The reaction was allowed to reach room temperature over 15 min and the solvent was removed. To the residue was added CH₂Cl₂ (15 mL) and the organic phase was washed with water (2 × 10 mL) and dried over MgSO₄, filtered and concentrated to give an oily compound which was used in the next step without further purification (217 mg, 90%). ¹H NMR (CDCl₃, δ): 8.14 (s, 1H), 7.70 (s, 1H), 7.50 (d, ³*J* = 8.8 Hz, 2H), 6.91 (d, ³*J* = 8.8 Hz, 2H), 5.40 (s, 2H), 4.00 (s, 3H), 3.84 (s, 3H) 3.16 (s, 3H); ¹³C NMR (100.6MHz, CDCl₃, δ) : 165.0, 160.9, 154.7, 147.9, 134.7, 133.9, 126.8, 126.5, 114.4, 113.5, 97.0, 85.0, 70.8, 55.5, 53.3, 38.2.(HRMS⁺) 376.0859 [M + H]⁺ (C₁₈H₁₈NO₆S requires 376.0855). R*f*: 0.75 (neutral aluminium oxide, cyclohexane/EtOAc, 30/70).

To a solution of triazacyclononane trihydrochloride (9.5 mg, 40 µmol) in dry MeCN (10 mL) was added dry K₂CO₃ (35 mg, 250 µmol). The mixture was vigorously stirred for 10 min and to the suspension was added methyl 4-((4-methoxyphenyl)ethynyl)-6-(((methylsulfonyl)oxy)methyl)picolinate, **4a**, (47 mg, 120 µmol) in one portion. The resulting mixture was heated at 60°C for 4 h. The solvent was removed under reduced pressure; to the residue was added CH₂Cl₂ (25 mL) and the organic phase was washed with brine (10 mL) and dried over MgSO₄, filtered and concentrated to give an oily mixture which was purified by preparative HPLC (gradient D). The fractions were concentrated to give a pale yellow oil (33 mg, 85%). ¹H NMR (CDCl₃, δ): 7.99 (s, 3H), 7.78 (s, 3H), 7.44 (d, ³J = 8.9 Hz, 6H), 6.86 (d, ³J = 8.9 Hz, 6H), 4.17 (s, 6H), 3.91 (s, 9H), 3.80 (s, 9H) 3.13 (s, 12H); ¹³C NMR (100.6MHz, CDCl₃, δ): 165.2, 160.7, 147.6, 133.9, 133.7, 128.1, 125.9, 114.3, 113.7, 96.1, 85.2, 61.6, 55.4, 53.6, 53.0, 39.7, 29.8.(HRMS⁺) 967.4031 [M + H]⁺ (C₅₇H₅₅N₆O₉ requires 967.4022). *t_R* (*System C*) = 16.7 min.

[EuL^{1a}]

To a solution of the trimethyl ester of L^{1a} (33 mg, 34 µmol) in THF (3 mL) was added LiOH aqueous solution (1 M, 1.5 mL) and the mixture was stirred at room temperature for 30 min. The mixture was concentrated to dryness and to the residue were added MeOH (3 mL) and water (2 mL). The solution was neutralized (~ pH 7) by addition of diluted HCl (4 M) and to this mixture was added EuCl₃. 6H₂O (37 mg, 102 µmol). The mixture was stirred for 15 min and concentrated to dryness to give a residue which was diluted in MeCN (4 mL). The resulting solution was purified by preparative HPLC (system B). The fractions collected were concentrated to give an off white solid (23 mg, 21.5 µmol). HRMS, 537.6299 [M + 2H]²⁺ (C₅₄H₄₆EuN₆O₉ requires 537.6269). t_R (System A) = 13.1 min. $\tau_{MeOH} = 0.95$ ms; $\Phi_{MeOH}^{em} = 48 \pm 10\%$; ε_{MeOH} (337 nm) = 58,000 M⁻¹ cm⁻¹.

Analytical RP-HPLC of [Eu.L^{1a}]: t_R 13.2 min [Gradient: 15 to 100% acetonitrile in water (0.2% trifluoroacetic acid) over 20 min]

Methyl 6-(hydroxymethyl)-4-((4-(2-(2-(2-methoxyethoxy)ethoxy)phenyl) ethynyl) picolinate, 3b

To a solution of 1-ethynyl-4-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzene, **1b** (3.9 g, 15 mmol) and methyl 6-(hydroxymethyl)-4-iodopicolinate, **2**, (2.8 g, 9.6 mmol) in dry THF (20 mL) and Et₃N (20 mL), was added CuI (56 mg, 0.29 mmol,) and Pd(PPh₃)₂Cl₂ (104 mg, 0.15 mmol,). The dark brown mixture was heated at 70°C for 12 h. The suspension was concentrated under reduced pressure and the residue dissolved in CH₂Cl₂ (50 mL) and washed with saturated aqueous NH₄Cl (2 × 50 mL), and brine (50 mL). The organic layer was dried over MgSO₄, filtered and evaporated. The crude material was purified by flash chromatography on silica (CH₂Cl₂/MeOH 99/1 to 95/5 in 0.5% increment) yielding a light yellow solid (3.2 g, 78%). ¹H NMR (CDCl₃, δ): 8.04 (s, 1H), 7.56 (s, 1H), 7.45 (d, ³J = 8.8 Hz, 2H), 6.89 (d, ³J = 8.8 Hz, 2H), 4.82 (s, 2H), 4.13 (m, 2H), 3.97 (s, 3H), 3.84 (m, 3H), 3.71 (m, 2H), 3.64 (m, 4H), 3.52 (m, 2H), 3.35 (s, 3H), 1.89 (s, 1H); ¹³C NMR (50.3MHz, CDCl₃, δ): 165.4,

160.7, 160.1, 147.3, 134.1, 133.8, 125.8, 125.5, 115.1, 114.1, 95.9, 85.4, 72.1, 71.0, 70.8, 70.7, 69.8, 67.7, 59.1.(HRMS⁺) 430.1860 [M + H]⁺ (C₂₃H₂₈NO₄ requires 430.1866). R*f*: 0.56 (silica, DCM/MeOH, 90/10).

Methyl 4-((4-(2-(2-(2-methoxy)ethoxy)ethoxy)phenyl)ethynyl)-6-(((methyl sulfonyl)oxy)methyl)picolinate, 4b

То methyl 6-(hydroxymethyl)-4-((4-(2-(2-(2-methoxyethoxy) а solution of ethoxy)ethoxy)phenyl)ethynyl) picolinate **3b** (300 mg, 0.7 mmol) and Et₃N (212 mg, 0.21 mmol) in dry THF (20 mL), was added dropwise methanesulfonyl chloride (88 mg, 0.77 mmol) at 5°C. The reaction was allowed to reach room temperature over 15 min and the solvent was removed under reduced pressure. To the residue was added CH_2Cl_2 (15 mL) and the organic phase was washed with water (2 × 10 mL) and dried over MgSO₄, filtered and concentrated to give an oily compound which was considered to be sufficiently pure to be used in the next step without further purification. (330 mg, 93%). ¹H NMR (CDCl₃, 500MHz, δ): 8.09 (s, 1H), 7.66 (s, 1H), 7.45 (d, ${}^{3}J = 8.7$ Hz, 2H), 6.88 (d, ${}^{3}J = 8.7$ Hz, 2H), 5.37 (s, 2H), 4.12 (m, 2H), 3.97 (s, 3H), 3.83 (m, 2H), 3.69 (m, 2H), 3.62 (m, 4H), 3.51 (m, 2H), 3.33 (s, 3H), 3.13 (s, 3H); ¹³C NMR (50.33 MHz, CDCl₃, δ): 164.9, 160.1, 154.6, 147.8, 134.6, 133.7, 126.6, 126.3, 114.9, 113.6, 96.8, 84.9, 71.9, 70.9, 70.7, 70.6, 69.6, 67.6, 59.1, 53.1, 38.1. (HRMS⁺) 508.1637 $[M + H]^+$ (C₂₄H₃₀NO₉S requires 508.1636). Rf: 0.31 (neutral aluminium oxide, cyclohexane/EtOAc, 30/70).

Compound 5b (Trimethyl ester of L^{1b})

To a solution of triazacyclononane 3HCl (57 mg, 0.24 mmol) in dry MeCN (40 mL) was added dry K₂CO₃ (198 mg, 1.43 mmol). The mixture was vigorously stirred for 10 min then to the suspension was added methyl 4-((4-(2-(2methoxyethoxy)ethoxy)phenyl)ethynyl)-6-(((methyl sulfonyl)oxy)methyl) picolinate, 4b, (374 mg, 0.74 mmol) in one portion. The resulting mixture was heated at 60°C for 4 h. The solvent was removed and to the residue was added CH₂Cl₂ (75 mL) and the organic phase was washed with brine (20 mL) and dried over MgSO₄, filtered and concentrated under reduced pressure to give an oily mixture which was purified by preparative HPLC (gradient B). The fractions were concentrated to give a pale yellow oil, (185 mg, 57%). ¹H NMR (CDCl₃, 500MHz, δ): 7.97 (s, 3H), 7.75 (s, 3H), 7.42 (d, ${}^{3}J = 8.5$ Hz, 6H), 6.87 (d, ${}^{3}J = 8.5$ Hz, 6H), 4.29 (s, 6H), 4.11 (m, 6H), 3.88 (s, 9H), 3.83 (m, 6H), 3.71 (m, 6H), 3.63 (m, 12H), 3.52 (m, 6H), 3.34 (s, 9H), 3.25 (s, 12H). ¹³C NMR (125.76 MHz, CDCl₃, δ): 165.2, 160.1, 147.8, 134.3, 133.9, 128.5, 126.4, 115.0, 113.9, 85.1, 77.2, 72.1, 71.1, 70.8, 70.8, 69.8, 67.7, 59.2, 53.1. (MS⁺) 1363.70 [M + H]⁺ ($C_{75}H_{91}N_6O_{18}$ requires 1363.64). t_R (System A) = 13.6 min.

[EuL^{1b}]

To a solution of 5b (81 mg, 60 μ mol) in THF (10 mL) was added aqueous LiOH solution (1 M, 5 mL) and the mixture was stirred at room temperature for 30 min. The mixture was concentrated to dryness and to the residue were added MeOH (9 mL) and water (6 mL). The solution was neutralized (~ pH 7) by addition of hydrochloric acid (4 M) and to this mixture was added EuCl₃. 6H₂O (66 mg, 180 μ mol). The mixture was stirred for 15 min and concentrated to dryness to give a residue which was diluted in MeCN (4 mL). The resulting solution was purified by preparative HPLC (system

B). The fractions collected were concentrated to give the title compound (78 mg, 89%). NMR spectra in water or in organic solvents exhibit only broad signals ascribed to the dynamic interconversion between various helicoidal enantiomers. HRMS m/z: 1471.4941 [M + H]⁺ (C₇₂H₈₂EuN₆O₁₈ requires 1471.4905). t_R (System A) 13.6 min.; $\tau_{MeOH} = 1.06$ ms; $\Phi_{MeOH}^{em} = 25 \pm 5\%$; ε_{MeOH} (337 nm) = 57,500 M⁻¹ cm⁻¹.

2. Synthesis of Eu complexes of L^{2a,2b,2c}

2-Bromo-6-methylpyridine-N-oxide

2-Bromo-6-methylpyridine, (20 g, 0.116 mol) was dissolved in CHCl₃ (300 mL), *m*CPBA (40.1 g, 0.232 mol) was added and the solution was stirred at 65 °C under argon for 18 h. The volume of the solution was reduced to 150 mL under reduced pressure. The solution was left to stand in the fridge overnight causing precipitation of 3-chlorobenzoic acid, which was removed by filtration. From the remaining filtrate, the solvent was removed under reduced pressure to give a yellow oil that was dissolved in aq. NaOH solution (1M, 100 mL) and extracted with CH₂Cl₂ (3 × 100 mL). The organic extracts were combined, dried over MgSO₄, filtered and the solvent removed under reduced pressure to give a pale yellow oil which crystallized upon standing (15 g, 67 %). M.p. 59 – 61 °C; ¹H NMR (CDCl₃, δ): 7.55 (1H, dd, *J* 8 Hz, 1.6, H³), 7.23 (1H, dd, *J* 8, 1.6 Hz, H⁵), 7.01 (1H, t, *J* 8 Hz, H⁴), 2.57 (3H, s); ¹³C NMR (CDCl₃, δ): 151.2 (C⁶), 133.5 (C²), 128.7 (C³), 125.3 (C⁵), 125.2 (C⁴), 19.3 (Me); *m/z* (HRMS⁺) 187.9698 [M + H]⁺ (C₆H₇NO⁷⁹Br requires 187.9711); *R*_f = 0.16 (silica, CH₂Cl₂: 2 % MeOH).

2-Bromo-6-methyl-4-nitropyridine-N-oxide

2-Bromo-6-methylpyridine-1-oxide, (15 g, 80 mmol) was dissolved in concentrated H₂SO₄ (98 %, 23 mL, 0.40 mol). The solution was stirred at 0 °C and HNO₃ (70 %, 26 mL, 0.38 mol) was added dropwise. The mixture was heated to 100 °C for 16 h. The yellow solution was dropped onto stirred ice (150 g) causing a pale yellow solid to precipitate. After 1 h the precipitate was filtered and dried under high vacuum to yield a pale yellow solid (12 g, 65 %); m.p. 138 – 139 °C; ¹H NMR (CDCl₃, δ): 8.40 (1H, d, *J* 2.8 Hz, H³), 8.09 (1H, d, *J* 2.8 Hz, H⁵), 2.62 (3H, s); ¹³C NMR (CDCl₃, δ): 151.8 (C⁶), 140.7 (C⁴), 134.0 (C²), 122.8 (C³), 118.9 (C⁵), 19.6 (Me); *m/z* (HRMS⁺) 232.9564 [M + H]⁺ (C₆H₆N₂O₃⁷⁹Br requires 232.9556); *R_f* = 0.53 (silica, CH₂Cl₂: 2 % MeOH).

2-Bromo-6-methyl-4-nitropyridine

2-Bromo-6-methyl-4-nitropyridine-1-oxide, (5g, 22 mmol) was dissolved in CHCl₃ (200 mL) and PBr₃ (6.26 mL, 66 mmol) was added dropwise. The mixture was stirred at 60 °C under argon for 16 h. The solvent was removed under reduced pressure to give a yellow oil. Aqueous NaOH solution (2 M, 50 mL) was added cautiously and the solution was extracted with CH₂Cl₂ (3 × 100 mL). The organic extracts were combined, dried over MgSO₄ and the solvent removed under reduced pressure to give a yellow oil, which was purified by column chromatography on silica (CH₂Cl₂) to yield a pale yellow oil (3.0 g, 74 %); ¹H NMR (CDCl₃, δ): 8.02 (1H, d, *J* 2.8, H³), 7.83 (1H, d, *J* 2.8, H⁵), 2.70 (3H, s); ¹³C NMR (CDCl₃, δ): 162.9 (C⁶), 154.9 (C⁴), 142.4 (C²), 118.4 (C³), 115.0 (C⁵), 24.6 (Me); *m/z* (HRMS⁺) 216.9611 [M + H]⁺ (C₆H₆N₂O₂⁷⁹Br requires 216.9613); *R_f* = 0.75 (silica, CH₂Cl₂ : 2 % MeOH).

Ethyl (6-methyl-4-nitropyridin-2-yl)(phenyl)phosphinate

2-Bromo-6-methyl-4-nitropyridine, (1.01 g, 4.68 mmol), ethyl phenylphosphinate (0.95 g, 5.60 mmol) and triethylamine (2.6 mL, 19.0 mmol) were added to dry degassed (3 freeze-thaw cycles) toluene (10)mL). Tetrakis(triphenylphosphine)palladium(0) (83 mg, 0.07 mmol) was added and the mixture was degassed three times before being stirred at 125 °C for 16 h under argon. The solution was diluted with CH_2Cl_2 (20 mL), washed with HCl (1M, 2 × 15 mL) and water (3 \times 15 mL), dried over K₂CO₃, filtered and the solvent removed under reduced pressure to give a dark residue. Purification by column chromatography on silica (CH₂Cl₂ : 0.5 % MeOH) gave a yellow oil (645 mg, 45 %); ¹H NMR (CDCl₃, δ): 8.55 (1H, dd, ${}^{3}J_{H-P}$ 5.6 Hz, ${}^{4}J_{H-H}$ 1.4 Hz, H³), 7.97 (2H, ddd, ${}^{3}J_{H-P}$ 11.2 Hz, ${}^{3}J_{H-H}$ 7.7, ⁴*J*_{H-H} 1.4 Hz, H^o), 7.90 (1H, d, ⁴*J*_{H-H} 1.4 Hz, H⁵), 7.55 (1H, td, ³*J*_{H-H} 7.7 Hz, ⁴*J*_{H-H} 1.4 Hz, H^{*p*}), 7.46 (2H, td, ${}^{3}J_{H-H}$ 7.7 Hz, ${}^{4}J_{H-P}$ 3.5 Hz, H^{*m*}), 4.15 (2H, qd, ${}^{3}J_{H-H}$ 7.0 Hz, ³J_{H-P} 4.2 Hz, CH₂O), 2.72 (3H, s), 1.38 (3H, t, ³J_{H-H} 7.0 Hz, CH₂Me); ¹³C NMR (CDCl₃, δ): 163.0 (d, ${}^{3}J_{C-P}$ 21 Hz, C⁶), 158.1 (d, ${}^{1}J_{C-P}$ 167 Hz, C²), 154.0 (d, ${}^{3}J_{C-P}$ 13 Hz, C⁴), 132.9 (d, ⁴J_{C-P} 3 Hz, C^p), 132.5 (d, ²J_{C-P} 10 Hz, C^o), 129.1 (d, ¹J_{C-P} 140 Hz, C^{i}), 128.5 (d, ${}^{3}J_{C-P}$ 13 Hz, C^{m}), 117.6 (d, ${}^{2}J_{C-P}$ 24 Hz, C^{3}), 117.5 (d, ${}^{4}J_{C-P}$ 3 Hz, C^{5}), 62.2 (d, ²J_{C-P} 6 Hz, CH₂O), 24.9 (Me), 16.4 (CH₂Me); ³¹P NMR (CDCl₃, δ): 23.7; m/z (HRMS⁺) 307.0851 [M + H]⁺ ($C_{14}H_{16}N_2O_4P$ requires 307.0848); $R_f = 0.47$ (silica, CH₂Cl₂ : 5 % MeOH).

4-Bromo-6-methylpyridin-2-yl(phenyl)phosphinic acid

Ethyl (6-methyl-4-nitropyridin-2-yl)(phenyl)phosphinate, (2.00 g, 6.54 mmol) was dissolved in CH₃COBr (15 mL, 0.2 mol) and the mixture stirred at 70 °C for 16 h under argon. A pale brown precipitate formed. Both precipitate and solution were dropped cautiously into CH₃OH (100 mL) stirred at 0 °C. The solvent was removed

under reduced pressure to yield a pale brown solid (1.81 g, 90 %); ¹H NMR (CD₃OD, δ): 8.33 (1H, dd, ³*J*_{H-P} 7.2 Hz, ⁴*J*_{H-H} 2.0 Hz, H³), 8.23 (1H, d, ⁴*J*_{H-H} 2.0 Hz, H⁵), 7.95 (2H, ddd, ³*J*_{H-P} 13.2 Hz, ³*J*_{H-H} 7.6 Hz, ⁴*J*_{H-H} 1.6 Hz, H^o), 7.63 (1H, td, ³*J*_{H-H} 7.6 Hz, ⁴*J*_{H-H} 1.6 Hz, H^p), 7.55 (2H, td, ³*J*_{H-H} 7.6 Hz, ⁴*J*_{H-P} 3.6 Hz, H^m), 2.77 (3H, s); ¹³C NMR (CD₃OD, δ): 159.4 (d, ³*J*_{C-P} 20 Hz, C⁶), 151.7 (d, ¹*J*_{C-P} 160 Hz, C²), 145.1 (d, ³*J*_{C-P} 10 Hz, C⁴), 134.8 (d, ⁴*J*_{C-P} 3 Hz, C^p), 133.3 (d, ²*J*_{C-P} 10 Hz, C^o), 131.0 (d, ²*J*_{C-P} 24 Hz, C³), 130.6 (d, ⁴*J*_{C-P} 3 Hz, C⁵), 130.2 (d, ¹*J*_{C-P} 140 Hz, Cⁱ), 129.6 (d, ³*J*_{C-P} 12 Hz, C^m), 20.4 (Me); ³¹P NMR (CD₃OD, δ): 14.3; *m/z* (HRMS⁻) 309.9648 [M – H]⁻ (C₁₂H₁₀NO₂⁷⁹BrP requires 309.9633); *R_f*= 0.01 (silica, CH₂Cl₂ : 5 % MeOH).

Ethyl (4-bromo-6-methylpyridin-2-yl)(phenyl)phosphinate

(4-Bromo-6-methylnitropyridin-2-yl)(phenyl)phosphinic acid, (1.80 g, 5.80 mmol) was added to triethyl orthoformate (50 mL) and the mixture stirred at 140 °C for 72 h under argon. The solvent was removed under reduced pressure and the resulting residue was purified by column chromatography on silica (CH₂Cl₂: 0.5 % MeOH) to yield a yellow oil (1.08 g, 55 %); ¹H NMR (CDCl₃, δ): 8.04 (1H, dd, ³*J*_{H-P} 6.3 Hz, ⁴*J*_{H-H} 1.4 Hz, H³), 7.95 (2H, ddd, ³*J*_{H-P} 11.2 Hz, ³*J*_{H-H} 7.0, ⁴*J*_{H-H} 1.4 Hz, H^o), 7.51 (1H, td, ³*J*_{H-H} 7.0 Hz, ⁴*J*_{H-H} 1.4 Hz, H^p), 7.43 (2H, td, ³*J*_{H-H} 7.0 Hz, ⁴*J*_{H-P} 3.5 Hz, H^m), 7.37 (1H, d, ⁴*J*_{H-H} 1.4 Hz, H⁵), 4.11 (2H, qd, ³*J*_{H-H} 7.0 Hz, ³*J*_{H-P} 4.2 Hz, CH₂O), 2.52 (3H, s), 1.34 (3H, t, ³*J*_{H-H} 7.0 Hz, CH₂*Me*); ¹³C NMR (CDCl₃, δ): 161.2 (d, ³*J*_{C-P} 22 Hz, C⁶), 155.7 (d, ¹*J*_{C-P} 165 Hz, C²), 133.5 (d, ³*J*_{C-P} 15 Hz, C⁴), 132.7 (d, ⁴*J*_{C-P} 3 Hz, C^p), 132.6 (d, ²*J*_{C-P} 10 Hz, C^o), 130.0 (d, ¹*J*_{C-P} 139 Hz, Cⁱ), 128.5 (d, ⁴*J*_{C-P} 3 Hz, C⁵), 128.4 (d, ²*J*_{C-P} 24 Hz, C³), 128.3 (d, ³*J*_{C-P} 13 Hz, C^m), 62.1 (d, ²*J*_{C-P} 6 Hz, CH₂O), 24.5 (Me), 16.7 (CH₂*Me*); ³¹P NMR (CDCl₃, δ): 25.5; *m*/*z* (HRMS⁺) 340.0102 [M + H]⁺ (C₁₄H₁₆NO₂⁷⁹BrP requires 340.0102); *R_f*= 0.56 (silica, CH₂Cl₂: 5 % MeOH).

Ethyl (4-[2-(4-methoxyphenyl)ethynyl]-6-methylpyridin-2-

yl)(phenyl)phosphinate

Ethyl (4-bromo-6-methylnitropyridin-2-yl)(phenyl)phosphinate, (32 mg, 0.094 mmol) was dissolved in dry THF (1 mL) and the solution was degassed (freeze-thaw cycle) three times. 4-Ethynylanisole (19 mg, 0.14 mmol) and NEt₃ (0.5 mL) were added and the solution was degassed once. Tetrakis(triphenylphosphine)palladium(0) (10 mg, 8.7 µmol) and CuI (3.6 mg, 0.019 mmol) were added and the solution was degassed a further three times. The solution was stirred at 65 °C under argon. The reaction was monitored by TLC (silica; CH_2Cl_2 : 2.5 % CH_3OH , R_1 (product) = 0.21, R_1 (reactant) = 0.26) and stopped after 3 h. The solvent was removed under reduced pressure and the crude material purified by column chromatography (silica, CH_2Cl_2 : $CH_3OH 0 - 1.6$ % in 0.1 % increments) to give a yellow oil (20 mg, 55 %); ¹H NMR (CDCl₃, δ): 8.01 (1H, dd, ${}^{3}J_{H-P}$ 6.0 Hz, ${}^{4}J_{H-H}$ 1.6 Hz, H³), 7.98 (2H, dd, ${}^{3}J_{H-H}$ 8.4 Hz, ${}^{3}J_{H-P}$ 12.4 Hz, PhH^o), 7.53 (1H, t, ³J_{H-H} 8.4 Hz, PhH^p), 7.47 (2H, d, ³J_{H-H} 8.8 Hz, ArH^m), 7.45 (2H, td, ${}^{3}J_{H-H}$ 8.4 Hz, ${}^{4}J_{H-P}$ 4.2 Hz, PhH^m), 7.28 (1H, d, ${}^{4}J_{H-H}$ 1.6 Hz, H⁵), 6.89 (2H, d, ${}^{3}J_{H-H}$ 8.8 Hz, ArH^o), 4.13 (2H, qd, ³J_{H-H} 5.6 Hz, ³J_{H-P} 4.8 Hz, CH₂O), 3.84 (3H, s, OMe), 2.57 (3H, s, CMe), 1.38 (3H, t, ${}^{3}J_{H-H}$ 5.6 Hz, CH₂Me); ${}^{13}C$ NMR (CDCl₃, δ): 160.4 (s, ArCO), 159.7 (d, ³J_{C-P} 20 Hz, C⁶), 153.8 (d, ¹J_{C-P} 165 Hz, C²), 134.7 (d, ²J_{C-P} 12 Hz, C⁴), 133.4 (s, ArC^m), 132.4 (d, ⁴J_{C-P} 5, PhC^p), 132.2 (d, ²J_{C-P} 10 Hz, PhC^o), 130.2 (d, ${}^{1}J_{C-P}$ 139 Hz, PhC^{*i*}), 128.2 (d, ${}^{3}J_{C-P}$ 22 Hz, C³), 128.1 (d, ${}^{3}J_{C-P}$ 12 Hz, PhC^{*m*}), 126.8 (d, ${}^{4}J_{C-P}$ 3 Hz, C⁵), 114.1 (s, ArC^o), 114.0 (s, ArC^p), 94.9 (s, alkyne C), 85.3 (d, ${}^{4}J_{C-P}$ 2, alkyne C), 61.7 (d, ${}^{2}J_{C-P}$ 6 Hz, CH₂O), 55.2 (s, OMe), 27.9 (s, Me), 16.6 (s, CH₂Me); ³¹P NMR (CDCl₃, δ): +26.6; m/z (HRMS⁺) 414.1247 [M + Na]⁺ (C₂₃H₂₂O₃NPNa requires 414.1235); $R_f = 0.21$ (silica, CH₂Cl₂ : 2.5 % MeOH).

Ethyl (4-bromo-6-methyl-1-oxo-1-pyridin-2-yl)(phenyl)phosphinate

То stirred solution (4-bromo-6-methylnitropyridin-2of ethyl а yl)(phenyl)phosphinate (1.25 g, 3.68 mmol) in CHCl₃ (20 mL) was added MCPBA (1.27 g, 7.35 mmol). The resulting solution was stirred at 65 °C overnight (16 h) under argon. The reaction was monitored by TLC (silica; CH₂Cl₂ : 5 % CH₃OH, $R_{\text{(product)}} = 0.28$, $R_{\text{(reactant)}} = 0.56$). The solvent was removed under reduced pressure to give a yellow oil. This oil was dissolved in CH₂Cl₂ and washed with NaHCO₃ solution (0.5 M, 50 mL). The layers were separated and the aqueous layer extracted with CH_2Cl_2 (3 × 30 mL). All organic layers were combined, dried over MgSO₄, filtered and the solvent removed under reduced pressure. The resultant oil was purified by column chromatography (silica, CH_2Cl_2 : $CH_3OH 0 - 2$ % in 0.1 % increments) to give a pale yellow oil (1.11 g, 75 %); ¹H NMR (CDCl₃, δ): 8.05 (1H, dd, ${}^{3}J_{H-P}$ 7.7, ${}^{4}J_{H-H}$ 2.1 Hz, H³), 7.98 (2H, dd, ${}^{3}J_{H-H}$ 7.7 Hz, ${}^{3}J_{H-P}$ 13.3 Hz, H^o), 7.50 $(1H, t, {}^{3}J_{H-H} 7.7 \text{ Hz}, H^{p}), 7.44 (1H, d, {}^{4}J_{H-H} 2.1 \text{ Hz}, H^{5}), 7.41 (2H, td, {}^{3}J_{H-H} 7.7 \text{ Hz}, {}^{4}J_{H-H} 7.7$ P 4.2 Hz, H^m), 4.13 (2H, qd, ³J_{H-H} 5.6 Hz, ³J_{H-P} 4.9 Hz, CH₂O), 2.32 (3H, s), 1.34 $(3H, t, {}^{3}J_{H-H} 5.6 \text{ Hz}, \text{CH}_{2}Me); {}^{13}\text{C} \text{ NMR} (\text{CDCl}_{3}, \delta): 151.0 (d, {}^{3}J_{C-P} 4 \text{ Hz}, \text{C}^{6}), 144.2$ $(d, {}^{1}J_{C-P} 149 Hz, C^{2}), 133.2 (d, {}^{2}J_{C-P} 11 Hz, C^{o}), 133.1 (d, {}^{4}J_{C-P} 4 Hz, C^{p}), 133.0 (d, {}^{3}J_{C-P} 4 Hz, C^{$ _P 11 Hz, C³), 132.2 (d, ${}^{4}J_{C-P}$ 4 Hz, C⁵), 129.0 (d, ${}^{1}J_{C-P}$ 152 Hz, C^{*i*}), 128.4 (d, ${}^{3}J_{C-P}$ 14 Hz, C^m), 117.4 (d, ²J_{C-P} 12 Hz, C⁴), 62.3 (d, ²J_{C-P} 6 Hz, CH₂O), 17.5 (Me), 16.7 (CH_2Me) ; ³¹P NMR $(CDCl_3, \delta)$: +21.2; m/z $(HRMS^+)$ 356.0061 $[M + H]^+$ $(C_{14}H_{16}O_3^{79}BrNP requires 356.0051); R_f = 0.28 (silica, CH_2Cl_2 : 5 % MeOH).$

(4-Bromo-6-[ethoxy(phenyl)phosphoryl]pyridine-2-yl)methyl acetate

Ethyl (4-bromo-6-methyl-1-oxo-1-pyridin-2-yl)(phenyl)phosphinate, (1.8 g, 5.1 mmol) was dissolved in acetic anhydride (35 mL) and the solution was heated to 120 $^{\circ}$ C for 3 h with stirring. Reaction progress was monitored by ³¹P-NMR and TLC

(silica, CH₂Cl₂ : 5 % CH₃OH, *R*_/(product) = 0.46, *R*_/(reactant) = 0.28). The solvent was removed under reduced pressure and the residue purified by column chromatography (silica, CH₂Cl₂ : CH₃OH 0 – 1 % in 0.1 % increments) to give a yellow oil (0.66 g, 33 %); ¹H NMR (CDCl₃, δ): 8.16 (1H, dd, ³*J*_{H-P} 7.7 Hz, ⁴*J*_{*H-H*} 2.1 Hz, H³), 7.93 (2H, dd, ³*J*_{*H-H*} 7.7 Hz ³*J*_{H-P} 13.3 Hz, H^o), 7.55 (1H, d, ⁴*J*_{H-H} 2.1 Hz, H⁵), 7.51 (1H, t, ³*J*_{H-H} 7.7 Hz, H^p), 7.43 (2H, td, ³*J*_{H-P} 4.2 Hz, H^m), 5.18 (2H, s, CH₂O), 4.09 (2H, qd, ³*J*_{H-H} 5.6 Hz, ³*J*_{H-P} 4.9 Hz, CH₂O), 2.12 (3H, s), 1.33 (3H, t, ³*J*_{H-H} 5.6 Hz); ¹³C NMR (CDCl₃, δ): 170.5 (s, C^{C=O(OAc)}), 158.6 (d, ³*J*_{C-P} 4 Hz, C⁶), 156.0 (d, ¹*J*_{C-P} 149 Hz, C²), 134.3 (d, ²*J*_{C-P} 25 Hz, C⁴), 132.9 (d, ⁴*J*_{C-P} 5 Hz, C^p), 132.7 (d, ²*J*_{C-P} 10 Hz, C^o), 130.5 (d, ³*J*_{C-P} 3 Hz, C⁵), 66.0 (s, CH₂O), 62.2 (d, ²*J*_{C-P} 6 Hz, CH₂O), 21.0 (s, C^{Me(OAc)}), 16.7 (CH₂*Me*); ³¹P NMR (CDCl₃, δ): +25.0; *m*/*z* (HRMS⁺) 398.0157 [M + H]⁺ (C₁₆H₁₈O₄⁷⁹BrNP requires 398.0151); *R*_f = 0.46 (silica, CH₂Cl₂ : 5 % MeOH).

(6-[Ethoxy(phenyl)phosphoryl]-4-[2-(4-methoxyphenyl)ethynyl]pyridine-2yl)methyl acetate

(4-Bromo-6-[ethoxy(phenyl)phosphoryl]pyridine-2-yl)methyl acetate, (500 mg, 1.26 mmol) was dissolved in dry THF (10 mL) and the solution was degassed (freeze-thaw cycle) three times. 4-Ethynylanisole (249 mg, 1.89 mmol) and NEt₃ (5 mL) were added and the solution was degassed once. Tetrakis(triphenylphosphine)palladium(0) (145 mg, 0.126 mmol) and CuI (42 mg, 0.252 mmol) were added and the solution was degassed a further three times. The solution was stirred at 60 °C under argon. The reaction was monitored by TLC (silica; CH₂Cl₂ : 5 % CH₃OH, R_f (product) = 0.57, R_f (reactant) = 0.46) and stopped after 4 h. The solvent was removed under reduced pressure. The crude residue was dissolved in CH₂Cl₂ (50 mL) and washed with

aqueous ammonium chloride solution $(3 \times 40 \text{ mL})$ and brine (40 mL). The organic layer was dried over MgSO₄, filtered and the solvent was removed to give a yellow oil, which was purified by column chromatography (silica, CH_2Cl_2 : $CH_3OH 0 - 2.0$ % in 0.1 % increments) to give a pale yellow oil (400 mg, 81 %); ¹H NMR (CDCl₃, δ): 8.09 (1H, dd, ³J_{H-P} 6.0 Hz, ⁴J_{H-H} 1.6 Hz, H³), 7.98 (2H, dd, ³J_{H-H} 8.4 Hz, ³J_{H-P} 12.4 Hz, H^o), 7.54 (1H, t, ³J_{H-H} 8.4 Hz, H^p), 7.49 (2H, d, ³J_{H-H} 8.8 Hz, ArH^m), 7.47 (2H, td, ${}^{3}J_{\text{H-H}}$ 8.4 Hz, ${}^{4}J_{\text{H-P}}$ 4.2 Hz, PhH^m), 7.26 (1H, d, ${}^{4}J_{\text{H-H}}$ 1.6 Hz, H⁵), 6.90 (2H, d, ${}^{3}J_{\text{H-H}}$ 8.8 Hz, ArH^o), 5.24 (2H, s, CH₂O), 4.13 (2H, qd, ³J_{H-H} 5.6 Hz, ³J_{H-P} 4.8 Hz, CH₂O), 3.84 (3H, s, MeO), 2.16 (3H, COMe), 1.38 (3H, t, ${}^{3}J_{H-H}$ 5.6 Hz, CH₂Me); ${}^{13}C$ NMR $(CDCl_3, \delta)$: 170.5 (s, $C^{C=O(OAc)}$), 160.6 (s, ArCⁱ), 157.1 (d, ${}^{3}J_{C-P}$ 20 Hz, C⁶), 154.4 (d, ${}^{1}J_{C-P}$ 165 Hz, C²), 133.7 (s, ArC^m), 133.2 (d, ${}^{2}J_{C-P}$ 12 Hz, C⁴), 132.5 (d, ${}^{4}J_{C-P}$ 5 Hz, PhC^{*p*}), 132.4 (d, ${}^{2}J_{C-P}$ 10 Hz, PhC^{*o*}), 130.3 (d, ${}^{1}J_{C-P}$ 139 Hz, PhC^{*i*}), 129.1 (d, ${}^{3}J_{C-P}$ 22 Hz, C³), 128.8 (d, ³J_{C-P} 12 Hz, PhC^m), 124.4 (d, ⁴J_{C-P} 3 Hz, C⁵), 114.3 (s, ArC^o), 113.7 (s, ArC^{*p*}), 96.0 (s, alkyne C), 85.3 (d, ${}^{4}J_{C-P}$ 2 Hz, alkyne C), 66.3 (s, CH₂O), 61.9 (d, ²J_{C-P} 6 Hz, CH₂O), 55.4 (OMe), 20.9 (s, C^{Me(OAc)}), 16.5 (CH₂Me); ³¹P NMR (CDCl₃, δ : +26.1; m/z (HRMS⁺) 472.1303 [M + Na]⁺ (C₂₅H₂₄O₅NPNa requires 472.1290); R_f = 0.57 (silica, CH₂Cl₂ : 5 % MeOH).

Ethyl (6-(hydroxymethyl)-4-[2-(4-methoxyphenyl)ethynyl]pyridin-2yl)(phenyl)phosphinate

(6-[Ethoxy(phenyl)phosphoryl]-4-[2-(4-methoxyphenyl)ethynyl]pyridine-2-yl)methyl acetate, (350 mg, 0.78 mmol) was dissolved in anhydrous CH₃CH₂OH (12 mL). A catalytic amount of sodium metal (~5 mg) was added and the solution was stirred at 40 °C under argon. The reaction was monitored by TLC (silica; CH₂Cl₂ : 5 % CH₃OH, R_f (product) = 0.28, R_f (reactant) = 0.57) and stopped after 40 min. To the crude reaction mixture was added CH₂Cl₂ (100 mL) and sodium salts were removed

by washing with H_2O (1 × 25 mL). The aqueous layer was re-extracted with CH_2Cl_2 $(3 \times 20 \text{ mL})$. The organic layers were combined, dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The crude residue was purified by column chromatography (silica, CH_2Cl_2 : $CH_3OH 0 - 3.0$ % in 0.2 % increments) to give a colourless oil (200 mg, 82 %); ¹H NMR (CDCl₃, δ): 8.01 (1H, dd, ³J_{H-P} 6.0 Hz, ⁴J_{H-H} 1.6 Hz, H³), 7.93 (2H, dd, ³J_{H-H} 8.4 Hz, ³J_{H-P} 12.4 Hz, PhH^o), 7.51 (1H, t, ³J_{H-H} 8.4 Hz, PhH^{*p*}), 7.45 (1H, d, ${}^{4}J_{H-H}$ 1.6 Hz, H⁵), 7.44 (2H, d, ${}^{3}J_{H-H}$ 8.8 Hz, ArH^{*m*}), 7.43 (2H, td, ³*J*_{H-H} 8.4 Hz, ⁴*J*_{H-P} 4.2 Hz, PhH^{*m*}), 6.87 (2H, d, ³*J*_{H-H} 8.8 Hz, ArH^{*o*}), 4.75 (2H, s, CH₂OH), 4.12 (2H, qd, ³*J*_{H-H} 5.6 Hz, ³*J*_{H-P} 4.8 Hz, CH₂O), 3.80 (3H, s, OMe), 1.35 $(3H, t, {}^{3}J_{H-H} 5.6 \text{ Hz}, CH_{2}Me); {}^{13}C \text{ NMR} (CDCl_{3}, \delta): 161.4 (d, {}^{3}J_{C-P} 20 \text{ Hz}, C^{6}), 160.8$ (s, ArCⁱ), 153.4 (d, ¹J_{C-P} 165 Hz, C²), 133.9 (s, ArC^m), 133.2 (d, ²J_{C-P} 12 Hz, C⁴), 132.8 (d, ${}^{4}J_{C-P}$ 5 Hz, PhC^{*p*}), 132.4 (d, ${}^{2}J_{C-P}$ 10 Hz, PhC^{*o*}), 129.8 (d, ${}^{1}J_{C-P}$ 140 Hz, PhC^{*i*}), 128.7 (d, ${}^{3}J_{C-P}$ 12 Hz, PhC^m), 128.4 (d, ${}^{3}J_{C-P}$ 22 Hz, C³), 124.1 (d, ${}^{4}J_{C-P}$ 3 Hz, C⁵), 114.5 (s, ArC^o), 114.0 (s, ArC^p), 96.1 (s, alkyne C), 85.6 (d, ${}^{4}J_{C-P}$ 2, alkyne C), 64.3 (s, CH₂OH), 62.0 (d, ²J_{C-P} 6 Hz, CH₂OP), 55.6 (OMe), 16.7 (CH₂Me); ³¹P NMR $(CDCl_3, \delta)$: +25.6; m/z (HRMS⁺) 408.1382 [M + H]⁺ (C₂₃H₂₃O₄NP requires 408.1365); $R_f = 0.28$ (silica, CH₂Cl₂ : 5 % MeOH).

Ethyl-[6-(bromomethyl)-4-[2-(4-methoxyphenyl)ethynyl]pyridin-2-

yl](phenyl)phosphinate

Ethyl-(6-(hydroxymethyl)-4-[2-(4-methoxyphenyl)ethynyl]pyridin-2-

yl)(phenyl)phosphinate, (143 mg, 0.35 mmol) was dissolved in dry CH_2Cl_2 (4 mL) and the solution was stirred at 0 °C under argon. PBr₃ (50 µL, 0.53 mmol) was added and the solution was stirred for a further 1 h at 0 °C. The reaction mixture was allowed to warm to room temperature and monitored by TLC (silica; $CH_2Cl_2 : 5 \%$ CH_3OH , R_4 (product) = 0.69, R_4 (reactant) = 0.28). After 1 h at 20 °C CH_2Cl_2 (50 mL)

was added and the solution was washed with aq. NaHCO₃ solution (1M, 25 mL). The aqueous layer was re-extracted with CH_2Cl_2 (3 × 20 mL). The organic layers were combined, dried over MgSO₄ and the solvent was removed under reduced pressure. The crude residue was purified by column chromatography (silica, CH₂Cl₂ : CH₃OH 0 -0.5 % in 0.1 % increments) to give a pale yellow oil (110 mg, 66 %); ¹H NMR (CDCl₃, δ): 8.05 (1H, dd, ³J_{H-P} 6.0 Hz, ⁴J_{H-H} 1.6 Hz, H³), 8.00 (2H, dd, ³J_{H-H} 8.4 Hz, ${}^{3}J_{\text{H-P}}$ 12.4 Hz, PhH^o), 7.56 (1H, d, ${}^{4}J_{\text{H-H}}$ 1.6 Hz, H⁵), 7.50 (1H, t, ${}^{3}J_{\text{H-H}}$ 8.4 Hz, PhH^p), 7.47 (2H, d, ³*J*_{H-H} 8.8 Hz, ArH^{*m*}), 7.46 (2H, td, ³*J*_{H-H} 8.4 Hz, ⁴*J*_{H-P} 4.2 Hz, PhH^{*m*}), 6.87 (2H, d, ³*J*_{H-H} 8.8 Hz, ArH^o), 4.52 (2H, s, CH₂Br), 4.13 (2H, qd, ³*J*_{H-H} 5.6 Hz, ³*J*_{H-P} 4.8 Hz, CH₂OP), 3.80 (3H, s, OMe), 1.36 (3H, t, ${}^{3}J_{H-H}$ 5.6 Hz, Me); ${}^{13}C$ NMR (CDCl₃, δ): 160.9 (s, ArCⁱ), 158.1 (d, ${}^{3}J_{C-P}$ 20 Hz, C⁶), 154.8 (d, ${}^{1}J_{C-P}$ 165 Hz, C²), 133.9 (s, ArC^m), 133.6 (d, ²J_{C-P} 12 Hz, C⁴), 132.7 (d, ⁴J_{C-P} 5 Hz, PhC^p), 132.5 (d, ²J_{C-P} 10 Hz, PhC^o), 130.3 (d, ¹J_{C-P} 140 Hz, PhCⁱ), 128.8 (d, ³J_{C-P} 12 Hz, PhC^m), 128.7 (d, ³J_{C-P} 22 Hz, C^3), 126.8 (d, ${}^{4}J_{C-P}$ 3 Hz, C^5), 114.5 (s, Ar C^{o}), 113.9 (s, Ar C^{p}), 96.5 (s, alkyne C), 85.1 (d, ${}^{4}J_{C-P}$ 2, alkyne C), 62.2 (d, ${}^{2}J_{C-P}$ 6 Hz, CH₂OP), 55.6 (OMe), 33.3 (s, CH₂Br), 16.7 (Me); ³¹P NMR (CDCl₃, δ): +25.8; m/z (HRMS⁺) 492.0341 [M + Na]⁺ $(C_{23}H_{21}O_{3}NP^{79}BrNa requires 492.0340); R_{f} = 0.69$ (silica, CH₂Cl₂ : 5 % MeOH).

Ethyl(6-(hydroxymethyl)-4-[2-(4-methoxyphenyl)ethynyl]pyridin-2-

yl)(methyl)phosphinate

Ethyl (6-(hydroxymethyl)-4-(bromopyridin-2-yl)(methyl)phosphinate (100 mg, 0.34 mmol) was dissolved in dry THF (2 mL) and the solution was degassed (freeze-thaw cycle) three times. 4-Ethynylanisole (67 mg, 0.51 mmol) and NEt₃ (0.2 mL) were added and the solution degassed [1,1'once more. Bis(diphenylphosphino)ferrocene]palladium(II) chloride (28 mg, 0.034 mmol) and CuI (13 mg, 0.068 mmol) were added and the solution was degassed a further three times. The solution was stirred at 65 °C under argon for 12h, solvent was removed under reduced pressure and the crude material purified by column chromatography (silica, CH_2Cl_2 : $CH_3OH 0 - 3$ % in 1 % increments) to give a dark yellow oil (113) mg, 96 %); ¹H NMR (700 MHz, CDCl₃, δ): 7.95 (1H, bs, H³), 7.51 (1H, bs, H⁵), 7.42 $(2H, d, {}^{3}J_{H-H} 8.8, H^{14}), 6.84 (2H, d, {}^{3}J_{H-H} 8.8, H^{15}), 4.78 (2H, s, H^{7}), 4.10 - 4.04 (1H, s)$ m, H⁹), 3.86 - 3.81 (1H, m, H⁹), 3.78 (3H, s, H¹⁷), 1.73 (3H, d, ${}^{2}J_{H-P}$ 14.9, H⁸), 1.23 $(3H, t, {}^{3}J_{H-H} 7, H^{10}); {}^{13}C NMR (176 MHz CDCl_{3}, \delta): 161.2 (d, {}^{3}J_{C-P} 18, C^{6}), 160.6 (s, t)$ C^{16}), 153.1 (d, ${}^{1}J_{C-P}$ 156, C^{2}), 133.6 (s, C^{14}), 132.9 (d, ${}^{2}J_{C-P}$ 12, C^{4}), 127.7 (d, ${}^{3}J_{C-P}$ 19, C^{3}), 124.1 (d, ${}^{4}J_{C-P}$ 4, C^{5}), 114.2 (s, C^{15}), 114.0 (s, C^{13}), 96.0 (s, C^{12}), 85.3 (s, C^{11}), 64.2 (s, C^7), 61.2 (d, ${}^{2}J_{C-P}$ 6, C^9), 55.3 (s, C^{17}), 16.4 (d, ${}^{3}J_{C-P}$ 6, C^{10}), 13.4 (d, ${}^{1}J_{C-P}$ 104, C^{8} ; ³¹P NMR (162 MHz, CDCl₃, δ): +38.6; m/z (HRMS⁺) 346.1228 [M + H]⁺ (C₁₈H₂₁O₄NP requires 346.1208).

Ethyl(6-(ethyl-methanesulfonate)-4-[2-(4-methoxyphenyl)ethynyl]pyridin-2-

yl)(methyl)phosphinate

Ethyl(6-(hydroxymethyl)-4-[2-(4-methoxyphenyl)ethynyl]pyridine-2-

yl)(methyl)phosphinate (128 mg, 0.37 mmol) was dissolved in anhydrous THF (3 mL) and NEt₃ (0.18 mL, 1.3 mmol) was added. The mixture was stirred at 5 °C and methanesulfonyl chloride (43 μ L, 0.56 mmol) was added. The reaction was monitored by TLC (silica; CH₂Cl₂ : 10 % CH₃OH, *R_f*(product) = 0.65, *R_f*(reactant) = 0.20) and stopped after 15 min. The solvent was removed under reduced pressure and the residue dissolved in CH₂Cl₂ (15 mL) and washed with NaCl solution (saturated, 10 mL). The aqueous layer was re-extracted with CH₂Cl₂ (3 × 10 mL) and the organic layers combined, dried over MgSO₄ and the solvent removed under reduced pressure to leave a colorless oil that was used directly to prepare the ethyl ester of L^{2b} without further purification (128 mg, 81 %); ¹H NMR (400 MHz, CDCl₃, δ): 8.11 (1H, dd, ³*J*_{H-F} 6.0, ⁴*J*_{H-H} 1.5, H³), 7.65 (1H, bs, H⁵), 7.52 (2H, d, ³*J*_{H-H} 8.9, H¹⁴), 6.93 (2H, d, ³*J*_{H-H} 8.9, H¹⁵), 5.39 (2H, s, H⁷), 4.20 – 4.10 (1H, m, H⁹), 3.95 – 3.88 (1H, m, H⁹), 3.86 (3H, s, H¹⁷), 3.16 (3H, s, H¹⁸) 1.80 (3H, d, ²*J*_{H-P} 15.1, H⁸), 1.31 (3H, t, ³*J*_{H-H} 7.1, H¹⁰); *m/z* (HRMS⁺) 446.0804 [M + Na]⁺ (C₁₉H₂₂O₆SNPNa requires 446.0803); *R_f* = 0.65 (silica, CH₂Cl₂ : 10 % CH₃OH).

23

Tri-ethyl phenylphosphinate ester of L^{2a}

1,4,7-Triazacyclononane (10 mg, 0.078 mmol) and ethyl-[6-(bromomethyl)-4-[2-(4methoxyphenyl)ethynyl]pyridin-2-yl](phenyl)phosphinate (110 mg, 0.234 mmol) were dissolved in anhydrous CH₃CN (5 mL) and K₂CO₃ (32 mg, 0.234 mmol) was added. The mixture was stirred under argon at 78 °C and monitored by TLC (silica; CH_2Cl_2 : 10 % CH_3OH , R_4 (product) = 0.06, R_4 (reactant = 0.85). After 16 h the reaction was cooled and the solution decanted from excess potassium salts. The solvent was removed under reduced pressure and the crude material purified by column chromatography (silica, CH₂Cl₂ : CH₃OH 0 - 30 % in 1 % increments) to give a yellow oil (23 mg, 23 %): ¹H NMR (CDCl₃, δ): 8.03 (3H, dd, ³J_{H-P} 6.0 Hz, H³), 7.94 (6H, dd, ³J_{H-P} 12.4 Hz, ³J_{H-H} 6.8 Hz, PhH^o), 7.58 (3H, s, H⁵), 7.45 (6H, d, ³J_{H-H} 8.8 Hz, ArH^m), 7.42 (3H, t, ³J_{H-H} 6.8 Hz, PhH^p), 7.37 (6H, td, ³J_{H-H}, 6.8 Hz, ⁴J_{H-P} 3.6 Hz, PhH^m), 6.87 (6H, d, ${}^{3}J_{H-H}$ 8.8 Hz, ArH^o), 4.10 (6H, qd, ${}^{3}J_{H-H}$ 7.2 Hz, ${}^{3}J_{H-P}$ 4.2 Hz, CH₂OP), 3.83 (6H, s, CH₂N), 3.82 (9H, s, OMe), 2.74 (12H, br s, ring CHN), 1.33 (9H, t, ${}^{3}J_{H-H}$ 7.2 Hz, CH₂Me); ${}^{31}P$ NMR (CDCl₃, δ): +26.6; m/z (HRMS⁺) 1297.486 $[M + H]^+$ (C₇₅H₇₆O₉N₆P₃ requires 1297.488); $R_f = 0.06$ (silica, CH₂Cl₂ : 10 % MeOH).

$[Eu \cdot L^{2a}]$

The tri-ethyl phenylphosphinate ester of L^{2a} , (10 mg, 7.7 µmol) was dissolved in CD₃OD (3 mL) and NaOD (0.1 M in D₂O, 1 mL) was added. The solution was stirred at 60 °C and monitored by ¹H-NMR (loss of CH₃CH₂ peaks at 4.10 and 1.33 ppm) and ³¹P-NMR (reactant 26.6 ppm, product 17.5 ppm) and stopped after 16 h. The pH of the solution was adjusted to 7 by addition of HCl (1M). Eu(OAc)₃ (3.4 mg, 8.5 µmol) in a H₂O : CH₃OH solution (0.5 mL, 1:1 v/v) was added and the solution was stirred at 50 °C for 24 h. The solvent was removed under reduced pressure and the

crude material purified by column chromatography (silica, $CH_2Cl_2 : 5 \% CH_3OH$) to give a white solid (2.5 mg, 24%); m/z (HRMS⁺) 1361.283 [M(¹⁵¹Eu) + H]⁺ (C₆₉H₆₁O₉N₆P₃¹⁵¹Eu requires 1361.291), 1363.299 [M(¹⁵³Eu) + H]⁺ (C₆₉H₆₁O₉N₆P₃¹⁵³Eu requires 1363.293); ³¹P NMR (CD₃OD, δ): +17.5; $R_f = 0.25$ (silica, $CH_2Cl_2 : 10 \%$ MeOH). $\tau_{MeOH} = 1.30$ ms, $\Phi_{MeOH}^{em} = 52 \pm 10 \%$; ε_{MeOH} (332 nm) = 58, 000 M⁻¹ cm⁻¹; $t_R = 11.5$ min.

$[Tb \cdot L^{2a}]$

An analogous procedure to that described for the synthesis of $[Eu \cdot L^{2a}]$ was followed using the tri-ethyl phenylphosphinate ester of L^{2a} , (10 mg, 7.7 µmol) and Tb(OAc)₃ (3.1 mg, 7.7 µmol) to give a white solid (2.9 mg, 29 %); m/z (HRMS⁺) 1369.301 $[M(^{159}Tb) + H]^+$ (C₆₉H₆₁O₉N₆P₃¹⁵⁹Tb requires 1369.296); $R_f = 0.25$ (silica, CH₂Cl₂ : 10 % MeOH), t_R (*Method D*) = 11.5 min.

Tri-ethyl methylphosphinate ester of L^{2b}

1,4,7-Triazacyclononane (14 mg, 0.108 mmol) and ethyl(6-(ethyl methanesulfonate)-4-[2-(4-methoxyphenyl)ethynyl]pyridin-2-yl)(methyl)phosphinate (128 mg, 0.302 mmol) were dissolved in anhydrous CH₃CN (5 mL) and K₂CO₃ (48 mg, 0.346 mmol) was added. The mixture was stirred under argon at 78 °C. After 12 h the reaction was cooled and the solution decanted from excess potassium salts. The solvent was removed under reduced pressure and the crude material purified by column chromatography (silica, CH₂Cl₂ : CH₃OH 0 – 30 % in 5 % increments) to give a pale yellow oil (30 mg, 25 %): ¹H NMR (400 MHz, CDCl₃, δ) 8.01 (3H, d, ³*J*_{H-P} 5.1, H³), 7.72 (3H, bs, H⁵), 7.49 (6H, d, ³*J*_{H-H} 8.8, H¹⁴), 6.91 (6H, d, ³*J*_{H-H} 8.8, H¹⁵), 4.17 – 4.07 (3H, m, H⁹), 3.92 – 3.87 (3H, m, H⁹), 3.86 (6H, s, H⁷ (peak overlaps)) 3.85 (9H, s, H¹⁷), 2.99 (12H, br s, ring Hs), 1.78 (9H, d, ²*J*_{H-P} 15.0, H⁸), 1.27 (9H, t, ³*J*_{H-H} 7.1, H¹⁰); ¹³C NMR (176 MHz CDCl₃, δ): 160.8 (d, ³*J*_{C-P} 18, C⁶), 159.6 (s, C¹⁶), 152.8 (d, ¹*J*_{C-P} 154, C²), 133.1 (s, C¹⁴), 133.0 (bm, C⁴), 128.1 (bm, C³), 124.9 (bm, C⁵), 113.4 (s, C¹⁵), 113.2 (s, C¹³), 97.2 (s, C¹²), 85.5 (s, C¹¹), 63.1 (s, C⁷), 61.0 (d, ²*J*_{C-P} 6, C⁹), 54.4 (s, C¹⁷), 53.0 – 46.0 (br m, ring Cs), 15.6 (d, ³*J*_{C-P} 6, C¹⁰), 12.4 (d, ¹*J*_{C-P} 104, C⁸); ³¹P NMR (162 MHz, CDCl₃, δ): +38.7; *m/z* (HRMS⁺) 1111.4430 [M + H]⁺ (C₆₀H₇₀O₉N₆P₃ requires 1111.4417).

 $[Eu.L^{2b}]$

The tri-ethyl methylphosphinate ester of L^{2b} (17 mg, 15.3 µmol) was dissolved in CD₃OD (3 mL) and NaOH (0.1 M in D₂O, 1 mL) was added. The solution was stirred at 60 °C and monitored by ¹H-NMR (loss of CH_3CH_2 peaks) and ³¹P-NMR (reactant 38.7 ppm, product 25.9 ppm) and stopped after 16 h. The pH of the solution was

adjusted to 7 by addition of HCl (1 M). Eu(OAc)₃ (7.0 mg, 21.5 µmol) in a H₂O: CH₃OH solution (0.5 mL, 1:1 v/v) was added and the solution was stirred at 50 °C for 24 h. The solvent was removed under reduced pressure and the crude material purified by column chromatography (silica, CH₂Cl₂ : 7 % CH₃OH) to give a white solid (10 mg, 44 %); ¹H NMR (600 MHz, CD₃OD, δ): 8.07, 7.56, 7.04, 6.88, 6.51, 5.48, 4.68, 4.31, 3.87, 3.76, 3.29, 2.14, 1.63, 1.46, 1.42, 1.27, 0.85, -0.43, -1.15, -1.49, -5.00; ³¹P NMR (162 MHz CD₃OD, δ): +40.4; *m/z* (HRMS⁺) 1177.2458 [M(¹⁵³Eu) + H]⁺ (C₅₄H₅₅O₉N₆P₃¹⁵³Eu requires 1177.2463); *R_f* = 0.30 (silica, CH₂Cl₂ : 10 % MeOH); τ_{MeOH} = 1.07 ms; Φ_{MeOH}^{em} = 44 ± 10%; ε_{MeOH} (332 nm) = 58,100 M⁻¹ cm⁻¹. *t*_R = 9.6 min.

$[Yb.L^{2b}]$

An analogous procedure to that described for the synthesis of $[Eu \cdot L^{OMe}]$ was followed using the tri-ethyl methylphosphinate ester of L^{2b} (5.8 mg, 5.7 µmol) and Yb(OAc)₃ (2.6 mg, 6.1 µmol) to give the title compound as a white solid (2.6 mg, 38 %); ¹H NMR (600 MHz, CD₃OD, δ): 20.72, 11.38, 10.89, 8.26, 7.36, 6.47, 5.33, 4.86, 4.61, 4.32, 4.30, 4.07, 3.29, 2.14, 2.02, 1.59, 1.28, 0.88, 0.08, -4.11, -5.73, -6.24, -15.20; m/z (HRMS⁺) 1220.2511 [M(¹⁷⁴Yb) + Na]⁺ (C₅₄H₅₄O₉N₆P₃¹⁷⁴YbNa requires 1220.2462); $R_f = 0.30$ (silica, CH₂Cl₂ : 10 % MeOH); ε_{MeOH} (332 nm) = 59,460 M⁻¹ cm⁻¹.

$[Gd.L^{2b}]$

An analogous procedure to that described for the synthesis of $[Eu.L^{2b}]$ was followed using the tri-ethyl methylphosphinate ester of L^{2b} (7.0 mg, 6.8 µmol) and Gd(OAc)₃ (2.4 mg, 7.2 µmol) to give the title compound as a white solid (3.5 mg, 43 %); *m/z* (HRMS⁺) 1204.2303 $[M(^{158}Gd) + Na]^+$ (C₅₄H₅₄O₉N₆P₃¹⁵⁸GdNa requires 1204.2304); *R_f* = 0.30 (silica, CH₂Cl₂ : 10 % MeOH).

(6-[Ethoxy(phenyl)phosphoryl]-4-[2-(4-(2-[2-(2-

methoxyethoxy)ethoxy]ethoxy)phenyl)ethynyl]pyridin-2-yl)methyl acetate

(4-Bromo-6-[ethoxy(phenyl)phosphoryl]pyridine-2-yl)methyl acetate, (540 mg, 1.36 mmol) was dissolved in dry THF (8 mL) and the solution was degassed (freeze-thaw cycle) three times. [2-(4-(2-[2-(2-Methoxyethoxy]ethoxy]ethoxy]phenyl]ethynyl]trimethylsilane* (456 mg, 1.36 mmol) and NEt₃ (4 mL) were added and the solution was degassed once. Tetrakis(triphenylphosphine)palladium(0) (156 mg, 0.136 mmol) and CuI (26 mg, 0.136 mmol) were added and the solution was degassed a further three times. The solution was stirred under argon and tetrabutylammonium fluoride solution (1 M in THF, 1.9 mL, 2.04 mmol) was added. A color change from yellow to a dark blue was observed and the mixture was stirred at 65 °C under argon. The reaction was monitored by TLC (silica; CH_2Cl_2 : 5 % CH_3OH , R_f (product) = 0.31, R_f (reactant) = (0.46) and stopped after 3 h. The solvent was removed under reduced pressure and the crude material purified by column chromatography (silica, CH_2Cl_2 : CH_3OH , 0 – 1.5 % in 0.1 % increments) to give a yellow oil (575 mg, 73%); ¹H NMR (CDCl₃, δ): 8.05 (1H, dd, ³*J*_{H-P} 6.0 Hz, ⁴*J*_{H-H} 1.6 Hz, H³), 7.96 (2H, dd, ³*J*_{H-H} 8.4 Hz, ³*J*_{H-P} 12.4 Hz, PhH^o), 7.50 (1H, t, ³J_{H-H} 8.4 Hz, PhH^p), 7.44 (2H, d, ³J_{H-H} 8.8 Hz, ArH^m), 7.43 (2H, td, ³*J*_{H-H} 8.4 Hz, ⁴*J*_{H-P} 4.2 Hz, PhH^{*m*}), 7.42 (1H, d, ⁴*J*_{H-H} 1.6 Hz, H⁵), 6.88 (2H, d, ³*J*_{H-H} 8.8 Hz, ArH^o), 5.21 (2H, s, CH₂O), 4.12 (2H, qd, ³J_{H-H} 5.6 Hz, ³J_{H-P} 4.8 Hz, CH₂OP), 4.11 (2H, t, ³*J*_{H-H} 4.8 Hz, ArOCH₂), 3.83 (2H, t, ³*J*_{H-H} 4.8 Hz, ArOCH₂*CH*₂), 3.71 (2H, t, ³*J*_{H-H} 4.8 Hz, OCH₂), 3.65 (2H, t, ³*J*_{H-H} 4.8 Hz, OCH₂), 3.63 (2H, t, ³*J*_{H-H} 4.8 Hz, OCH₂), 3.61 (2H, t, ³J_{H-H} 4.8 Hz, OCH₂), 3.34 (3H, s, MeO), 2.13 (3H, s), 1.34 (3H, t, ${}^{3}J_{\text{H-H}}$ 5.6 Hz, CH₂Me); 13 C NMR (CDCl₃, δ): 170.6 (s, C^{C=O(OAc)}), 160.1 (s, ArC^{*i*}), 157.3 (d, ³J_{C-P} 20 Hz, C⁶), 154.7 (d, ¹J_{C-P} 165 Hz, C²), 133.8 (s, ArC^{*m*}), 133.2 $(d, {}^{2}J_{C-P} 12 \text{ Hz}, C^{4}), 132.7 (d, {}^{4}J_{C-P} 5 \text{ Hz}, PhC^{p}), 132.6 (d, {}^{2}J_{C-P} 10 \text{ Hz}, PhC^{o}), 130.1 (d, {}^{4}J_{C-P} 10 \text$ ${}^{1}J_{C-P}$ 139 Hz, PhC^{*i*}), 128.8 (d, ${}^{3}J_{C-P}$ 22 Hz, C³), 128.6 (d, ${}^{3}J_{C-P}$ 12 Hz, PhC^{*m*}), 124.6 (d, ${}^{4}J_{C-P}$ 3 Hz, C⁵), 115.1 (s, ArC^o), 114.1 (s, ArC^p), 96.2 (s, alkyne C), 85.5 (d, ${}^{4}J_{C-P}$ 2, alkyne C), 72.2 (s, MeOCH₂), 71.1 (s, CH₂O), 70.9 (s, CH₂O), 70.8 (s, CH₂O), 69.8 (s, CH₂O), 67.8 (ArOCH₂), 66.5 (s, CH₂OAc), 62.1 (d, ${}^{2}J_{C-P}$ 6 Hz, CH₂OP), 59.3 (s, MeO), 21.1 (s, $C^{Me(OAc)}$), 16.7 (CH₂Me); ³¹P NMR (CDCl₃, δ): +26.0; m/z (HRMS⁺) 582.2260 $[M + H]^+$ (C₃₁H₃₇O₈NP requires 582.2257); $R_f = 0.31$ (silica, CH₂Cl₂ : 5 % MeOH).

(4-(2-[4-(-([(Tert-butoxy)carbonyl]amino)propoxy)phenyl]ethynyl)-6-

[ethoxy(phenyl)phosphoryl]pyridin-2-yl)methyl acetate

(4-Bromo-6-[ethoxy(phenyl)phosphoryl]pyridine-2-yl)methyl acetate, (170 mg, 0.43 mmol) was dissolved in dry THF (3 mL) and the solution was degassed (freeze-thaw cycle) three Tert-butyl N-(3-(4-[2times. trimethylsilyl)ethynyl]phenoxy)propyl)carbamate* (148 mg, 0.43 mmol) and NEt₃ (1.5)mL) were added and the solution was degassed once. Tetrakis(triphenylphosphine)palladium(0) (49 mg, 0.043 mmol) and CuI (8 mg, 0.043

mmol) were added and the solution was degassed a further three times. The solution was stirred under argon and tetrabutylammonium fluoride solution (1 M in THF, 0.6 mL, 0.64 mmol) was added. A colour change from yellow to a dark blue was observed and the mixture was stirred at 65 °C under argon. The reaction was followed using TLC (silica; CH_2Cl_2 : 5 % CH_3OH , R_f (product) = 0.42, R_f (reactant) = 0.46) and stopped after 3 h. The solvent was removed under reduced pressure and the crude material purified by column chromatography (silica, CH_2Cl_2 : $CH_3OH 0 - 1.5$ % in 0.1 % increments) to give a yellow oil (174 mg, 69 %); ¹H NMR (CDCl₃, δ): 8.09 (1H, dd, ${}^{3}J_{H-P}$ 6.0 Hz, ${}^{4}J_{H-H}$ 2.0 Hz, H³), 7.99 (2H, dd, ${}^{3}J_{H-H}$ 8.4 Hz, ${}^{3}J_{H-P}$ 12.4 Hz, PhH^o), 7.54 (1H, t, ³J_{H-H} 8.4 Hz, PhH^p), 7.47 (2H, d, ³J_{H-H} 8.4 Hz, ArH^m), 7.45 (2H, td, ${}^{3}J_{\text{H-H}}$ 8.4 Hz, ${}^{4}J_{\text{H-P}}$ 4.2 Hz, PhH^m), 7.45 (1H, d, ${}^{4}J_{\text{H-H}}$ 2.0 Hz, H⁵), 6.88 (2H, d, ${}^{3}J_{\text{H-H}}$ _H 8.4 Hz, ArH^o), 5.24 (2H, s, CH₂O), 4.75 (1H, br s, CH₂NH), 4.14 (2H, qd, ³J_{H-H} 5.6 Hz, ³*J*_{H-P} 4.8 Hz, CH₂OP), 4.05 (2H, t, ³*J*_{H-H} 6 Hz, ArOCH₂), 3.33 (2H, m, CH₂NH), 2.17 (3H, s, COMe), 1.92 (2H, q, ${}^{3}J_{H-H}$ 6 Hz, $CH_{2}CH_{2}NH$), 1.44 (9H, s, CMe), 1.38 (3H, t, ${}^{3}J_{\text{H-H}}$ 5.6 Hz, CH₂Me); 13 C NMR (CDCl₃, δ): 170.7 (s, C^{C=O(OAc)}), 160.0 (s, ArC^{*i*}), 157.3 (d, ³*J*_{C-P} 20 Hz, C⁶), 156.2 (s, CO), 154.6 (d, ¹*J*_{C-P} 167 Hz, C²), 133.9 (s, ArC^m), 133.2 (d, ²J_{C-P} 12 Hz, C⁴), 132.7 (d, ⁴J_{C-P} 5 Hz, PhC^p), 132.6 (d, ²J_{C-P} 10 Hz, PhC^o), 130.1 (d, ¹J_{C-P} 138 Hz, PhCⁱ), 129.1 (d, ³J_{C-P} 23 Hz, C³), 128.6 (d, ³J_{C-P} 13 Hz, PhC^m), 124.6 (d, ${}^{4}J_{C-P}$ 3 Hz, C⁵), 114.9 (s, ArC^o), 114.1 (s, ArC^p), 96.2 (s, alkyne C), 85.5 (d, ${}^{4}J_{C-P}$ 2 Hz, alkyne C), 79.5 (s, Me₃C), 66.5 (s, CH₂O), 66.1 (s, ArOCH₂), 62.1 (d, ²J_{C-P} 6 Hz, CH₂OP), 38.1 (s, CH₂NH), 29.7 (s, CH₂CH₂NH), 28.6 (s, Me), 21.1 (s, $C^{Me(OAc)}$), 16.7 (CH₂Me); ³¹P NMR (CDCl₃, δ): +26.1; m/z (HRMS⁺) 593.2435 $[M + H]^+$ (C₃₂H₃₈O₇N₂P requires 593.2417); $R_f = 0.42$ (silica, CH₂Cl₂ : 5 % MeOH).

Ethyl-[6-(hydroxymethyl)-4-[2-(4-(2-[2-(2-methoxyethoxy)-

ethoxy]ethoxy)phenyl)ethynyl]pyridin-2-yl](phenyl)phosphinate

(6-[Ethoxy(phenyl)phosphoryl]-4-[2-(4-(2-[2-(2-

methoxyethoxy]ethoxy]ethoxy]phenyl]ethynyl]pyridin-2-yl)methyl acetate, (50 mg, 0.086 mmol) was dissolved in anhydrous CH₃CH₂OH (200 proof, 2.5 mL). A catalytic amount of sodium metal (~ 2 mg) was added and the solution was stirred at 40 °C under argon. The reaction was monitored by TLC (silica; CH₂Cl₂ : 5 % CH₃OH, R_{4} (product) = 0.19, R_{4} (reactant) = 0.31) and stopped after 40 min. To the crude reaction mixture CH₂Cl₂ (25 mL) was added and sodium salts were removed by filtration through a short silica plug. The silica was rinsed with CH₂Cl₂ : 10 % CH₃CH₂OH (300 mL) to ensure all material was desorbed from the silica. The solvent was removed under reduced pressure and the crude material was purified by column chromatography (silica, CH_2Cl_2 : $CH_3OH 0 - 2.4$ % in 0.2 % increments) to give a colorless oil (40 mg, 87 %); ¹H NMR (CDCl₃, δ): 8.06 (1H, dd, ³J_{H-P} 6.0 Hz, ⁴J_{H-H} 1.6 Hz, H³), 7.95 (2H, dd, ³J_{H-H} 8.4 Hz, ³J_{H-P} 12.4 Hz, PhH^o), 7.53 (1H, t, ³J_{H-H} 8.4 Hz, PhH^p), 7.44 (2H, d, ³J_{H-H} 8.8 Hz, ArH^m), 7.43 (2H, td, ³J_{H-H} 8.4 Hz ⁴J_{H-P} 4.2 Hz, PhH^{*m*}), 7.39 (1H, d, ${}^{4}J_{H-H}$ 1.6 Hz H⁵), 6.90 (2H, d, ${}^{3}J_{H-H}$ 8.8 Hz, ArH^{*o*}), 4.75 (2H, s, CH₂O), 4.14 (2H, qd, ³J_{H-H} 5.6 Hz, ³J_{H-P} 4.8, CH₂OP), 4.11 (2H, t, ³J_{H-H} 4.8 Hz, ArOCH₂), 3.86 (2H, t, ³*J*_{H-H} 4.8 Hz, ArOCH₂*CH*₂), 3.73 (2H, t, ³*J*_{H-H} 4.8 Hz, CH₂O), 3.68 (2H, t, ³*J*_{H-H} 4.8 Hz, CH₂O), 3.66 (2H, t, ³*J*_{H-H} 4.8 Hz, CH₂O), 3.63 (2H, t, ³*J*_{H-H} 4.8 Hz, CH₂O), 3.37 (3H, s, MeO), 1.37 (3H, t, ${}^{3}J_{H-H}$ 5.6, Me); ${}^{13}C$ NMR (CDCl₃, δ): 160.4 (d, ${}^{3}J_{C-P}$ 19 Hz, C⁶), 159.9 (s, ArC^{*i*}), 154.0 (d, ${}^{1}J_{C-P}$ 165 Hz, C²), 133.6 (s, ArC^m), 133.0 (d, ${}^{2}J_{C-P}$ 12 Hz, C⁴), 132.6 (d, ${}^{4}J_{C-P}$ 5 Hz, PhC^p), 132.3 (d, ${}^{2}J_{C-P}$ 10 Hz, PhC^o), 129.7 (d, ¹J_{C-P} 128 Hz, PhCⁱ), 128.6 (d, ³J_{C-P} 22 Hz, C³), 128.4 (d, ³J_{C-P} 12 Hz, PhC^m), 123.8 (d, ⁴J_{C-P} 3 Hz, C⁵), 114.9 (s, ArC^o), 113.8 (s, ArC^p), 96.0 (s, alkyne C),

85.3 (d, ${}^{4}J_{C-P}$ 2 Hz, alkyne C), 71.9 (s, *CH*₂OMe), 70.9 (s, CH₂O), 70.7 (s, CH₂O), 70.6 (s, CH₂O), 69.6 (s, CH₂O), 67.5 (CH₂O), 63.9 (s, CH₂OH), 61.8 (d, ${}^{2}J_{C-P}$ 6 Hz, CH₂OP), 59.1 (s, MeO), 16.5 (Me); 31 P NMR (CDCl₃, δ): +26.6; *m/z* (HRMS⁺) 540.2142 [M + H]⁺ (C₂₉H₃₅O₇NP requires 540.2151); *R_f* = 0.19 (silica, CH₂Cl₂ : 5 % MeOH).

Ethyl-[6-(bromomethyl)-4-[2-(4-(2-[2-(2-

methoxyethoxy)ethoxy)phenyl)ethynyl]pyridin-2-yl](phenyl)phosphinate Ethyl-[6-(hydroxymethyl)-4-[2-(4-(2-[2-(2-methoxyethoxy)-

ethoxy]ethoxy)phenyl)ethynyl]pyridin-2-yl](phenyl)phosphinate, (116 mg, 0.22 mmol) was dissolved in dry CH₂Cl₂ (5 mL) and the solution was stirred at 0 °C under argon. PBr₃ (30 μ L, 0.33 mmol) was added and the solution was stirred for a further 1 h at 0 °C. The reaction mixture was allowed to warm to room temperature and monitored by TLC (silica; CH_2Cl_2 : 5 % CH_3OH , R_4 (product) = 0.50, R_4 (reactant) = 0.19). After 1 h at 20 °C the crude reaction mixture was immediately purified by column chromatography (silica, CH₂Cl₂ : 1 % CH₃OH) to give a yellow oil (95 mg, 73 %); ¹H NMR (CDCl₃, δ): 8.00 (1H, dd, ³J_{H-P} 6.0 Hz, ⁴J_{H-H} 1.2, H³), 7.94 (2H, dd, ${}^{3}J_{H-H}$ 8.8 Hz, ${}^{3}J_{H-P}$ 12.4 Hz, PhH^o), 7.51 (1H, d, ${}^{4}J_{H-H}$ 1.2 Hz, H⁵), 7.48 (1H, t, ${}^{3}J_{H-H}$ 8.8 Hz, PhH^{*p*}), 7.41 (2H, d, ³*J*_{H-H} 8.8 Hz, ArH^{*m*}), 7.40 (2H, td, ³*J*_{H-H} 8.8 Hz, ⁴*J*_{H-P} 4.2 Hz, PhH^m), 6.85 (2H, d, ³J_{H-H} 8.8 Hz, ArH^o), 4.48 (2H, s, CH₂Br), 4.09 (2H, qd, ³J_{H-H}) 7.2 Hz, ³J_{H-P} 4.8 Hz, CH₂OP), 4.08 (2H, t, ³J_{H-H} 4.8 Hz, ArOCH₂), 3.81 (2H, t, ³J_{H-H} 4.8 Hz, ArOCH₂CH₂), 3.67 (2H, t, ³J_{H-H} 4.8 Hz, CH₂O), 3.63 (2H, t, ³J_{H-H} 4.8 Hz, CH₂O), 3.59 (2H, t, ³*J*_{H-H} 4.8 Hz, CH₂O), 3.49 (2H, t, ³*J*_{H-H} 4.8 hz, CH₂O), 3.31 (3H, s, MeO), 1.32 (3H, t, ${}^{3}J_{H-H}$ 7.2 Hz, Me); ${}^{13}C$ NMR (CDCl₃, δ): 160.1 (d, ${}^{3}J_{C-P}$ 19 Hz, C^{6}), 159.9 (s, ArCⁱ), 154.3 (d, ¹J_{C-P} 165 Hz, C²), 133.6 (s, ArC^m), 133.3 (d, ²J_{C-P} 12 Hz, C⁴), 132.4 (d, ${}^{4}J_{C-P}$ 5 Hz, PhC^{*p*}), 132.3 (d, ${}^{2}J_{C-P}$ 10 Hz, PhC^{*o*}), 129.7 (d, ${}^{1}J_{C-P}$ 128 Hz, PhC^{*i*}), 128.6 (d, ${}^{3}J_{C-P}$ 22 Hz, C³), 128.4 (d, ${}^{3}J_{C-P}$ 13 Hz, PhC^{*m*}), 126.7 (d, ${}^{4}J_{C-P}$ 3 Hz, C⁵), 114.9 (s, ArC^{*o*}), 113.8 (s, ArC^{*p*}), 96.3 (s, alkyne C), 84.9 (d, ${}^{4}J_{C-P}$ 2 Hz, alkyne C), 71.9 (s, *CH*₂OMe), 70.9 (s, CH₂O), 70.7 (s, CH₂O), 70.6 (s, CH₂O), 69.6 (s, CH₂O), 67.5 (ArOCH₂), 61.0 (d, ${}^{2}J_{C-P}$ 5 Hz, CH₂OP), 59.1 (s, MeO), 33.1 (s, Me), 16.6 (Me); ${}^{31}P$ NMR (CDCl₃, δ): +24.8; *m*/*z* (HRMS⁺) 602.1302 [M (${}^{79}Br$) + H]⁺ (C₂₉H₃₄O₆NP⁷⁹Br requires 602.1302), *R*_f = 0.50 (silica, CH₂Cl₂ : 5 % MeOH).

Tert-butoxycarbonyl-protected di-ethyl phenylphosphinate ester precursor to L^{2c}

Tert-butyl-1,4,7-triazacyclononane-1-carboxylate (22 mg, 0.096 mmol) and ethyl-[6-(bromomethyl)-4-[2-(4-(2-[2-(2-

methoxyethoxy)ethoxy]ethoxy)phenyl)ethynyl]pyridin-2-yl](phenyl)phosphinate, (95 mg, 0.16 mmol) were dissolved in CH₃CN (5 mL) and K₂CO₃ (27 mg, 0.19 mmol) was added. The mixture was stirred under argon at 50 °C and monitored by TLC (silica; CH₂Cl₂ : 10 % CH₃OH, R_f (product) = 0.41, R_f (reactant *54*) = 0.81). After 1 h all of the starting material had been consumed and the reaction was cooled and the solution decanted from excess potassium salts. The solvent was removed under reduced pressure and the crude material purified by column chromatography (silica, CH₂Cl₂ : CH₃OH 0 – 5 % in 0.5 % increments) to give a yellow oil (58 mg, 59 %): ¹H NMR (CDCl₃, δ): 8.01 (2H, m, H³), 7.95 (4H, m, PhH^o), 7.56 (2H, br s, H⁵), 7.45 (2H, m, PhH^p), 7.41 (4H, d, ³J_{H-H} 8.8 Hz, ArH^m), 7.40 (4H, m, PhH^m), 6.87 (4H, d, ³J_{H-H} 8.8 Hz, ArH^o), 3.84 (4H, t, ³J_{H-H} 4.8 Hz, ArOCH₂CH₂), 3.72 (4H, t, ³J_{H-H} 4.8 Hz, CH₂O), 3.66 (4H, t, ³J_{H-H} 4.8 Hz, CH₂O), 3.63 (4H, t, ³J_{H-H} 4.8 Hz, CH₂O), 3.53 (4H, t, ³J_{H-H} 4.8 Hz, CH₂O), 3.24 (4H, br m, ring NCH), 2.97 (4H, br m, ring NCH), 2.53 (4H, br m, ring NCH), 1.45 (9H, s, Me), 1.33 (6H, m, Me); ¹³C

NMR (CDCl₃, δ): 161.6, 161.4 (d, ${}^{3}J_{C-P}$ 19 Hz, C⁶), 159.7, 159.6 (s, CO), 155.5 (s, ArC^{*i*}), 153.8, 153.7 (d, ${}^{1}J_{C-P}$ 165 Hz, C²), 133.6, 133.5 (s, ArC^{*m*}), 133.3 (br m, C⁴), 132.4 (br m, PhC^{*p*}), 132.3 (br m, PhC^{*o*}), 130.1 (d, ${}^{1}J_{C-P}$ 145 Hz, PhC^{*i*}), 128.1 (br m, C³), 128.0 (br m, PhC^{*m*}), 126.2, 125.9 (d, ${}^{4}J_{C-P}$ 3 Hz, C⁵), 114.9, 114.7 (s, ArC^{*o*}), 114.1, 114.0 (s, ArC^{*p*}), 95.4, 95.1 (s, alkyne C), 85.7, 85.5 (br m, alkyne C), 71.9 (s, MeO*CH*₂), 70.8 (s, CH₂O), 70.6 (s, CH₂O), 70.5 (s, CH₂O), 69.6 (s, CH₂O), 67.5 (ArOCH₂), 63.0 – 49.1 (br m, ring NCH₂), 61.6 (br m, CH₂OP), 59.0 (s, MeO), 53.4 (br m, pyCH₂), 28.7, 28.6 (s, Me), 16.5 (CH₂*Me*); ³¹P NMR (CDCl₃, δ): +26.6, +26.5; *m/z* (HRMS⁺) 1272.584 [M + H]⁺ (C₆₉H₈₈O₁₄N₅P₂ requires 1272.580), *R_f* = 0.41 (silica, CH₂Cl₂ : 10 % MeOH).

Triethyl phosphinate ester of L^{2c}

The tert-butoxycarbonyl-protected di-ethyl phenylphosphinate ester prepared above (47 mg, 0.037 mmol) was dissolved in anhydrous CH_2Cl_2 (1 mL) and trifluoroacetic acid (0.5 mL) was added. The solution was stirred under argon at 23 °C for 30 min. TLC (silica; CH_2Cl_2 : 10 % CH_3OH , R_f (product) = 0.10, R_f (reactant) = 0.41) and HRMS⁺ (1172.528 [M + H]⁺ C₆₄H₈₀O₁₂N₅P₂ requires 1172.527) were used to confirm protecting group removal had gone to completion. The solvent was removed under reduced pressure and the residue re-dissolved in CH_2Cl_2 (1 mL), which was again removed under reduced pressure. This process was repeated 5 times to ensure removal of excess trifluoroacetic acid. The residue was dissolved in CH_3CN (4 mL) and tertbutyl N-[3(4-(2-[2-(bromomethyl)-6-[ethoxy(phenyl)phosphoryl]pyridin-4-yl]ethynyl)phenoxy)propyl]carbamate, (18 mg, 0.029 mmol) and K₂CO₃ (15 mg, 0.11 mmol) were added. The solution was stirred at 50 °C and the reaction monitored by LC-MS and TLC (silica; $CH_2Cl_2 : 10$ % CH_3OH , R_f (product) = 0.20, R_f (reactant) = 0.73). After 30 min all of the starting bromide had been consumed and the reaction

was cooled and the solvent removed under reduced pressure. The crude residue was purified by column chromatography (silica, CH₂Cl₂ : CH₃OH 0 - 10 % in 0.5 % increments) to give a yellow oil (25 mg, 50 %); ¹H NMR (CDCl₃, δ): 8.07 (3H, d, ³J_H. P 6.0 Hz, H³), 7.85 (6H, dd, ³*J*_{*H*-*H*} 8.4 Hz ³*J*_{*H*-P} 12 Hz, H^o), 7.48 (3H, m, H⁵), 7.47 (3H, m, H^p), 7.46 (6H, d, ${}^{3}J_{H-H}$ 8.8 Hz, H¹²), 7.39 (6H, m, H^m), 6.90 (6H, d, ${}^{3}J_{H-H}$ 8.8 Hz, H¹³), 4.76 (1H, br s, H¹⁸'), 4.14 (6H, m, H⁷), 4.11 (4H, t, ³*J*_{H-H} 4.8 Hz, H¹⁵), 4.04 (2H, t, ${}^{3}J_{H-H}$ 6 Hz, H^{15'}), 3.94 (6H, br s, H¹), 3.87 (4H, t, ${}^{3}J_{H-H}$ 4.8 Hz, H¹⁶), 3.73 (4H, t, ${}^{3}J_{H-H}$ _H 4.8 Hz, H¹⁷), 3.68 (4H, t, ${}^{3}J_{H-H}$ 4.8 Hz, H¹⁸), 3.65 (4H, t, ${}^{3}J_{H-H}$ 4.8 Hz, H¹⁹), 3.54 (4H, t, ³J_{H-H} 4.8 Hz, H²⁰), 3.37 (6H, s, H²¹), 3.34 (2H, m, H^{17'}), 2.81 (12H, br m, ring Hs), 1.99 (2H, q, ³*J*_{H-H} 6 Hz, H^{16'}), 1.43 (9H, s, H^{21'}), 1.34 (9H, t, ³*J*_{H-H} 7.2 Hz, H⁸); ¹³C NMR (CDCl₃, δ): 160.8 (d, ³J_{C-P} 19 Hz, C⁶), 160.2 (s, C^{19'}), 156.2 (s, C¹⁴), 154.6 (d, ${}^{1}J_{C-P}$ 165 Hz, C²), 134.0 (s, C¹²), 133.9 (br m, C⁴), 132.9 (br m, C^p), 132.5 (d, ${}^{2}J_{C-P}$ 10 Hz, C^o), 130.2 (d, ¹J_{C-P} 138 Hz, Cⁱ), 128.8 (br m, C³), 128.7 (br m, C^m), 127.5 (br m, C⁵), 115.1 (s, C¹³), 113.9 (s, C¹¹), 97.0 (s, C¹⁰), 85.3 (s, C⁹), 79.6 (s, C^{20'}), 72.1 (s, C²⁰), 71.1 (s, C¹⁷), 70.9 (s, C¹⁸), 70.8 (s, C¹⁹), 69.8 (s, C¹⁶), 67.8 (C¹⁵), 65.9 (s, C^{15'}), 62.0 (d, ${}^{2}J_{C-P}$ 6 Hz, C⁷), 59.3 (s, C²¹), 52.3 (s, C¹), 53.0 – 46.0 (br m, ring Cs), 37.9 (s, $C^{17'}$), 29.7 (s, $C^{16'}$), 28.6 (s, $C^{21'}$), 16.8 (C^8); ³¹P NMR (CDCl₃, δ): +26.4; m/z (HRMS^+) 1704.741 $[\text{M} + \text{H}]^+$ (C₉₄H₁₁₃O₁₇N₇P₃ requires 1704.740), $R_f = 0.20$ (silica, CH₂Cl₂ : 10 % MeOH).

$[Eu \cdot L^{2c}]$

The tri-ethyl phenylphosphinate ester of L^{2c} , (25 mg, 0.015 mmol) was dissolved in anhydrous CH₂Cl₂ (1 mL) and trifluoroacetic acid (0.5 mL) was added. The solution immediately underwent a change from colorless to yellow and was stirred under argon at 23 °C for 30 min. TLC was used to confirm that all starting material had

been consumed. The solvent was removed under reduced pressure and the residue redissolved in CH₂Cl₂ (1 mL), which was again removed under reduced pressure. This process was repeated 5 times to ensure removal of excess trifluoroacetic acid. ¹H-NMR (loss of CH₃ peak at 1.43 ppm) and ESI-MS⁺ (802.8 $[M + 2H]^{2+}$, 803.8 $[M(^{13}C)]$ + 2H²⁺) was used to confirm removal of the *tert*-butoxycarbonyl group. The residue was dissolved in CD₃OD (2.5 mL) and D₂O (1.5 mL) was added. The solution was heated to 60 °C and NaOD solution was added (0.5 M, 0.5 mL). The reaction was monitored by ¹H-NMR (loss of CH_3CH_2 peaks at 4.14 and 1.34 ppm) and ³¹P-NMR (reactant 26.6 ppm, product 17.3 ppm) and stopped after 24 h. The pH of the solution was reduced to 7 by addition of HCl (1M). CH₃OH (1 mL) was added to ensure all material was in solution. Eu(OAc)₃ (7 mg, 0.016 mmol) in a H₂O : CH₃OH solution (0.5 mL, 1:1 v/v) was added and the solution was stirred at 50 °C for 14 h. The solvent was removed under reduced pressure and the crude material purified by column chromatography (silica, CH_2Cl_2 : 10 % CH_3OH : aq. NH_3 solution 0 – 1 % in 0.1 % increments) to give a white solid (9.1 mg, 34 %); m/z (HRMS⁺) 1668.498 [M – CF_3CO_2]⁺ (C₈₃H₉₀O₁₅N₇P₃¹⁵¹Eu requires 1668.490); δ_P (CD₃OD) +17.5; $R_f = 0.12$ (silica, CH₂Cl₂ : 10 % MeOH : NH₃ 1 %). τ_{MeOH} = 1.25 ms, $\tau_{H,O}$ = 0.96 ms, $\tau_{D,O}$ = 1.28 ms, $\Phi_{MeOH}^{em} = 55 \pm 10$ %; ε_{MeOH} (332 nm) = 60, 000 M⁻¹ cm⁻¹; t_R (Method D) = 11.5 min.

3. Synthesis of L³

Ethyl 4-((2-(ethoxy(phenyl)phosphoryl)-6-(hydroxymethyl)pyridin-4yl)ethynyl)benzoate

Ethyl (6-(hydroxymethyl)-4-(bromopyridin-2-yl)(phenyl)phosphinate (117 mg, 0.329 mmol) was dissolved in anhydrous THF (2 mL) and the solution was degassed (freeze-thaw cycle) three times. Ethyl 4-ethynylbenzoate (74 mg, 0.428 mmol) and triethylamine (0.23 mL, 1.65 mmol) were added and the solution was degassed again. [1,1-Bis(diphenylphosphino)ferrocene]dichloropalladium(II) (27 mg, 0.033 mmol) and CuI (6 mg, 0.033 mmol) were added and the resulting brown solution was stirred at 65 °C under argon for 22 h. The solvent was removed under reduced pressure and the brown residue was purified by column chromatography (silica, $CH_2Cl_2 : 0 - 2\%$ CH₃OH in 0.5% increments) to afford ethyl 4-((2-(ethoxy(phenyl)phosphoryl)-6-(hydroxymethyl)pyridin-4-yl)ethynyl)benzoate as a yellow oil (102 mg, 69%); ¹H NMR (600 MHz, CDCl₃, δ): 8.07 (1H, d, ${}^{3}J_{H-P}$ 6.1 Hz, H³), 8.03 (2H, d, ${}^{3}J_{H-H}$ 8.3 Hz, H¹⁸), 7.94 (2H, ddd, ³J_{H-P} 11.8 Hz, ³J_{H-H} 8.1 Hz, ⁴J_{H-H} 1.3 Hz, H⁹), 7.57 (2H, d, ³J_{H-H} 8.3 Hz, H¹⁷), 7.51 (2H, m, H⁵ and H¹¹), 7.45 (2H, m, H¹⁰), 4.77 (2H, m, H⁷), 4.38 (2H, q, ³*J*_{H-H} 7.1 Hz, H²¹), 4.14 (2H, m, H¹²), 4.03 (1H, br s, CH₂*OH*), 1.39 (3H, t, ³*J*_{H-H} 7.1 Hz, H²²), 1.36 (3H, t, ³*J*_{H-H} 7.1 Hz, H¹³); ¹³C NMR (151 MHz, CDCl₃, δ): 165.9 (C²⁰), 161.2 (d, ³*J*_{C-P} 19 Hz, C⁶), 153.7 (d, ¹*J*_{C-P} 166 Hz, C²), 132.8 (d, ⁴*J*_{C-P} 3 Hz, C¹¹), 132.4 $(d, {}^{2}J_{C-P} 10 \text{ Hz}, C^{9}), 132.0 (d, {}^{3}J_{C-P} 12 \text{ Hz}, C^{4}), 131.9 (C^{17}), 131.1 (C^{19}), 129.7 (C^{18}), 129.7 (C^{18$ 129.6 (d, ¹J_{C-P} 139 Hz, C⁸), 128.6 (d, ³J_{C-P} 13 Hz, C¹⁰), 128.5 (d, ²J_{C-P} 23 Hz C³), 126.2 (C^{16}), 124.2 (d, ${}^{4}J_{C-P}$ 2 Hz, C^{5}), 94.4 (C^{15}), 88.3 (C^{14}), 64.2 (C^{7}), 62.0 (d, ${}^{2}J_{C-P}$ 6 Hz, C¹²), 61.4 (C²¹), 16.6 (d, ³J_{C-P} 6 Hz, C¹³), 14.4 (C²²); ³¹P NMR (243 MHz, CDCl₃, δ): +25.3; *m*/*z* (HRMS⁺) 472.1269 [M + Na]⁺ (C₂₅H₂₄NO₅PNa requires 472.1290); *R_f* = 0.28 (silica, CH₂Cl₂ : 10% CH₃OH).

Ethyl 4-((2-(ethoxy(phenyl)phosphoryl)-6-((methylsulfonyloxy)methyl)pyridin-4yl)ethynyl)benzoate

To a solution of ethyl 4-((2-(ethoxy(phenyl)phosphoryl)-6-(hydroxymethyl)pyridin-4yl)ethynyl)benzoate (80 mg, 0.178 mmol) in anhydrous THF (1 mL) at 5 °C was added triethylamine (50 µL, 0.356 mmol) and methanesulfonyl chloride (21 µL, 0.267 mmol). The reaction mixture was stirred under argon and allowed to warm to rt. The progress of the reaction was monitored by TLC [silica; CH₂Cl₂ : 10% CH₃OH, $R_{f}(\text{product}) = 0.45, R_{f}(\text{reactant}) = 0.28$ and stopped after 40 min. The solvent was removed under reduced pressure and the residue was dissolved in CH₂Cl₂ (10 mL) and washed with sat. aq. brine solution (10 mL). The aqueous layer was extracted with CH_2Cl_2 (3 × 10 mL) and the combined organic layers were dried (MgSO₄), and concentrated under reduced afford pressure ethyl 4-((2to (ethoxy(phenyl)phosphoryl)-6-((methylsulfonyloxy)methyl)pyridin-4-

yl)ethynyl)benzoate as a yellow oil (94 mg, quant.), which was used without further purification; ¹H NMR (200 MHz, CDCl₃, δ): 8.14 (1H, dd, ³*J*_{H-P} 6.0 Hz, ⁴*J*_{H-H} 1.5 Hz, H³), 8.03 (2H, d, ³*J*_{H-H} 8.7 Hz, H¹⁸), 7.94 (2H, m, H⁹), 7.57 (2H, d, ³*J*_{H-H} 8.7 Hz, H¹⁷), 7.55–7.40 (4H, m, H⁵, H¹⁰ and H¹¹), 5.32 (2H, s, H⁷), 4.36 (2H, q, ³*J*_{H-H} 7.2 Hz, H²¹),

4.12 (2H, m, H¹²), 3.00 (3H, s, H²³), 1.37 (3H, t, ${}^{3}J_{\text{H-H}}$ 7.2 Hz, H²²), 1.36 (3H, t, ${}^{3}J_{\text{H-H}}$ 7.1 Hz, H¹³); 31 P NMR (81 MHz, CDCl₃, δ): +25.6; *m/z* (HRMS⁺) 550.1058 [M + Na]⁺ (C₂₆H₂₆NO₇PSNa requires 550.1065); *R_f* = 0.45 (silica; CH₂Cl₂ : 10% CH₃OH).

Triethyl phenylphosphinate ester of L³

To a solution of ethyl 4-((2-(ethoxy(phenyl)phosphoryl)-6-((methylsulfonyloxy)methyl)pyridin-4-yl)ethynyl)benzoate (94 mg, 0.178 mmol) and 1,4,7-triazacyclononane (7.9 mg, 0.061 mmol) in anhydrous CH₃CN (1.8 mL) was added K₂CO₃ (26 mg, 0.190 mmol) and the mixture was stirred under argon at 60 °C. The progress of the reaction was monitored by LC-MS analysis at regular intervals, which revealed complete consumption of starting material after 9h. The reaction mixture was cooled to room temperature and the solution decanted from excess potassium salts. The solvent was removed under reduced pressure and the crude material was purified by column chromatography (silica, CH₂Cl₂ : 0 – 20% CH₃OH in 1% increments) to give the triethyl ester of L³ as a colorless oil (32 mg, 37%); ¹H NMR (600 MHz, CDCl₃, δ): 8.11 (3H, dd, ${}^{3}J_{\text{H-P}}$ 6.0 Hz, ${}^{4}J_{\text{H-H}}$ 1.5 Hz, H³), 8.05 (6H, d, ${}^{3}J_{\text{H-H}}$ 8.3 Hz, H¹⁸), 7.85 (6H, m, H⁹), 7.60 (9H, m, H⁵ and H¹⁷), 7.48 (3H, m, H¹¹), 7.45 (6H, m, H¹⁰), 4.39 (6H, q, ${}^{3}J_{\text{H-H}}$ 7.1 Hz, H²¹), 4.13 (6H, m, H¹²), 4.04 (6H, m, H⁷), 2.99 (6H, br m, ring CH₂), 2.80 (6H, br m, ring CH₂), 1.41 (9H, t, ${}^{3}J_{\text{H-H}}$ 7.1 Hz, H²²), 1.36 (9H, td, ${}^{3}J_{\text{H-H}}$ 7.1 Hz, ${}^{4}J_{\text{H-P}}$ 1.0 Hz, H¹³); ¹³C NMR (151 MHz, CDCl₃, δ): 165.9 (C²⁰), 157.1 (br m, C⁶), 155.3 (d, ${}^{1}J_{\text{C-P}}$ 169 Hz, C²), 132.9 (C¹¹), 132.5 (d, ${}^{2}J_{\text{C-P}}$ 10 Hz, C⁹), 132.1 (C¹⁷), 131.3 (C¹⁹), 129.8 (d, ${}^{1}J_{\text{C-P}}$ 138 Hz, C⁸), 129.7 (C¹⁸), 128.8 (br m, C³), 128.7 (d, ${}^{3}J_{\text{C-P}}$ 13 Hz, C¹⁰), 127.8 (br m C⁵), 126.0 (C¹⁶), 95.3 (C¹⁵), 88.3 (C¹⁴), 60.5 (C⁷), 62.0 (d, ${}^{2}J_{\text{C-P}}$ 6 Hz, C¹²), 61.5 (C²¹), 51.9 (6 × ring CH₂), 16.7 (d, ${}^{3}J_{\text{C-P}}$ 6 Hz, C¹³), 14.4 (C²²), one signal (C⁴) obscured or overlapping; ³¹P NMR (243 MHz, CDCl₃, δ): +25.0; *m/z* (HRMS⁺) 1423.519 [M + H]⁺ (C₈₁H₈₂N₆O₁₂P₃ requires 1423.520); *R_f*= 0.66 (silica, CH₂Cl₂ : 15% CH₃OH).

 $[Eu.L^3]$

The triethyl ester of L³ (8 mg, 5.6 μ mol) was dissolved in a mixture of CD₃OD/D₂O (1.5 mL, 2:1 v/v) and KOH (3.8 mg, 67.5 μ mol) was added. The solution was stirred at 60 °C under argon for 18 h. The reaction was monitored by ¹H-NMR spectroscopy (400 MHz; loss of C*H*₃C*H*₂ signals at 4.39, 4.13, 1.41 and 1.36 ppm) and ³¹P-NMR spectroscopy (162 MHz; reactant = +25.0 ppm, product = +15.4 ppm). The organic

solvent was removed under reduced pressure and the remaining aqueous mixture was neutralized by the addition of HCl (1M). Lyophilization of the solvent gave L³ as a white solid, which was immediately dissolved in a mixture of CH₃OH/H₂O (2 mL, 1:1 v/v). Eu(OAc)₃ (2.2 mg, 6.7 µmol) was added and the pH of the solution was adjusted to 5.8 by the addition of HCl (1M). The resulting cloudy mixture was stirred at 65 °C under argon for 18 h. The mixture was cooled to room temperature and the pH adjusted to 7 by the addition of KOH (1M). Lyophilisation of the solvent and purification of the crude material by semi-preparative RP-HPLC [gradient: 60 – 100% methanol in water (0.1% formic acid) over 10 min; $t_R = 8.47$ min] gave the complex as a white solid (3.5 mg, 51%); (HRMS⁺) 1403.223 [M(¹⁵³Eu) - H]⁻ (C₇₀H₅₄N₆O₁₄P₃¹⁵³Eu requires 1403.215); $\tau_{MeOH} = 1.24$ ms; $\Phi_{MeOH}^{em} = 37 \pm 15\%$; ε_{MeOH} (321 nm) = 59,200 M⁻¹ cm⁻¹.

Analytical RP-HPLC of [Eu.L³]: t_R 8.47 min [Gradient: 60 to 100% MeOH in water (0.05% formic acid) over 10 min]

4. Synthesis of Eu complex of L⁴

Ethyl 6-(hydroxymethyl)-4-((4-(trifluoromethyl)phenyl)ethynyl)

pyridin-2-yl(phenyl)phosphinate

Ethyl (6-(hydroxymethyl)-4-(bromopyridin-2-yl)(phenyl)phosphinate (70 mg, 0.197 mmol) was dissolved in anhydrous THF (1.2 mL) and the solution was degassed three times. 1-[(Trimethylsilyl)ethynyl]-4-(trifluoromethyl)benzene (51 µL, 0.217 mmol) and triethylamine (0.68 mL, 4.93 mmol) were added and the solution was degassed once more. Tetrakis(triphenylphosphine)palladium(0) (22 mg, 0.020 mmol) and CuI (4 mg, 0.020 mmol) were added and the resulting brown solution was stirred at 65 °C under argon for 15 h. The solvent was removed under reduced pressure and the brown residue was partitioned between CH2Cl2 (20 mL) and sat. aqueous ammonium chloride solution (20 mL). The aqueous layer was extracted with CH_2Cl_2 (3 × 20 mL) and the combined organic fractions were washed with brine (80 mL), dried (MgSO₄), and concentrated under reduced pressure to give a pale brown oil. The crude material was subjected to column chromatography (silica, hexane : 40 - 66% EtOAc) to afford ethyl 6-(hydroxymethyl)-4-((4-(trifluoromethyl)phenyl)ethynyl)pyridin-2vl(phenvl)phosphinate as a yellow oil (54 mg, 62%); ¹H NMR (600 MHz, CDCl₃, δ): 8.07 (1H, dd, ${}^{3}J_{\text{H-P}}$ 6.2 Hz, ${}^{4}J_{\text{H-H}}$ 1.4 Hz, H³), 7.94 (2H, dd, ${}^{3}J_{\text{H-P}}$ 12.4 Hz, ${}^{3}J_{H-H}$ 8.6 Hz,

H⁹), 7.62 (4H, s, H¹⁷ and H¹⁸), 7.53 (2H, m, H⁵ and H¹¹), 7.45 (2H, dt, ${}^{3}J_{\text{H-P}}$ 4.0 Hz, ${}^{3}J_{H-H}$ 7.6 Hz, H¹⁰), 4.80 (2H, m, H⁷), 4.14 (2H, m, H¹²), 1.37 (3H, t, ${}^{3}J_{\text{H-H}}$ 7.0 Hz, H¹³);

¹³C NMR (151 MHz, CDCl₃, δ): 161.3 (d, ³*J*_{C-P} 19 Hz, C⁶), 153.7 (d, ¹*J*_{C-P} 166 Hz, C²), 132.8 (d, ⁴*J*_{C-P} 3 Hz, C¹¹), 132.4 (d, ²*J*_{C-P} 10 Hz, C⁹), 132.3 (C¹⁷), 131.9 (d, ³*J*_{C-P} 13 Hz, C⁴), 131.2 (q, ²*J*_{C-F} 34 Hz, C¹⁹), 129.6 (d, ¹*J*_{C-P} 139 Hz, C⁸), 128.6 (d, ³*J*_{C-P} 14 Hz, C¹⁰), 127.0 (d, ²*J*_{C-P} 23 Hz, C³), 125.6 (q, ³*J*_{C-F} 4 Hz, C¹⁸), 124.3 (d, ⁴*J*_{C-P} 3 Hz, C⁵), 123.9 (q, ¹*J*_{C-F} 272 Hz, C²⁰), 122.8 (d, ⁶*J*_{C-P} 3 Hz, C¹⁶), 93.6 (C¹⁴), 88.3 (d, ⁵*J*_{C-P} 2 Hz, C¹⁵), 64.2 (C⁷), 62.1 (d, ²*J*_{C-P} 6 Hz, C¹²), 16.6 (d, ³*J*_{C-P} 6 Hz, C¹³); ³¹P NMR (243 MHz, CDCl₃, δ): +25.3; ¹⁹F NMR (564 MHz, CDCl₃, δ): -63.0; *m/z* (HRMS⁺) 468.0957 [M + Na]⁺ (C₂₃H₁₉NO₃PNa requires 468.0952); *R_f* = 0.41 (silica, EtOAc : 33% Hexane).

Ethyl 6-(methylsulfonyloxy)-4-((4-(trifluoromethyl)phenyl)ethynyl)pyridin-2yl(phenyl)phosphinate

Ethyl 6-(hydroxymethyl)-4-((4-(trifluoromethyl)phenyl)ethynyl)pyridin-2yl(phenyl)phosphinate (60 mg, 0.135 mmol) was dissolved in anhydrous THF (1.5 mL) and triethylamine (38 μ L, 0.269 mmol) was added. The mixture was stirred at 5 °C under argon and methanesulfonyl chloride (13 μ L, 0.162 mmol) was added. The reaction was monitored by TLC [silica; CH₂Cl₂ : 10% CH₃OH, *R_f*(product) = 0.75, *R_f*(reactant) = 0.51] and stopped after 90 min. The solvent was removed under reduced pressure and the resulting residue was dissolved in CH₂Cl₂ (10 mL) and washed with sat. aqueous brine solution (10 mL). The aqueous layer was extracted with CH₂Cl₂ (3 × 10 mL) and the combined organic layers were dried (MgSO₄), and concentrated under reduced pressure to afford ethyl 6-(methylsulfonyloxy)-4-((4-(trifluoromethyl)phenyl)ethynyl)pyridin-2-yl(phenyl)phosphinate as a yellow oil (71 mg, quant.), which was used without further purification; $R_f = 0.75$ (silica; CH₂Cl₂ : 10% CH₃OH).

Triethyl phenylphosphinate ester of L⁴

To a solution of 1,4,7-triazacyclononane (6 mg, 0.047 mmol) and ethyl 6-(methylsulfonyloxy)-4-((4-(trifluoromethyl)phenyl)ethynyl)pyridin-2-

yl(phenyl)phosphinate (71 mg, 0.135 mmol) in anhydrous CH_3CN (1.5 mL) was added K_2CO_3 (19 mg, 0.140 mmol) and the mixture was stirred under argon at 60 °C for 3 h. The progress of the reaction was monitored by LC-MS analysis at 30 min intervals, which indicated complete consumption of starting material after 3 h. The reaction mixture was cooled to room temperature and the solution decanted from excess potassium salts. The solvent was removed under reduced pressure and the crude material was purified by column chromatography (silica, $CH_2Cl_2 : 0 - 20\%$ CH_3OH in 1% increments) to afford the triethyl ester of L⁴ as a colourless oil (15 mg, 23%); ¹H NMR (600 MHz, CDCl₃, δ): 8.10 (3H, dd, ³*J*_{H-P} 6.0 Hz, ⁴*J*_{H-H} 1.6 Hz, H³), 7.86 (6H, m, H⁹), 7.64 (12H, m, H¹⁷ and H¹⁸), 7.49 (6H, m, H⁵ and H¹¹), 7.41 (6H, m, H¹⁰), 4.12 (6H, m, H¹³), 4.06 (6H, m, H⁷), 3.08–2.65 (12H, br m, 6 × ring CH₂), 1.35 (9H, t, ³*J*_{H-H} 7.0 Hz, H¹³); ¹³C NMR (151 MHz, CDCl₃, δ): 157.2 (C⁶), 155.3 (d, ¹*J*_{C-P} 166 Hz, C²), 132.8 (C¹¹), 132.5 (C⁹), 132.4 (C¹⁷), 132.2 (C⁴), 131.4 (q, ²*J*_{C-F} 34 Hz, C¹⁹), 129.6 (d, ¹*J*_{C-P} 139 Hz, C⁸), 128.6 (d, ³*J*_{C-P} 14 Hz, C¹⁰), 127.9 (C³), 125.7 (q, ³*J*_{C-F} F 4 Hz, C¹⁸), 125.4 (C⁵), 123.9 (q, ¹*J*_{C-F} 272 Hz, C²⁰), 94.5 (C¹⁴), 88.0 (C¹⁵), 62.0 (d, ²*J*_{C-P} 6 Hz, C¹²), 60.4 (C⁷), 52.0 (ring CH₂), 16.7 (d, ³*J*_{C-P} 6 Hz, C¹³); ³¹P NMR (243 MHz, CDCl₃, δ): +25.0; ¹⁹F NMR (564 MHz, CDCl₃, δ): -63.0; *m*/z (HRMS⁺) 1411.416 [M + H]⁺ (C₇₅H₆₇F₉N₆O₆P₃ requires 1411.419); *R_f* = 0.29 (silica; CH₂Cl₂ : 10% CH₃OH).

[Eu.L⁴]

The triethyl ester of L^4 (13 mg, 9.21 µmol) was dissolved in a mixture of CD₃OD/D₂O (2 mL, 1:1 v/v) and KOH (10 mg, 0.18 mmol) was added. The solution was stirred at 65 °C under argon for 16 h. The reaction was monitored by ¹H-NMR spectroscopy (400 MHz; loss of CH₃CH₂ signals at 4.12 and 1.35 ppm) and ³¹P-NMR

spectroscopy (162 MHz; reactant = +25.0 ppm, product = +16.0 ppm). The organic solvent was removed under reduced pressure and remaining aqueous mixture was neutralized by the addition of HCl (1M). Lyophilization of the solvent gave L⁴ as a white solid [R_f = 0.21 (silica, CH₂Cl₂/MeOH/NH₃, 80:18:2 v/v/v)], which was immediately dissolved in a mixture of H₂O/CH₃OH (2 mL, 1:1 v/v). Eu(OAc)₃ (6 mg, 14.4 µmol) was added, resulting in the formation of a white precipitate. The pH of the solution was adjusted to 5.8 by addition of HCl (1M) and the mixture was stirred at 70 °C under argon for 18 h. The mixture was cooled to room temperature and the pH adjusted to 7 by the addition of KOH (1M). Lyophilisation of the solvent and purification of the crude material by column chromatography (silica, CH₂Cl₂ : 5 – 20% CH₃OH) gave the complex as a white solid (3 mg, 45%); (HRMS⁺) 1477.223 [M(¹⁵³Eu) + H]⁺ (C₆₉H₅₂F₉N₆O₆P₃¹⁵³Eu requires 1477.222); R_f = 0.43 (silica, CH₂Cl₂ : MeOH : NH₃, 80:18:2 v/v/v); τ_{MeOH} = 1.35 ms; Φ_{MeOH}^{em} = 15 ± 10%; ε_{MeOH} (309 nm) = 63.500 M⁻¹ cm⁻¹.

Analytical RP-HPLC of [Eu.L⁴]: t_R 11.7 min [Gradient: 60 to 100% MeOH in water (0.05% formic acid) over 12 min]

X-ray Crystallography

Crystals of $[Eu.L^{2a}]$ were grown from water. Data for $[Eu.L^{2a}]$ were collected at 120K on a OD Gemini diffractometer (ω -scan, 0.3-0.5°/frame) equipped with Cryostream (Oxford Cryosystems) open-flow nitrogen cryostat.

The structure was solved by the charge-flipping method and refined by full-matrix least squares on F^2 for all data using OLEX2^{1,2} and SHELXTL³ software using least squares minimisation. All non-disordered non-hydrogen atoms were refined with anisotropic displacement parameters and every hydrogen atom was placed into a calculated position and refined in "riding"-mode. Crystallographic data for [Eu.L^{2a}] are reported in Table 1; CCDC 857545.

Table 1 Crystal data and structure refinement for [Eu.L^{2a}]

Empirical formula	C ₆₉ H ₇₀ EuN ₆ O ₁₄ P ₃
Formula weight	1452.18
Temperature/K	120
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	17.6945(12)
b/Å	17.1374(14)
c/Å	22.847(2)
α/°	90.00
β/°	105.313(8)
γ/°	90.00

Volume/Å ³	6682.1(9)
Z	4
$ ho_{calc}mg/mm^3$	1.443
m/mm ¹	1.080
F(000)	2984.0
Crystal size/mm ³	$0.1948 \times 0.135 \times 0.0249$
2Θ range for data collection	5.1 to 50°
Index ranges	$-20 \le h \le 21, -20 \le k \le 20, -27 \le l \le 27$
Reflections collected	63485
Independent reflections	11752[R(int) = 0.2144]
Data/restraints/parameters	11752/585/847
Goodness-of-fit on F ²	1.201
Final R indexes [I>= 2σ (I)]	$R_1 = 0.1292$, $wR_2 = 0.1749$
Final R indexes [all data]	$R_1 = 0.1847$, $wR_2 = 0.1950$
Largest diff. peak/hole / e Å ⁻³	1.34/-1.48

- 1. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
- olex2.solve (L. J. Bourhis, O.V. Dolomanov, R. J. Gildea, J. A. K. Howard, H. Puschmann, in preparation, 2012).
- 3. SHELXL, G. M. Sheldrick, Acta Cryst. 2008. A64, 112.