Palladium-Catalyzed Asymmetric Synthesis of 2-Pyrrolidinones with Quaternary Carbon Stereocenters

Ryo Shintani,* Tomoaki Ito, Midori Nagamoto, Haruka Otomo, and Tamio Hayashi*

Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan, and Institute of Materials Research and Engineering, A*STAR, 3 Research Link, Singapore 117602

Supplementary Information

I. General

All air- and moisture-sensitive manipulations were carried out with standard Schlenk techniques under nitrogen or in a glove box under argon.

THF, Et_2O , toluene, and CH_2Cl_2 were purified by passing through neutral alumina columns under nitrogen. MeOH was distilled over Mg turnings under nitrogen. DMF was distilled over CaH₂ under vacuum. Et_3N was distilled over KOH under nitrogen.

Benzyl isocyanate (Wako Chemicals), 4-methoxybenzyl isocyanate (Aldrich), 4methylbenzyl isocyanate (Aldrich), 4-bromobenzyl isocyanate (Aldrich), 2-furylmethyl isocyanate (Aldrich), 2-chloroethyl isocyanate (Aldrich), ethyl 3-isocyanatopropionate (Aldrich), 4-methoxyphenyl isocyanate (TCI), phenyl isocyanate (TCI), 4-chlorophenyl isocyanate (Aldrich), 4-biphenylacetic acid (Wako Chemicals), 4-(dimethylamino)pyridine (Wako Chemicals), 1-bromo-3,5-dimethylbenzene (TCI), (S)-1,1'-binaphthyl-2,2'-diol (Kankyo Kagaku Center), *N,N*'-dicyclohexylcarbodiimide (Wako Chemicals), dimethyl carbonate (Aldrich), *tert*-butyl alcohol (Wako Chemicals), thionyl chloride (Wako Chemicals), PCl₃ (Nacalai Tesque), NaH (Kanto Chemical; 60 wt% in mineral oil), LiAlH₄ (Wako Chemicals), KOH (Kishida Chemical), TBAF (Aldrich; 1.0 M solution in THF), and *t*-BuLi (Kanto Chemical; 1.65 M solution in pentane) were used as received.

2-(*tert*-Butyldimethylsiloxy)methyl-2-propen-1-yl methanesulfonate, ¹ *N*,*N*'-dimethoxy-*N*,*N*'-dimethylsuccinamide, ² **1a**, ³ **1b**, ⁴ **1c**, ³ **1d**, ³ **1h**, ³ (*S*,*S*,*S*)-**L1**, ⁵ (*S*,*S*,*S*)-**L2**, ⁶ (*S*,*S*,*S*)-**L3**, ⁷ and PdCp(η^3 -C₃H₅)⁸ were synthesized following the literature procedures.

All other chemicals and solvents were purchased from Aldrich, Wako Chemicals, TCI, or Kanto Chemical and used as received.

¹ Kitamura, T.; Sato, Y.; Mori, M. Adv. Synth. Catal. 2002, 344, 678.

² Harding, M.; Hodgson, R.; Nelson, A. J. Chem. Soc., Perkin Trans. 1 2002, 2403.

³ Shintani, R.; Park, S.; Shirozu, F.; Murakami, M.; Hayashi, T. J. Am. Chem. Soc. **2008**, *130*, 16174.

⁴ Shintani, R.; Murakami, M.; Hayashi, T. J. Am. Chem. Soc. 2007, 129, 12356.

⁵ Tissot-Croset, K.; Polet, D.; Alexakis, A. Angew. Chem., Int. Ed. **2004**, 43, 2426.

⁶ Alexakis, A.; Gille, S.; Prian, F.; Rosset, S.; Ditrich, K. *Tetrahedron Lett.* **2004**, *45*, 1449.

⁷ Choi, Y. H.; Choi, J. Y.; Yang, H. Y.; Kim, Y. H. *Tetrahedron: Asymmetry* **2002**, *13*, 801.

⁸ (a) Shaw, B. L. *Proc. Chem. Soc.* **1960**, 247. (b) McClellan, W. R.; Hoehn, H. H.; Cripps, H.

N.; Muetterties, E. L.; Howk, B. W. J. Am. Chem. Soc. 1961, 83, 1601.

II. Synthesis of Substrates and Ligand

Thionyl chloride (5.50 mL, 75.4 mmol) was added to a suspension of 4-biphenylacetic acid (10.6 g, 49.9 mmol) in MeOH (170 mL) at 0 °C, and the mixture was stirred for 6 h at room temperature. After removal of the volatiles under vacuum, the residue was dissolved in dimethyl carbonate (45 mL). This solution was then added to a suspension of NaH (4.00 g, 100 mmol; 60 wt% in mineral oil) in dimethyl carbonate (15 mL) at 0 °C. The resulting mixture was stirred for 12 h while gradually raising the temperature to room temperature. The reaction was quenched with water and this was extracted with Et₂O. The organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The solid thus obtained was washed with hexane to afford dimethyl 4-biphenylmalonate (CAS 156140-46-4) as a pale yellow solid (12.8 g, 45.0 mmol; 90% yield).

¹H NMR (CDCl₃): δ 7.61-7.56 (m, 4H), 7.47 (d, ³*J*_{HH} = 8.3 Hz, 2H), 7.44 (t, ³*J*_{HH} = 7.6 Hz, 2H), 7.35 (tt, ³*J*_{HH} = 7.4 Hz and ⁴*J*_{HH} = 1.3 Hz, 1H), 4.70 (s, 1H), 3.78 (s, 6H).

KOH (13.0 mL, 13.0 mmol; 1.0 M solution in MeOH) was added to a solution of dimethyl 4-biphenylmalonate (4.26 g, 15.0 mmol) in MeOH (15 mL) and the mixture was stirred for 1.5 h at room temperature. The solvent was removed under vacuum and the residue was dissolved in 5% NaHCO₃*aq*. This was washed with EtOAc (2 times) and the organic layer was extracted with 5% NaHCO₃*aq* (2 times). The combined aqueous layer was acidified with 1 M HCl*aq* and extracted with EtOAc (3 times). The organic layer was dried over MgSO₄, filtered, and concentrated under vacuum to afford monomethyl 4-biphenylmalonate as a yellow solid (3.00 g, 11.1 mmol; 74% yield).

¹H NMR (CDCl₃): δ 7.60 (d, ³*J*_{HH} = 8.4 Hz, 2H), 7.59-7.55 (m, 2H), 7.47 (d, ³*J*_{HH} = 8.1 Hz, 2H), 7.44 (t, ³*J*_{HH} = 7.6 Hz, 2H), 7.36 (tt, ³*J*_{HH} = 7.3 Hz and ⁴*J*_{HH} = 1.3 Hz, 1H), 4.71 (s, 1H), 3.82 (s, 3H).

4-(Dimethylamino)pyridine (40.0 mg, 0.327 mmol), *tert*-butyl alcohol (1.20 mL, 12.8 mmol), and *N*,*N*'-dicyclohexylcarbodiimide (2.80 g, 13.6 mmol) were successively added to a solution of monomethyl 4-biphenylmalonate (2.70 g, 9.99 mmol) in CH₂Cl₂ (60 mL) at 0 °C. The resulting mixture was stirred for 1 h while gradually raising the temperature to room temperature, and the precipitate that formed was filtered off through Celite with Et₂O. After removing the solvent under vacuum, the residue was chromatographed on silica gel with EtOAc/hexane = $1/15 \rightarrow 1/10$ to afford *tert*-butyl methyl 4-biphenylmalonate as a yellow solid (3.04 g, 9.31 mmol; 93% yield).

¹H NMR (CDCl₃): δ 7.61-7.56 (m, 4H), 7.46 (d, ³*J*_{HH} = 8.4 Hz, 2H), 7.44 (t, ³*J*_{HH} = 7.8 Hz, 2H), 7.35 (tt, ³*J*_{HH} = 7.4 Hz and ⁴*J*_{HH} = 1.3 Hz, 1H), 4.60 (s, 1H), 3.77 (s, 3H), 1.47 (s, 9H). ¹³C NMR (CDCl₃): δ 169.1, 167.3, 141.2, 140.8, 132.2, 129.8, 128.9, 127.5, 127.4, 127.3, 82.7, 58.7, 52.8, 28.0.

A solution of *tert*-butyl methyl 4-biphenylmalonate (3.02 g, 9.25 mmol) in THF (16 mL) was added to a suspension of NaH (390 mg, 9.75 mmol; 60 wt% in mineral oil) in THF (5 mL) at 0 °C. The mixture was stirred for 40 min at 0 °C and a solution of 2-(*tert*-

butyldimethylsiloxy)methyl-2-propen-1-yl methanesulfonate (3.00 g, 10.7 mmol) in THF (12 mL) was added to it. DMF (2 mL) was then added to this mixture and it was stirred for 48 h at 55 °C. The reaction was quenched with water and extracted with Et_2O . The organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with EtOAc/hexane = 1/15 to afford *tert*-butyl methyl (2-(*tert*-butyldimethylsiloxy)methyl-2-propen-1-yl)(4-biphenyl)malonate as a yellow oil (4.52 g, 8.85 mmol; 96% yield).

¹H NMR (CDCl₃): δ 7.61-7.57 (m, 4H), 7.54 (d, ³*J*_{HH} = 8.6 Hz, 2H), 7.43 (t, ³*J*_{HH} = 7.7 Hz, 2H), 7.34 (tt, ³*J*_{HH} = 7.4 Hz and ⁴*J*_{HH} = 1.2 Hz, 1H), 5.17-5.15 (m, 1H), 4.78-4.76 (m, 1H), 3.82 (bs, 2H), 3.76 (s, 3H), 3.12 (d, ²*J*_{HH} = 15.5 Hz, 1H), 3.07 (d, ²*J*_{HH} = 15.5 Hz, 1H), 1.44 (s, 9H), 0.88 (s, 9H), 0.01 (s, 6H). ¹³C NMR (CDCl₃): δ 171.3, 169.2, 143.7, 140.8, 140.3, 135.9, 128.89, 128.88, 127.5, 127.2, 126.7, 113.0, 82.4, 66.5, 62.8, 52.6, 38.5, 27.9, 26.0, 18.5, -5.3.

TBAF (10.0 mL, 1.0 mmol; 1.0 M solution in THF) was added to a solution of *tert*-butyl methyl (2-(*tert*-butyldimethylsiloxy)methyl-2-propen-1-yl)(4-biphenyl)malonate (4.50 g, 8.81 mmol) in THF (28 mL) at -65 °C. The mixture was stirred for 11 h while gradually raising the temperature to -5 °C and the reaction was quenched with water. After extraction with Et₂O, the organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with EtOAc/hexane = $1/7 \rightarrow 1/4$ and the solid thus obtained was washed with hexane to afford compound **1e** as a white solid (2.25 g, 6.17 mmol; 70% yield).

¹H NMR (CDCl₃): δ 7.63-7.57 (m, 4H), 7.46-7.40 (m, 4H), 7.35 (tt, ³*J*_{HH} = 7.4 Hz and ⁴*J*_{HH} = 1.2 Hz, 1H), 5.15-5.11 (m, 1H), 5.08-5.03 (m, 1H), 4.81 (d, ²*J*_{HH} = 14.6 Hz, 1H), 4.68 (d, ²*J*_{HH} = 14.6 Hz, 1H), 3.49 (d, ²*J*_{HH} = 16.1 Hz, 1H), 3.25 (d, ²*J*_{HH} = 16.2 Hz, 1H), 1.48 (s, 9H). ¹³C NMR (CDCl₃): δ 169.5, 168.3, 141.1, 140.5, 136.6, 134.6, 128.9, 127.9, 127.7, 127.4, 127.2, 112.2, 83.7, 71.3, 59.8, 36.1, 27.9. HRMS (ESI-TOF) calcd for C₂₃H₂₄O₄Na (M+Na⁺) 387.1567, found 387.1559.

Analytical Data for Other New Substrates: α*-tert*-Butoxycarbonyl-α-(4-fluorophenyl)-γ-methylidene-δ-valerolactone (1f)

¹H NMR (CDCl₃): δ 7.34 (dd, ³*J*_{HH} = 9.0 Hz and ⁴*J*_{HF} = 5.1 Hz, 2H), 7.07 (t, ³*J* = 8.7 Hz, 2H), 5.13-5.10 (m, 1H), 5.07-5.03 (m, 1H), 4.80 (d, ²*J*_{HH} = 14.6 Hz, 1H), 4.65 (d, ²*J*_{HH} = 14.8 Hz, 1H), 3.45 (d, ²*J*_{HH} = 16.0 Hz, 1H), 3.16 (d, ²*J*_{HH} = 16.1 Hz, 1H), 1.45 (s, 9H). ¹³C NMR (CDCl₃): δ 169.2, 168.2, 162.6 (d, ¹*J*_{CF} = 248 Hz), 136.4, 131.4 (d, ⁴*J*_{CF} = 3.1 Hz), 129.4 (d, ³*J*_{CF} = 8.3 Hz), 115.6 (d, ²*J*_{CF} = 21.7 Hz), 112.3, 83.8, 71.3, 59.4, 36.2, 27.8. HRMS (ESI-TOF) calcd for C₁₇H₁₉FO₄Na (M+Na⁺) 329.1160, found 329.1157.

 $\alpha\mbox{-tert-Butoxycarbonyl-}\alpha\mbox{-}(3,4\mbox{-methylenedioxyphenyl})\mbox{-}\gamma\mbox{-methylidene-}\delta\mbox{-valerolactone}\ (1g)$

¹H NMR (CDCl₃): δ 6.85 (dd, ⁴*J*_{HH} = 1.3 Hz and ⁵*J*_{HH} = 0.9 Hz, 1H), 6.82-6.78 (m, 2H), 5.98-5.96 (m, 2H), 5.12-5.09 (m, 1H), 5.05-5.01 (m, 1H), 4.77 (d, ²*J*_{HH} = 14.7 Hz, 1H), 4.65 (d, ²*J*_{HH} = 14.6 Hz, 1H), 3.42 (d, ²*J*_{HH} = 16.2 Hz, 1H), 3.14 (d, ²*J*_{HH} = 16.3 Hz, 1H), 1.46 (s, 9H). ¹³C NMR (CDCl₃): δ 169.5, 168.3, 148.1, 147.6, 136.6, 129.1, 120.9, 112.0, 108.4, 108.3, 101.5, 83.6, 71.2, 59.6, 36.0, 27.9. HRMS (ESI-TOF) calcd for C₁₈H₂₀O₆Na (M+Na⁺) 355.1152, found 355.1148.

α -tert-Butoxycarbonyl- α -(2-methoxyphenyl)- γ -methylidene- δ -valerolactone (1i)

¹H NMR (CDCl₃): δ 7.32-7.27 (m, 1H), 7.11 (dd, ³*J*_{HH} = 7.9 Hz and ⁴*J*_{HH} = 1.6 Hz, 1H), 6.95-6.91 (m, 2H), 4.96-4.92 (m, 2H), 4.88-4.80 (m, 2H), 3.82 (s, 3H), 3.38 (d, ²*J*_{HH} = 15.1 Hz, 1H), 3.21 (d, ²*J*_{HH} = 15.1 Hz, 1H), 1.47 (s, 9H). ¹³C NMR (CDCl₃): δ 169.1, 168.4, 157.1, 137.1, 129.4, 127.9, 126.8, 120.9, 112.2, 111.9, 83.0, 72.1, 60.2, 55.7, 36.9, 27.9. HRMS (ESI-TOF) calcd for C₁₈H₂₂O₅Na (M+Na⁺) 341.1359, found 341.1350.

1,4-Bis(3,5-dimethylphenyl)-1,4-butanedione (CAS 860704-61-6)

t-BuLi (15.0 mL, 24.8 mmol; 1.65 M solution in pentane) was added slowly over 9 min to a solution of 1-bromo-3,5-dimethylbenzene (1.65 mL, 12.0 mmol) in Et₂O (12 mL) at -75 °C and the mixture was stirred for 30 min at -75 °C and for 10 min at room temperature. This was cooled to 0 °C and a solution of N,N'-dimethoxy-N,N'-dimethylsuccinamide (1.02 g, 4.99 mmol) in THF (10 mL) was added to it. The mixture was stirred for 1 h at 0 °C and for 1 h at room temperature. The reaction was quenched with saturated NH₄Claq and diluted with H₂O. After extraction with CHCl₃, the organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The resulting solid was washed with Et₂O/hexane to afford 1,4-bis(3,5-dimethylphenyl)-1,4-butanedione as a white solid (952 mg, 3.23 mmol; 65% yield).

¹H NMR (CDCl₃): δ 7.65 (s, 4H), 7.21 (s, 2H), 3.42 (s, 4H), 2.38 (s, 12H). ¹³C NMR (CDCl₃): δ 199.3, 138.3, 137.1, 134.9, 126.1, 32.9, 21.4.

(S,S)-2,5-Bis(3,5-dimethylphenyl)pyrrolidine (CAS 1269808-63-0)

This was synthesized from 1,4-bis(3,5-dimethylphenyl)-1,4-butanedione, following the literature procedure for (*S*,*S*)-2,5-diphenylpyrrolidine.⁹ 44% overall yield. Pale yellow oil. $[\alpha]^{30}_{D}$ –75.4 (*c* 0.90, CHCl₃).

¹H NMR (CDCl₃): δ 7.03 (s, 4H), 6.89 (s, 2H), 4.51-4.34 (m, 2H), 2.41-2.32 (m, 2H), 2.33 (s, 12H), 1.95-1.83 (m, 2H), 1.83 (bs, 1H). ¹³C NMR (CDCl₃): δ 146.0, 138.1, 128.6, 124.3, 62.4, 35.7, 21.5.

(S,S,S)-L4

A solution of (S,S)-2,5-bis(3,5-dimethylphenyl)pyrrolidine (252 mg, 0.902 mmol) and Et₃N (150 µL, 1.08 mmol) in toluene (4.5 mL) was added dropwise over 50 min to a solution of PCl₃ (78.5 µL, 0.900 mmol) in toluene (4.5 mL) at room temperature. The mixture was stirred for 5.5 h at 70 °C and cooled to room temperature. Et₃N (414 µL, 2.97 mmol) was added to it and the mixture was cooled to -75 °C. A solution of (*S*)-1,1'-binaphthyl-2,2'-diol (258 mg, 0.901 mmol) in toluene (3.0 mL) and THF (0.5 mL) was then added to it slowly over 5 min, and the resulting mixture was stirred for 16 h at room temperature. The precipitate was filtered off through Celite with toluene and the solvent was removed under vacuum. The residue was chromatographed on silica gel with EtOAc/hexane = 1/15 and the solid thus obtained was washed with hexane to afford compound (*S*,*S*,*S*)-L4 as a white solid (365 mg, 0.615 mmol; 68% yield). [α]³⁰_D +158 (*c* 0.41, CHCl₃).

¹H NMR (CDCl₃): δ 7.89-7.84 (m, 2H), 7.73 (d, ${}^{3}J_{HH} = 8.0$ Hz, 1H), 7.37-7.31 (m, 2H), 7.29 (d, ${}^{3}J_{HH} = 8.5$ Hz, 1H), 7.24 (d, ${}^{3}J_{HH} = 8.8$ Hz, 1H), 7.18 (t, ${}^{3}J_{HH} = 7.6$ Hz, 1H), 7.16-7.10 (m, 3H), 6.97 (s, 2H), 6.90 (s, 4H), 6.02 (d, ${}^{3}J_{HH} = 8.8$ Hz, 1H), 5.04 (d, ${}^{3}J_{HH} = 6.8$ Hz, 2H), 2.43-2.33 (m, 2H), 2.38 (s, 12H), 1.69-1.59 (m, 2H). ${}^{31}P{}^{1}H$ NMR (CDCl₃): δ 144.6 (s). HRMS (ESI-TOF) calcd for C₄₀H₃₆NO₂PNa (M+Na⁺) 616.2367, found 616.2375.

III. Catalytic Reactions

General Procedure for Table 1 (entries 5 and 6), Table 2, and Table 3.

Isocyanate 2 (0.200 mmol) and toluene (0.50 mL) were successively added to a solution of PdCp(η^3 -C₃H₅) (2.1 mg, 9.9 µmol), ligand (*S*,*S*,*S*)-L4 (11.9 mg, 20.0 µmol), and lactone 1 (0.24 mmol) in toluene (0.50 mL), and the resulting solution was stirred for 12 h at 30 °C. The reaction mixture was directly passed through a pad of silica gel with EtOAc and the

⁹ Aldous, D. J.; Dutton, W. M.; Steel, P. G. Tetrahedron: Asymmetry 2000, 11, 2455.

solvent was removed under vacuum. The residue was purified by silica gel preparative TLC to afford compounds 3/4.

Table 1, Entry 5. (CAS 1086018-79-2) EtOAc/hexane = 1/3 was used for preparative TLC. Yellow oil. 89% yield (**3aa/4aa** = 90/10). The ee was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = 85/15, flow = 0.5 mL/min. Retention times: 30.1 min [major enantiomer], 32.9 min [minor enantiomer]. 92% ee. $[\alpha]^{25}_{D}$ +14.2 (*c* 0.88, CHCl₃). The absolute configuration was assigned by analogy with Table 2, entry 5.

¹H NMR (CDCl₃): δ 7.59-7.55 (m, 2H), 7.37 (t, ³*J*_{HH} = 7.6 Hz, 2H), 7.34-7.21 (m, 6H), 4.48 (d, ²*J*_{HH} = 15.9 Hz, 1H), 4.15 (d, ²*J*_{HH} = 15.8 Hz, 1H), 2.88 (d, ²*J*_{HH} = 12.5 Hz, 1H), 2.64 (d, ²*J*_{HH} = 12.5 Hz, 1H), 1.47 (s, 9H), 0.89 (dt, ²*J*_{HH} = 10.8 Hz and ³*J*_{HH} = 6.4 Hz, 1H), 0.71 (dt, ²*J*_{HH} = 10.8 Hz and ³*J*_{HH} = 6.4 Hz, 1H), 0.59 (dt, ²*J*_{HH} = 10.1 Hz and ³*J*_{HH} = 6.4 Hz, 1H), 0.50 (dt, ²*J*_{HH} = 10.4 Hz and ³*J*_{HH} = 6.5 Hz, 1H). ¹³C NMR (CDCl₃): δ 171.8, 170.2, 138.0, 137.7, 128.6, 128.4, 127.52, 127.48, 127.3, 127.1, 82.4, 61.4, 42.6, 42.1, 40.7, 27.9, 7.8, 6.7.

Table 1, Entry 6. (CAS 1225039-67-7) CH₂Cl₂/EtOAc/hexane = 1/2/6 was used for preparative TLC. Pale yellow oil. 89% yield (**3ba/4ba** = 92/8). The ee was determined on two Daicel Chiralcel OD-H columns with hexane/2-propanol = 95/5, flow = 0.5 mL/min. Retention times: 99.8 min [minor enantiomer], 105.9 min [major enantiomer]. 78% ee. $[\alpha]^{30}_{D}$ +19.3 (*c* 0.92, CHCl₃). The absolute configuration was assigned by analogy with Table 2, entry 5.

¹H NMR (CDCl₃): δ 7.55-7.50 (m, 2H), 7.38 (t, ³*J*_{HH} = 7.5 Hz, 2H), 7.33-7.27 (m, 3H), 7.26-7.18 (m, 3H), 4.34 (d, ²*J*_{HH} = 15.9 Hz, 1H), 4.30 (d, ²*J*_{HH} = 15.9 Hz, 1H), 3.80 (s, 3H), 3.04 (d, ²*J*_{HH} = 12.7 Hz, 1H), 2.57 (d, ²*J*_{HH} = 12.7 Hz, 1H), 0.85-0.76 (m, 2H), 0.66-0.57 (m, 1H), 0.52-0.42 (m, 1H). ¹³C NMR (CDCl₃): δ 171.7, 171.3, 138.1, 137.5, 128.8, 128.7, 127.8, 127.5, 127.4, 127.1, 60.9, 53.3, 42.7, 42.4, 40.7, 7.3, 7.1.

Table 2, Entry 1. EtOAc/hexane = 1/3 and then hexane/CH₂Cl₂ = 1/4 were used for preparative TLC. Yellow oil. 86% yield (**3ab/4ab** = 88/12). The ee was determined on a Daicel Chiralpak AS-H column with hexane/2-propanol = 97/3, flow = 0.8 mL/min. Retention times: 24.9 min [major enantiomer], 29.8 min [minor enantiomer]. 93% ee. [α]²⁵_D +15.9 (*c* 0.86, CHCl₃). The absolute configuration was assigned by analogy with Table 2, entry 5.

¹H NMR (CDCl₃): δ 7.58-7.54 (m, 2H), 7.36 (t, ³*J*_{HH} = 7.6 Hz, 2H), 7.29 (t, ³*J*_{HH} = 7.5 Hz, 1H), 7.16 (d, ³*J*_{HH} = 8.4 Hz, 2H), 6.82 (d, ³*J*_{HH} = 8.7 Hz, 2H), 4.42 (d, ²*J*_{HH} = 15.6 Hz, 1H), 4.10 (d, ²*J*_{HH} = 15.5 Hz, 1H), 3.78 (s, 3H), 2.85 (d, ²*J*_{HH} = 12.5 Hz, 1H), 2.61 (d, ²*J*_{HH} = 12.5 Hz, 1H), 1.46 (s, 9H), 0.90 (dt, ²*J*_{HH} = 10.7 Hz and ³*J*_{HH} = 6.4 Hz, 1H), 0.72 (dt, ²*J*_{HH} = 10.8 Hz and ³*J*_{HH} = 6.3 Hz, 1H), 0.58 (dt, ²*J*_{HH} = 10.3 Hz and ³*J*_{HH} = 6.3 Hz, 1H), 0.49 (dt, ²*J*_{HH} = 10.3 Hz and ³*J*_{HH} = 6.5 Hz, 1H). ¹³C NMR (CDCl₃): δ 171.7, 170.2, 158.9, 129.8, 129.7, 128.4, 128.3, 127.5, 127.4, 114.0, 82.3, 61.3, 55.3, 42.11, 42.09, 40.7, 27.9, 7.8, 6.6. HRMS (ESI-TOF) calcd for C₂₅H₂₉NO₄Na (M+Na⁺) 430.1989, found 430.1988

Table 2, Entry 2. EtOAc/hexane = 1/3 was used for preparative TLC. Pale yellow oil. 92% yield (**3ac/4ac** = 89/11). The ee was determined on two Daicel Chiralpak AS-H columns with hexane/2-propanol = 98/2, flow = 0.4 mL/min. Retention times: 63.7 min [major enantiomer], 71.0 min [minor enantiomer]. 92% ee. $[\alpha]^{25}_{D}$ +12.2 (*c* 0.85, CHCl₃). The absolute configuration was assigned by analogy with Table 2, entry 5.

¹H NMR (CDCl₃): δ 7.59-7.54 (m, 2H), 7.36 (t, ³*J*_{HH} = 7.6 Hz, 2H), 7.29 (tt, ³*J*_{HH} = 7.3 Hz and ⁴*J*_{HH} = 1.2 Hz, 1H), 7.12 (d, ³*J*_{HH} = 8.2 Hz, 2H), 7.09 (d, ³*J*_{HH} = 8.0 Hz, 2H), 4.44 (d, ²*J*_{HH} = 15.8 Hz, 1H), 4.12 (d, ²*J*_{HH} = 15.6 Hz, 1H), 2.87 (d, ²*J*_{HH} = 12.5 Hz, 1H), 2.62 (d, ²*J*_{HH} = 12.5 Hz, 1H), 2.32 (s, 3H), 1.47 (s, 9H), 0.89 (dt, ²*J*_{HH} = 10.8 Hz and ³*J*_{HH} = 6.3 Hz, 1H), 0.72 (dt, ²*J*_{HH} = 10.8 Hz and ³*J*_{HH} = 6.4 Hz, 1H), 0.58 (dt, ²*J*_{HH} = 10.2 Hz and ³*J*_{HH} = 6.3 Hz, 1H), 0.48 (dt, ²*J*_{HH} = 10.3 Hz and ³*J*_{HH} = 6.5 Hz, 1H). ¹³C NMR (CDCl₃): δ 171.7, 170.2, 138.1, 136.9, 134.7, 129.3, 128.3, 127.5, 127.4, 127.1, 82.4, 61.4, 42.4, 42.1, 40.7, 27.9, 21.1, 7.8, 6.7. HRMS (ESI-TOF) calcd for C₂₅H₂₉NO₃Na (M+Na⁺) 414.2040, found 414.2049.

Table 2, Entry 3. EtOAc/hexane = 1/4 was used for preparative TLC. Yellow oil. 76% yield (**3ad/4ad** = 93/7). The ee was determined on two Daicel Chiralcel OD-H columns + a Daicel Chiralcel OF column with hexane/2-propanol = 85/15, flow = 0.3 mL/min. Retention times: 92.1 min [major enantiomer], 103.3 min [minor enantiomer]. 92% ee. $[\alpha]^{30}_{D}$ +11.5 (*c* 1.17, CHCl₃). The absolute configuration was assigned by analogy with Table 2, entry 5.

¹H NMR (CDCl₃): δ 7.58-7.53 (m, 2H), 7.41 (d, ³*J*_{HH} = 8.3 Hz, 2H), 7.37 (t, ³*J*_{HH} = 7.6 Hz, 2H), 7.30 (tt, ³*J*_{HH} = 7.3 Hz and ⁴*J*_{HH} = 1.2 Hz, 1H), 7.11 (d, ³*J*_{HH} = 8.4 Hz, 2H), 4.40 (d, ²*J*_{HH} = 16.0 Hz, 1H), 4.09 (d, ²*J*_{HH} = 16.0 Hz, 1H), 2.88 (d, ²*J*_{HH} = 12.6 Hz, 1H), 2.64 (d, ²*J*_{HH} = 12.5 Hz, 1H), 1.46 (s, 9H), 0.85 (dt, ²*J*_{HH} = 10.9 Hz and ³*J*_{HH} = 6.5 Hz, 1H), 0.61 (dt, ²*J*_{HH} = 10.3 Hz and ³*J*_{HH} = 6.4 Hz, 1H), 0.52 (dt, ²*J*_{HH} = 10.4 Hz and ³*J*_{HH} = 6.5 Hz, 1H). ¹³C NMR (CDCl₃): δ 171.9, 170.1, 137.8, 136.8, 131.8, 128.9, 128.4, 127.6, 127.5, 121.3, 82.5, 61.3, 42.03, 41.97, 40.7, 28.0, 7.8, 6.7. HRMS (ESI-TOF) calcd for C₂₄H₂₆BrNO₃Na (M+Na⁺) 478.0988, found 478.0987.

Table 2, Entry 4. The reaction was conducted with 1.6 equiv of **1a**. MeOH/EtOAc/hexane = 1/2/8 and then EtOAc/hexane/C₆H₆ = 1/5/5 were used for preparative TLC. Yellow oil. 82% yield (**3ae/4ae** = 90/10). The ee was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = 95/5, flow = 0.8 mL/min. Retention times: 21.7 min [minor enantiomer], 27.7 min [major enantiomer]. 93% ee. $[\alpha]^{25}_{D}$ +2.1 (*c* 0.71, CHCl₃). The absolute configuration was assigned by analogy with Table 2, entry 5.

¹H NMR (CDCl₃): δ 7.53-7.48 (m, 2H), 7.34 (t, ³*J*_{HH} = 7.6 Hz, 2H), 7.30 (dd, ³*J*_{HH} = 1.8 Hz and ⁴*J*_{HH} = 0.7 Hz, 1H), 7.27 (tt, ³*J*_{HH} = 7.3 Hz and ⁴*J*_{HH} = 1.3 Hz, 1H), 6.30 (dd, ³*J*_{HH} = 3.2 and 1.9 Hz, 1H), 6.25 (d, ³*J*_{HH} = 3.2 Hz, 1H), 4.32 (d, ²*J*_{HH} = 16.1 Hz, 1H), 4.23 (d, ²*J*_{HH} = 15.9 Hz, 1H), 2.84 (d, ²*J*_{HH} = 12.4 Hz, 1H), 2.58 (d, ²*J*_{HH} = 12.3 Hz, 1H), 1.42 (s, 9H), 1.01 (dt, ²*J*_{HH} = 10.9 Hz and ³*J*_{HH} = 6.5 Hz, 1H), 0.87 (dt, ²*J*_{HH} = 10.8 Hz and ³*J*_{HH} = 6.5 Hz, 1H), 0.66 (dt, ²*J*_{HH} = 10.3 Hz and ³*J*_{HH} = 6.3 Hz, 1H), 0.53 (dt, ²*J*_{HH} = 10.4 Hz and ³*J*_{HH} = 6.6 Hz, 1H). ¹³C NMR (CDCl₃): δ 171.4, 170.0, 150.5, 141.8, 138.2, 128.4, 127.47, 127.45, 110.8, 108.2, 82.4, 61.3, 42.2, 40.6, 35.9, 27.9, 7.8, 6.7. HRMS (ESI-TOF) calcd for C₂₂H₂₅NO₄Na (M+Na⁺) 390.1676, found 390.1665.

Table 2, Entry 5. The reaction was conducted for 45 h. EtOAc/hexane = 1/3, EtOAc/CH₂Cl₂/hexane = 1/4/12, and then EtOAc/hexane/toluene = 2/5/5 were used for preparative TLC. White solid. 77% yield (**3af/4af** = 91/9). The ee was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = 95/5, flow = 0.8 mL/min. Retention times: 14.0 min [minor enantiomer], 19.0 min [major enantiomer]. 90% ee. $[\alpha]^{25}_{D}$ –2.1 (*c* 0.76, CHCl₃). The absolute configuration was determined by X-ray crystallographic analysis after recrystallization from Et₂O.

¹H NMR (CDCl₃): δ 7.53-7.49 (m, 2H), 7.35 (t, ³*J*_{HH} = 7.5 Hz, 2H), 7.29 (tt, ³*J*_{HH} = 7.3 Hz and ⁴*J*_{HH} = 1.3 Hz, 1H), 3.62 (t, ³*J*_{HH} = 6.9 Hz, 2H), 3.30 (dt, ²*J*_{HH} = 14.5 Hz and ³*J*_{HH} = 6.8 Hz, 1H), 3.18 (dt, ²*J*_{HH} = 14.3 Hz and ³*J*_{HH} = 6.9 Hz, 1H), 2.85 (d, ²*J*_{HH} = 12.6 Hz, 1H), 2.64 (d, ²*J*_{HH} = 12.6 Hz, 1H), 1.44 (s, 9H), 0.99-0.90 (m, 2H), 0.83-0.75 (m, 1H), 0.68-0.61 (m, 1H). ¹³C NMR (CDCl₃): δ 171.9, 169.9, 137.9, 128.4, 127.6, 127.4, 82.5, 61.0, 41.9, 41.2, 40.4, 40.2, 27.9, 8.5, 7.4. HRMS (ESI-TOF) calcd for C₁₉H₂₄ClNO₃Na (M+Na⁺) 372.1337,

Table 2, Entry 6. The reaction was conducted with 1.6 equiv of **1a**. EtOAc/hexane = 1/3 and then Et₂O/hexane = 1/3 were used for preparative TLC. Pale yellow oil. 72% yield (**3ag/4ag** > 99/1). The ee was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = 95/5, flow = 0.8 mL/min. Retention times: 19.7 min [minor enantiomer], 21.4 min [major enantiomer]. 92% ee. $[\alpha]^{25}_{D}$ –2.2 (*c* 0.86, CHCl₃). The absolute configuration was assigned by analogy with Table 2, entry 5.

¹H NMR (CDCl₃): δ 7.52-7.46 (m, 2H), 7.33 (t, ³*J*_{HH} = 7.5 Hz, 2H), 7.27 (tt, ³*J*_{HH} = 7.3 Hz and ⁴*J*_{HH} = 1.3 Hz, 1H), 4.11 (q, ³*J*_{HH} = 7.1 Hz, 2H), 3.28 (ddd, ²*J*_{HH} = 14.3 Hz and ³*J*_{HH} = 8.7 and 6.1 Hz, 1H), 3.15 (ddd, ²*J*_{HH} = 14.1 Hz and ³*J*_{HH} = 8.8 and 6.3 Hz, 1H), 2.82 (d, ²*J*_{HH} = 12.5 Hz, 1H), 2.62 (ddd, ²*J*_{HH} = 16.0 Hz and ³*J*_{HH} = 8.8 and 6.3 Hz, 1H), 2.58 (d, ²*J*_{HH} = 16.1 Hz and ³*J*_{HH} = 8.7 and 6.1 Hz, 1H), 1.43 (s, 9H), 1.23 (t, ³*J*_{HH} = 7.1 Hz, 3H), 0.98-0.85 (m, 2H), 0.73 (dt, ²*J*_{HH} = 10.4 Hz and ³*J*_{HH} = 6.0 Hz, 1H), 0.59 (dt, ²*J*_{HH} = 10.4 Hz and ³*J*_{HH} = 6.0 Hz, 1H), 1.43 (s, 7.1 HRMS (ESI-TOF) calcd for C₂₂H₂₉NO₅Na (M+Na⁺) 410.1938, found 410.1941.

Table 2, Entry 7. EtOAc/hexane = 1/3 and then hexane/CH₂Cl₂ = 1/4 were used for preparative TLC. Yellow oil. 81% yield (**3ca**/**4ca** = 89/11). The ee was determined on a

Daicel Chiralpak AD-H column with hexane/2-propanol = 90/10, flow = 0.8 mL/min. Retention times: 42.7 min [major enantiomer], 55.0 min [minor enantiomer]. 93% ee. $[\alpha]^{25}_{D}$ +10.6 (*c* 1.03, CHCl₃). The absolute configuration was assigned by analogy with Table 2, entry 5.

¹H NMR (CDCl₃): δ 7.52 (d, ³*J*_{HH} = 9.0 Hz, 2H), 7.33-7.21 (m, 5H), 6.90 (d, ³*J*_{HH} = 8.9 Hz, 2H), 4.48 (d, ²*J*_{HH} = 15.9 Hz, 1H), 4.13 (d, ²*J*_{HH} = 15.9 Hz, 1H), 3.81 (s, 3H), 2.85 (d, ²*J*_{HH} = 12.4 Hz, 1H), 2.62 (d, ²*J*_{HH} = 12.5 Hz, 1H), 1.47 (s, 9H), 0.89 (dt, ²*J*_{HH} = 10.7 Hz and ³*J*_{HH} = 6.3 Hz, 1H), 0.70 (dt, ²*J*_{HH} = 10.7 Hz and ³*J*_{HH} = 6.4 Hz, 1H), 0.58 (dt, ²*J*_{HH} = 10.2 Hz and ³*J*_{HH} = 6.2 Hz, 1H), 0.50 (dt, ²*J*_{HH} = 10.2 Hz and ³*J*_{HH} = 6.4 Hz, 1H). ¹³C NMR (CDCl₃): δ 172.1, 170.5, 159.0, 137.8, 128.73, 128.71, 128.67, 127.4, 127.2, 113.8, 82.3, 60.6, 55.4, 42.6, 42.0, 40.7, 28.0, 7.8, 6.7. HRMS (ESI-TOF) calcd for C₂₅H₂₉NO₄Na (M+Na⁺) 430.1989, found 430.1983.

Table 2, Entry 8. EtOAc/hexane = 1/3 was used for preparative TLC. Yellow oil. 83% yield (**3da/4da** = 89/11). The ee was determined on two Daicel Chiralpak AS-H columns with hexane/2-propanol = 98/2, flow = 0.4 mL/min. Retention times: 65.1 min [minor enantiomer], 70.9 min [major enantiomer]. 93% ee. $[\alpha]^{25}_{D}$ +5.7 (*c* 1.23, CHCl₃). The absolute configuration was assigned by analogy with Table 2, entry 5.

¹H NMR (CDCl₃): δ 7.46 (d, ³*J*_{HH} = 8.3 Hz, 2H), 7.32-7.20 (m, 5H), 7.18 (d, ³*J*_{HH} = 8.5 Hz, 2H), 4.48 (d, ²*J*_{HH} = 15.9 Hz, 1H), 4.14 (d, ²*J*_{HH} = 15.9 Hz, 1H), 2.86 (d, ²*J*_{HH} = 12.5 Hz, 1H), 2.63 (d, ²*J*_{HH} = 12.5 Hz, 1H), 2.34 (s, 3H), 1.47 (s, 9H), 0.89 (dt, ²*J*_{HH} = 10.8 Hz and ³*J*_{HH} = 6.3 Hz, 1H), 0.70 (dt, ²*J*_{HH} = 10.9 Hz and ³*J*_{HH} = 6.3 Hz, 1H), 0.58 (dt, ²*J*_{HH} = 10.3 Hz and ³*J*_{HH} = 6.2 Hz, 1H), 0.50 (dt, ²*J*_{HH} = 10.2 Hz and ³*J*_{HH} = 6.4 Hz, 1H). ¹³C NMR (CDCl₃): δ 171.9, 170.4, 137.8, 137.1, 134.9, 129.0, 128.6, 127.4, 127.3, 127.1, 82.3, 61.0, 42.5, 42.0, 40.7, 27.9, 21.1, 7.8, 6.6. HRMS (ESI-TOF) calcd for C₂₅H₂₉NO₃Na (M+Na⁺) 414.2040, found 414.2050.

Table 2, Entry 9. EtOAc/hexane = 1/4 was used for preparative TLC. Brown oil. 93% yield (**3ea/4ea** = 92/8). The ee was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = 85/15, flow = 0.8 mL/min. Retention times: 33.2 min [major enantiomer], 45.8 min [minor enantiomer]. 93% ee. $[\alpha]^{25}_{D}$ –11.3 (*c* 0.75, CHCl₃). The absolute configuration was assigned by analogy with Table 2, entry 5.

¹H NMR (CDCl₃): δ 7.66 (d, ³*J*_{HH} = 8.7 Hz, 2H), 7.63-7.58 (m, 4H), 7.44 (t, ³*J*_{HH} = 7.7 Hz, 2H), 7.37-7.27 (m, 3H), 7.27-7.22 (m, 3H), 4.51 (d, ²*J*_{HH} = 15.9 Hz, 1H), 4.17 (d, ²*J*_{HH} = 15.9 Hz, 1H), 2.91 (d, ²*J*_{HH} = 12.6 Hz, 1H), 2.70 (d, ²*J*_{HH} = 12.5 Hz, 1H), 1.50 (s, 9H), 0.93 (dt, ²*J*_{HH} = 10.8 Hz and ³*J*_{HH} = 6.3 Hz, 1H), 0.73 (dt, ²*J*_{HH} = 10.8 Hz and ³*J*_{HH} = 6.3 Hz, 1H), 0.61 (dt, ²*J*_{HH} = 10.4 Hz and ³*J*_{HH} = 6.2 Hz, 1H), 0.54 (dt, ²*J*_{HH} = 10.3 Hz and ³*J*_{HH} = 6.4 Hz, 1H). ¹³C NMR (CDCl₃): δ 171.8, 170.2, 140.9, 140.3, 137.7, 137.0, 128.8, 128.7, 128.0, 127.38, 127.37, 127.2, 127.14, 127.10, 82.6, 61.2, 42.7, 42.0, 40.8, 28.0, 7.9, 6.7. HRMS (ESI-TOF) calcd for C₃₀H₃₁NO₃Na (M+Na⁺) 476.2196, found 476.2195.

Table 2, Entry 10. EtOAc/hexane = 1/3 was used for preparative TLC. Yellow oil. 94% yield (**3fa/4fa** = 90/10). The ee was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = 85/15, flow = 0.8 mL/min. Retention times: 18.1 min [major

enantiomer], 25.8 min [minor enantiomer]. 93% ee. $[\alpha]^{30}_{D}$ +10.7 (*c* 0.75, CHCl₃). The absolute configuration was assigned by analogy with Table 2, entry 5.

¹H NMR (CDCl₃): δ 7.58 (dd, ³*J*_{HH} = 8.6 Hz and ⁴*J*_{HF} = 5.2 Hz, 2H), 7.33-7.20 (m, 5H), 7.05 (t, ³*J* = 8.8 Hz, 2H), 4.48 (d, ²*J*_{HH} = 15.8 Hz, 1H), 4.14 (d, ²*J*_{HH} = 15.9 Hz, 1H), 2.86 (d, ²*J*_{HH} = 12.4 Hz, 1H), 2.62 (d, ²*J*_{HH} = 12.5 Hz, 1H), 1.46 (s, 9H), 0.90 (dt, ²*J*_{HH} = 11.0 Hz and ³*J*_{HH} = 6.4 Hz, 1H), 0.71 (dt, ²*J*_{HH} = 10.9 Hz and ³*J*_{HH} = 6.4 Hz, 1H), 0.59 (dt, ²*J*_{HH} = 10.2 Hz and ³*J*_{HH} = 6.4 Hz, 1H), 0.51 (dt, ²*J*_{HH} = 10.3 Hz and ³*J*_{HH} = 6.5 Hz, 1H). ¹³C NMR (CDCl₃): δ 171.7, 170.1, 162.2 (d, ¹*J*_{CF} = 246 Hz), 137.6, 133.7 (d, ⁴*J*_{CF} = 3.1 Hz), 129.3 (d, ³*J*_{CF} = 7.7 Hz), 128.7, 127.4, 127.1, 115.1 (d, ²*J*_{CF} = 21.2 Hz), 82.6, 60.6, 42.6, 42.0, 40.7, 27.9, 7.9, 6.6. HRMS (ESI-TOF) calcd for C₂₄H₂₆FNO₃Na (M+Na⁺) 418.1789, found 418.1798.

Table 2, Entry 11. EtOAc/hexane = 1/3 and then EtOAc/CH₂Cl₂/hexane = 1/2/3 were used for preparative TLC. Pale yellow oil. 85% yield (**3ga/4ga** = 91/9). The ee was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = 85/15, flow = 0.5 mL/min. Retention times: 43.3 min [minor enantiomer], 49.3 min [major enantiomer]. 92% ee. $[\alpha]^{30}_{D}$ –4.3 (*c* 0.80, CHCl₃). The absolute configuration was assigned by analogy with Table 2, entry 5.

¹H NMR (CDCl₃): δ 7.33-7.20 (m, 5H), 7.17 (d, ⁴*J*_{HH} = 2.0 Hz, 1H), 7.02 (dd, ³*J*_{HH} = 8.1 Hz and ⁴*J*_{HH} = 1.8 Hz, 1H), 6.79 (d, ³*J*_{HH} = 8.1 Hz, 1H), 5.954 (d, ²*J*_{HH} = 1.4 Hz, 1H), 5.947 (d, ²*J*_{HH} = 1.4 Hz, 1H), 4.47 (d, ²*J*_{HH} = 15.9 Hz, 1H), 4.13 (d, ²*J*_{HH} = 15.9 Hz, 1H), 2.82 (d, ²*J*_{HH} = 12.4 Hz, 1H), 2.60 (d, ²*J*_{HH} = 12.3 Hz, 1H), 1.47 (s, 9H), 0.91 (dt, ²*J*_{HH} = 10.8 Hz and ³*J*_{HH} = 6.1 Hz, 1H), 0.69 (dt, ²*J*_{HH} = 10.8 Hz and ³*J*_{HH} = 6.4 Hz, 1H), 0.58 (dt, ²*J*_{HH} = 10.3 Hz and ³*J*_{HH} = 6.1 Hz, 1H), 0.51 (dt, ²*J*_{HH} = 10.2 Hz and ³*J*_{HH} = 6.3 Hz, 1H). ¹³C NMR (CDCl₃): δ 171.9, 170.3, 147.7, 147.1, 137.7, 131.7, 128.7, 127.4, 127.2, 120.8, 108.7, 108.1, 101.2, 82.5, 60.9, 42.7, 42.2, 40.7, 28.0, 7.9, 6.6. HRMS (ESI-TOF) calcd for C₂₅H₂₇NO₅Na (M+Na⁺) 444.1781, found 444.1786.

Table 2, Entry 12. EtOAc/hexane = 1/3 was used for preparative TLC. Yellow oil. 83% yield (**3ha/4ha** = 90/10). The ee was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = 95/5, flow = 0.5 mL/min. Retention times: 61.8 min [major enantiomer], 70.8 min [minor enantiomer]. 92% ee. $[\alpha]^{25}_{D}$ +10.0 (*c* 0.77, CHCl₃). The absolute configuration was assigned by analogy with Table 2, entry 5.

¹H NMR (CDCl₃): δ 7.38 (s, 1H), 7.36-7.32 (m, 2H), 7.31-7.21 (m, 5H), 7.11 (d, ³*J*_{HH} = 7.4 Hz, 1H), 4.48 (d, ²*J*_{HH} = 15.9 Hz, 1H), 4.16 (d, ²*J*_{HH} = 15.9 Hz, 1H), 2.86 (d, ²*J*_{HH} = 12.4 Hz, 1H), 2.63 (d, ²*J*_{HH} = 12.4 Hz, 1H), 2.36 (s, 3H), 1.48 (s, 9H), 0.89 (dt, ²*J*_{HH} = 10.9 Hz and ³*J*_{HH} = 6.3 Hz, 1H), 0.70 (dt, ²*J*_{HH} = 10.8 Hz and ³*J*_{HH} = 6.4 Hz, 1H), 0.58 (dt, ²*J*_{HH} = 10.2 Hz and ³*J*_{HH} = 6.3 Hz, 1H), 0.50 (dt, ²*J*_{HH} = 10.3 Hz and ³*J*_{HH} = 6.5 Hz, 1H). ¹³C NMR (CDCl₃): δ 171.8, 170.3, 138.0, 137.9, 137.8, 128.6, 128.3, 128.23, 128.20, 127.3, 127.2, 124.5, 82.4, 61.4, 42.6, 42.3, 40.7, 27.9, 21.7, 7.8, 6.6. HRMS (ESI-TOF) calcd for C₂₅H₂₉NO₃Na (M+Na⁺) 414.2040, found 414.2031.

Table 2, Entry 13. EtOAc/hexane = 1/3 and then EtOAc/hexane/CH₂Cl₂ = 1/4/20 were used for preparative TLC. Yellow oil. 53% yield (**3ia/4ia** = 97/3). The ee was determined on a Daicel Chiralcel OJ-H column with hexane/2-propanol = 80/20, flow = 0.5 mL/min. Retention times: 10.5 min [major enantiomer], 16.2 min [minor enantiomer]. 83% ee. $[\alpha]^{25}_{D}$

+104 (c 0.85, CHCl₃). The absolute configuration was assigned by analogy with Table 2, entry 5.

¹H NMR (CDCl₃): δ 7.33 (dd, ³*J*_{HH} = 7.6 Hz and ⁴*J*_{HH} = 1.6 Hz, 1H), 7.33-7.29 (m, 2H), 7.28-7.22 (m, 4H), 6.92 (td, ³*J*_{HH} = 7.6 Hz and ⁴*J*_{HH} = 1.1 Hz, 1H), 6.88 (d, ³*J*_{HH} = 8.1 Hz, 1H), 4.46 (d, ²*J*_{HH} = 15.9 Hz, 1H), 4.24 (d, ²*J*_{HH} = 15.9 Hz, 1H), 3.79 (s, 3H), 3.27 (d, ²*J*_{HH} = 12.8 Hz, 1H), 2.17 (d, ²*J*_{HH} = 12.9 Hz, 1H), 1.44 (s, 9H), 0.85 (dt, ²*J*_{HH} = 10.9 Hz and ³*J*_{HH} = 6.5 Hz, 1H), 0.67 (dt, ²*J*_{HH} = 10.8 Hz and ³*J*_{HH} = 6.5 Hz, 1H), 0.54 (dt, ²*J*_{HH} = 10.2 Hz and ³*J*_{HH} = 6.6 Hz, 1H), 0.28 (dt, ²*J*_{HH} = 10.1 Hz and ³*J*_{HH} = 6.4 Hz, 1H). ¹³C NMR (CDCl₃): δ 171.9, 169.9, 156.9, 137.8, 129.5, 128.7, 128.5, 127.9, 127.3, 127.1, 120.6, 110.9, 81.4, 60.6, 55.3, 42.6, 41.7, 40.9, 28.0, 7.8, 7.3. HRMS (ESI-TOF) calcd for C₂₅H₂₉NO₄Na (M+Na⁺) 430.1989, found 430.1997.

Table 3, Entry 1. (CAS 1086018-55-4) Et₂O/CH₂Cl₂/hexane = 3/5/10, CH₂Cl₂/EtOAc/hexane = 1/2/6, and then EtOAc/hexane = 1/5 were used for preparative TLC. Pale yellow oil. 89% yield (**3ah/4ah** = 6/94). The ee was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = 85/15, flow = 0.5 mL/min. Retention times: 18.3 min [minor enantiomer], 24.0 min [major enantiomer]. 94% ee. [α]³⁰_D +31.5 (*c* 1.05, CHCl₃). The absolute configuration was determined by comparison of the optical rotation with the literature value.¹⁰

¹H NMR (CDCl₃): δ 7.40-7.37 (m, 2H), 7.35 (t, ³*J*_{HH} = 7.7 Hz, 2H), 7.28 (tt, ³*J*_{HH} = 7.1 Hz and ⁴*J*_{HH} = 1.5 Hz, 1H), 7.19 (d, ³*J*_{HH} = 9.0 Hz, 2H), 6.91 (d, ³*J*_{HH} = 9.0 Hz, 2H), 4.99 (s, 1H), 4.93 (s, 1H), 4.21 (d, ²*J*_{HH} = 15.6 Hz, 1H), 4.12 (d, ²*J*_{HH} = 15.7 Hz, 1H), 3.80 (s, 3H), 3.49 (d, ²*J*_{HH} = 14.9 Hz, 1H), 3.28 (d, ²*J*_{HH} = 14.9 Hz, 1H), 1.44 (s, 9H). ¹³C NMR (CDCl₃): δ 169.9, 169.2, 158.4, 137.4, 137.2, 135.5, 128.2, 127.9, 127.5, 127.4, 114.6, 111.9, 82.4, 60.9, 55.7, 55.6, 38.3, 27.9.

¹⁰ Shintani, R.; Park, S.; Shirozu, F.; Murakami, M.; Hayashi, T. *J. Am. Chem. Soc.* **2008**, *130*, 16174.

Table 3, Entry 2. EtOAc/hexane = 1/5 was used for preparative TLC. Pale yellow oil. 89% yield (**3ai/4ai** = 1/99). The ee was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = 85/15, flow = 0.5 mL/min. Retention times: 12.6 min [minor enantiomer], 17.8 min [major enantiomer]. 94% ee. $[\alpha]^{30}_{D}$ +14.3 (*c* 1.48, CHCl₃). The absolute configuration was assigned by analogy with Table 3, entry 1.

¹H NMR (CDCl₃): δ 7.42-7.33 (m, 6H), 7.31-7.23 (m, 4H), 5.02 (s, 1H), 4.95 (s, 1H), 4.25 (d, ²*J*_{HH} = 15.6 Hz, 1H), 4.16 (d, ²*J*_{HH} = 15.6 Hz, 1H), 3.50 (d, ²*J*_{HH} = 14.8 Hz, 1H), 3.30 (d, ²*J*_{HH} = 15.0 Hz, 1H), 1.45 (s, 9H). ¹³C NMR (CDCl₃): δ 169.8, 169.1, 142.6, 137.3, 137.1, 129.3, 128.2, 127.8, 127.5, 127.0, 126.2, 112.0, 82.5, 61.0, 55.3, 38.2, 27.9. HRMS (ESI-TOF) calcd for C₂₃H₂₅NO₃Na (M+Na⁺) 386.1727, found 386.1724.

Table 3, Entry 3. (CAS 1086018-59-8) CH₂Cl₂/EtOAc/hexane = 1/2/20 was used for preparative TLC. Pale yellow oil. 95% yield (**3aj/4aj** < 1/99). The ee was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = 85/15, flow = 0.5 mL/min. Retention times: 15.6 min [minor enantiomer], 20.6 min [major enantiomer]. 94% ee. $[\alpha]^{25}_{D}$ +23.6 (*c* 0.90, CHCl₃). The absolute configuration was determined by comparison of the optical rotation with the literature value.¹⁰

¹H NMR (CDCl₃): δ 7.39-7.32 (m, 6H), 7.32-7.27 (m, 1H), 7.23 (d, ³*J*_{HH} = 8.6 Hz, 2H), 5.03 (s, 1H), 4.97 (s, 1H), 4.22 (d, ²*J*_{HH} = 15.4 Hz, 1H), 4.15 (d, ²*J*_{HH} = 15.5 Hz, 1H), 3.47 (d,

 ${}^{2}J_{\text{HH}} = 14.6 \text{ Hz}, 1\text{H}$), 3.30 (d, ${}^{2}J_{\text{HH}} = 14.9 \text{ Hz}, 1\text{H}$), 1.44 (s, 9H). ${}^{13}\text{C}$ NMR (CDCl₃): δ 169.7, 169.1, 141.0, 136.9, 132.5, 129.3, 128.2, 127.7, 127.6, 127.5, 112.3, 82.5, 61.0, 55.1, 38.1, 27.9.

Table 3, Entry 4. EtOAc/hexane/CH₂Cl₂ = 1/20/60 and then EtOAc/toluene = 1/10 were used for preparative TLC. White solid. 91% yield (**3ei/4ei** = 1/99). The ee was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = 85/15, flow = 0.8 mL/min. Retention times: 14.5 min [minor enantiomer], 36.3 min [major enantiomer]. 94% ee. $[\alpha]^{25}_{D}$ +10.2 (*c* 1.10, CHCl₃). The absolute configuration was assigned by analogy with Table 3, entry 1.

¹H NMR (CDCl₃): δ 7.64-7.56 (m, 4H), 7.48 (d, ³*J*_{HH} = 8.4 Hz, 2H), 7.46-7.38 (m, 4H), 7.34 (tt, ³*J*_{HH} = 7.3 Hz and ⁴*J*_{HH} = 1.1 Hz, 1H), 7.32-7.24 (m, 3H), 5.07 (s, 1H), 4.99 (s, 1H), 4.28 (d, ²*J*_{HH} = 15.6 Hz, 1H), 4.22 (d, ²*J*_{HH} = 15.7 Hz, 1H), 3.53 (d, ²*J*_{HH} = 14.9 Hz, 1H), 3.35 (d, ²*J*_{HH} = 14.8 Hz, 1H), 1.48 (s, 9H). ¹³C NMR (CDCl₃): δ 169.9, 169.0, 142.6, 140.8, 140.3, 137.3, 136.1, 129.3, 128.8, 128.3, 127.4, 127.2, 127.1, 126.9, 126.2, 112.2, 82.6, 60.7, 55.4, 38.2, 28.0. HRMS (ESI-TOF) calcd for C₂₉H₂₉NO₃Na (M+Na⁺) 462.2040, found 462.2037.

Table 3, Entry 5. EtOAc/hexane = 1/3 was used for preparative TLC. Pale yellow oil. 91% yield (**3hi/4hi** = 1/99). The ee was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = 85/15, flow = 0.5 mL/min. Retention times: 13.0 min [minor enantiomer], 16.1 min [major enantiomer]. 93% ee. $[\alpha]^{25}_{D}$ +7.5 (*c* 1.06, CHCl₃). The absolute configuration was assigned by analogy with Table 3, entry 1.

¹H NMR (CDCl₃): δ 7.42-7.36 (m, 2H), 7.31-7.22 (m, 4H), 7.22-7.16 (m, 2H), 7.10 (d, ³*J*_{HH} = 7.3 Hz, 1H), 5.02 (s, 1H), 4.95 (s, 1H), 4.24 (d, ²*J*_{HH} = 15.6 Hz, 1H), 4.18 (d, ²*J*_{HH} = 15.6 Hz, 1H), 3.47 (d, ²*J*_{HH} = 15.0 Hz, 1H), 3.30 (d, ²*J*_{HH} = 14.9 Hz, 1H), 2.35 (s, 3H), 1.46 (s, 9H). ¹³C NMR (CDCl₃): δ 169.9, 169.1, 142.6, 137.6, 137.4, 136.9, 129.2, 128.6, 128.3, 128.1, 127.0, 126.2, 124.8, 111.9, 82.4, 60.9, 55.3, 38.2, 27.9, 21.7. HRMS (ESI-TOF) calcd for C₂₄H₂₇NO₃Na (M+Na⁺) 400.1883, found 400.1876.

A solution of compound **3aa** (111 mg, 0.266 mmol of **3aa**; **3aa/4aa** = 93/7, 92% ee) in Et₂O (5.0 mL) was added to a suspension of LiAlH₄ (109 mg, 2.87 mmol) in Et₂O (1.0 mL) at $-30 \,^{\circ}$ C, and the mixture was stirred for 72 h h at $-20 \,^{\circ}$ C. The reaction mixture was cooled to $-50 \,^{\circ}$ C and slowly quenched with saturated NaCl*aq*. After extraction with CH₂Cl₂, the organic layer was washed with saturated NaCl*aq*, dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with EtOAc/hexane = $1/5 \rightarrow 1/4$ to afford compound **5** as a pale yellow oil (68.1 mg, 0.232 mmol; 87% yield). The ee was determined on a Daicel Chiralpak AS-H column with hexane/2-propanol = 85/15, flow = 0.5 mL/min. Retention times: 10.5 min [minor enantiomer], 12.3 min [major enantiomer]. 91% ee. [α]²⁵_D +147 (*c* 1.10, CH₂Cl₂).

¹H NMR (C₆D₆): δ 7.25 (d, ³*J*_{HH} = 7.2 Hz, 2H), 7.19 (t, ³*J*_{HH} = 7.6 Hz, 2H), 7.13-7.05 (m, 3H), 7.03 (tt, ³*J*_{HH} = 7.3 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 6.90-6.86 (m, 2H), 3.71 (d, ²*J*_{HH} = 10.1 Hz, 1H), 3.63 (dd, ²*J*_{HH} = 10.1 Hz and ⁴*J*_{HH} = 1.2 Hz, 1H), 3.24 (d, ²*J*_{HH} = 8.9 Hz, 1H), 3.16 (d, ²*J*_{HH} = 13.0 Hz, 1H), 2.76 (d, ²*J*_{HH} = 13.0 Hz, 1H), 2.70 (dd, ²*J*_{HH} = 8.9 Hz and ⁴*J*_{HH} = 1.1 Hz, 1H), 2.47 (d, ²*J*_{HH} = 12.4 Hz, 1H), 2.10 (d, ²*J*_{HH} = 12.6 Hz, 1H), 1.46-1.16 (m, 1H), 0.75 (dt, ²*J*_{HH} = 10.7 Hz and ³*J*_{HH} = 5.9 Hz, 1H), 0.62 (dt, ²*J*_{HH} = 10.8 Hz and ³*J*_{HH} = 6.1 Hz, 1H), 0.49 (dt, ²*J*_{HH} = 10.1 Hz and ³*J*_{HH} = 6.0 Hz, 1H), 0.03 (dt, ²*J*_{HH} = 10.0 Hz and ³*J*_{HH} = 6.0 Hz, 1H). ¹³C NMR (C₆D₆): δ 145.9, 139.7, 128.8, 128.7, 128.5, 127.4, 127.1, 126.4, 74.1, 62.9, 53.9, 49.8, 46.5, 44.3, 7.3, 7.0. HRMS (ESI-TOF) calcd for C₂₀H₂₄NO (M+H⁺) 294.1852, found 294.1851.

Procedure for Equation 2.

A solution of compound **3ag** (76.2 mg, 0.197 mmol; 92% ee) in THF (1.50 mL) was added to a suspension of NaH (15.7 mg, 0.393 mmol; 60 wt% in mineral oil) in THF (0.50 mL) at 0 °C, and the mixture was stirred for 5 h at 50 °C. The reaction mixture was diluted with Et₂O and quenched with H₂O. After extraction with Et₂O, the organic layer was washed with saturated NaCl*aq*, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by silica gel preparative TLC with EtOAc/hexane = 1/2 to afford compound **6** as a white solid (52.6 mg, 0.184 mmol; 93% yield). The ee was determined on a Daicel Chiralcel OD-H column with hexane/2-propanol = 80/20, flow = 0.5 mL/min. Retention times: 10.4 min [major enantiomer], 13.4 min [minor enantiomer]. 92% ee. $[\alpha]^{25}_{D}$ +3.9 (*c* 1.11, CHCl₃).

¹H NMR (CDCl₃): δ 7.52-7.47 (m, 2H), 7.37-7.32 (m, 2H), 7.28 (tt, ³*J*_{HH} = 7.3 Hz and ⁴*J*_{HH} = 1.3 Hz, 1H), 6.37 (bs, 1H), 2.91 (d, ²*J*_{HH} = 12.5 Hz, 1H), 2.65 (d, ²*J*_{HH} = 12.7 Hz, 1H), 1.46 (s, 9H), 0.86-0.76 (m, 3H), 0.70-0.61 (m, 1H). ¹³C NMR (CDCl₃): δ 174.2, 170.0, 138.4, 128.4, 127.44, 127.38, 82.4, 62.6, 42.9, 36.8, 27.9, 11.4, 9.8. HRMS (ESI-TOF) calcd for C₁₇H₂₁NO₃Na (M+Na⁺) 310.1414, found 310.1419.

IV. X-ray Crystal Structure of (S)-3af

Data Collection

A colorless Et_2O solution of (*S*)-**3af** was prepared at room temperature. Crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent at room temperature.

A colorless prism crystal of $C_{19}H_{24}CINO_3$ having approximate dimensions of 0.50 x 0.40 x 0.20 mm was mounted on a glass fiber. All measurements were made on a Rigaku RAXIS RAPID imaging plate area detector with graphite monochromated Cu-K α radiation.

Indexing was performed from 3 oscillations that were exposed for 15 seconds. The crystal-to-detector distance was 127.40 mm.

Cell constants and an orientation matrix for data collection corresponded to a primitive monoclinic cell with dimensions:

a = 8.71555(18) Å	
b = 8.71796(19) Å	$\beta = 104.9876(14)^{\circ}$
c = 12.4456(3) Å	
$V = 913.47(3) Å^3$	

For Z = 2 and F.W. = 349.86, the calculated density is 1.272 g/cm³. Based on the systematic absences of:

0k0: $k \pm 2n$

packing considerations, a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be:

P2₁ (#4)

The data were collected at a temperature of -180 ± 1 °C to a maximum 20 value of 136.4°. A total of 30 oscillation images were collected. A sweep of data was done using ω scans from 80.0 to 260.0° in 30.0° step, at $\chi = 54.0^{\circ}$ and $\phi = 0.0^{\circ}$. The exposure rate was 10.0 [sec./°]. A second sweep was performed using ω scans from 80.0 to 260.0° in 30.0° step, at $\chi = 54.0^{\circ}$ and $\phi = 90.0^{\circ}$. The exposure rate was 10.0 [sec./°]. Another sweep was performed using ω scans from 80.0 to 260.0° in 30.0° step, at $\chi = 54.0^{\circ}$ and $\phi = 90.0^{\circ}$. The exposure rate was 10.0 [sec./°]. Another sweep was performed using ω scans from 80.0 to 260.0° in 30.0° step, at $\chi = 54.0^{\circ}$ and $\phi = 180.0^{\circ}$. The exposure

rate was 10.0 [sec./°]. Another sweep was performed using ω scans from 80.0 to 260.0° in 30.0° step, at $\chi = 54.0^{\circ}$ and $\phi = 270.0^{\circ}$. The exposure rate was 10.0 [sec./°]. Another sweep was performed using ω scans from 80.0 to 260.0° in 30.0° step, at $\chi = 0.0^{\circ}$ and $\phi = 0.0^{\circ}$. The exposure rate was 10.0 [sec./°]. The crystal-to-detector distance was 127.40 mm. Readout was performed in the 0.100 mm pixel mode.

Data Reduction

Of the 9740 reflections that were collected, 3224 were unique ($R_{int} = 0.057$).

The linear absorption coefficient, μ , for Cu-K α radiation is 19.823 cm⁻¹. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.564 to 0.673. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods¹¹ and expanded using Fourier techniques.¹² The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement¹³ on F^2 was based on 3224 observed reflections and 219 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

$$R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.0404$$

wR2 =
$$[\Sigma w (Fo^2 - Fc^2)^2 / \Sigma w (Fo^2)^2]^{1/2} = 0.1020$$

The standard deviation of an observation of unit weight¹⁴ was 1.04. A Chebychev polynomial weighting scheme was used.¹⁵ The maximum and minimum peaks on the final difference Fourier map corresponded to 0.19 and $-0.25 \text{ e}^{-}/\text{Å}^{3}$, respectively. The absolute structure was deduced based on Flack parameter, 0.040(15), refined using 1446 Friedel pairs.¹⁶

Neutral atom scattering factors were taken from Cromer and Waber.¹⁷ Anomalous dispersion effects were included in Fcalc;¹⁸ the values for $\Delta f'$ and $\Delta f''$ were those of Creagh

¹³ Least Squares function minimized: (SHELXL97)

 $\Sigma w (F_0^2 - F_c^2)^2$ where w = Least Squares weights.

¹⁴ Standard deviation of an observation of unit weight:

 $[\Sigma w (F_0^2 - F_c^2)^2 / (N_0 - N_V)]^{1/2}$

where: N_0 = number of observations, N_V = number of variables

¹⁵ Carruthers, J. R.; Watkin, D. J. Acta Crystallogr. 1979, A35, 698.

¹¹ <u>SIR92</u>: Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M.; Polidori, G.; Camalli, M. J. Appl. Cryst. **1994**, 27, 435.

¹² <u>DIRDIF99</u>: Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R.; Smits, J. M. M. The DIRDIF-99 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands (1999).

¹⁶ Flack, H. D. Acta Crystallogr. **1983**, A39, 876.

¹⁷ Cromer, D. T.; Waber, J. T. "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

¹⁸ Ibers, J. A.; Hamilton, W. C. Acta Crystallogr. **1964**, 17, 781.

and McAuley.¹⁹ The values for the mass attenuation coefficients are those of Creagh and Hubbell.²⁰ All calculations were performed using the CrystalStructure²¹ crystallographic software package except for refinement, which was performed using SHELXL-97.²²

The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (deposition number: CCDC 892796). The data can be obtained free of charge via the Internet at www.ccdc.cam.ac.uk/conts/retrieving.html.

¹⁹ Creagh, D. C.; McAuley, W. J. "International Tables for Crystallography", Vol C, (A. J. C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219–222 (1992).

²⁰ Creagh, D. C.; Hubbell, J. H. "International Tables for Crystallography", Vol C, (A. J. C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200–206 (1992).

²¹ <u>CrystalStructure 3.8</u>: Crystal Structure Analysis Package, Rigaku and Rigaku Americas (2000-2007). 9009 New Trails Dr. The Woodlands TX 77381 USA.

²² <u>SHELXL97</u>: Sheldrick, G. M. (1997).

Experimental Details

A. Crystal Data

Empirical Formula	$C_{19}H_{24}CINO_3$
Formula Weight	349.86
Crystal Color, Habit	colorless, prism
Crystal Dimensions	0.50 X 0.40 X 0.20 mm
Crystal System	monoclinic
Lattice Type	Primitive
Indexing Images	3 oscillations @ 15.0 seconds
Detector Position	127.40 mm
Pixel Size	0.100 mm
Lattice Parameters	$\begin{array}{l} a = 8.71555(18) \ \text{\AA} \\ b = 8.71796(19) \ \text{\AA} \\ c = 12.4456(3) \ \text{\AA} \\ \beta = 104.9876(14)^{\circ} \\ V = 913.46(3) \ \text{\AA}^{3} \end{array}$
Space Group	P2 ₁ (#4)
Z value	2
D _{calc}	1.272 g/cm ³
F000	372.00
μ(CuKα)	19.823 cm^{-1}

B. Intensity Measurements

Diffractometer	Rigaku RAXIS-RAPID
Radiation	CuK α (λ = 1.54187 Å) graphite monochromated
Detector Aperture	460 mm x 256 mm
Data Images	30 exposures
$ω$ oscillation Range (χ =54.0, ϕ =0.0)	80.0 - 260.0°
Exposure Rate	10.0 sec./°
ω oscillation Range (χ=54.0, φ=90.0)	80.0 - 260.0°
Exposure Rate	10.0 sec./°
$ω$ oscillation Range (χ =54.0, $φ$ =180.0)	80.0 - 260.0°
Exposure Rate	10.0 sec./°
$ω$ oscillation Range (χ =54.0, ϕ =270.0)	80.0 - 260.0°
Exposure Rate	10.0 sec./°
ω oscillation Range (χ=0.0, φ=0.0)	80.0 - 260.0°
Exposure Rate	10.0 sec./°
Detector Position	127.40 mm
Pixel Size	0.100 mm
20 _{max}	136.4°
No. of Reflections Measured	Total: 9740 Unique: 3224 (R _{int} = 0.057) Friedel pairs: 1446
Corrections	Lorentz-polarization Absorption (trans. factors: 0.564 - 0.673)

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SIR92)
Refinement	Full-matrix least-squares on F ²
Function Minimized	$\Sigma w (Fo^2 - Fc^2)^2$
Least Squares Weights	w = $1/[\sigma^{2}(Fo^{2})+(0.0535P)^{2}+0.0256P]$ where P = $(Max(Fo^{2},0)+2Fc^{2})/3$
$2\theta_{\text{max}}$ cutoff	136.4°
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	3224
No. Variables	219
Reflection/Parameter Ratio	14.72
Residuals: R1 (I>2.00σ(I))	0.0404
Residuals: R (All reflections)	0.0459
Residuals: wR2 (All reflections)	0.1020
Goodness of Fit Indicator	1.036
Flack Parameter	0.040(15)
Max Shift/Error in Final Cycle	0.004
Maximum peak in Final Diff. Map	$0.19 e^{-/\text{Å}^3}$
Minimum peak in Final Diff. Map	$-0.25 \text{ e}^{-}/\text{\AA}^{-3}$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

V. ¹H and ¹³C NMR Spectra

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

