Supporting Information for:

Metal Catalyzed C(sp³)-H Bond Amination of 2-Alkyl Azaarenes with

Diethyl Azodicarboxylate

Jin-Ying Liu, Hong-Ying Niu, Shan Wu, Gui-Rong Qu,* and Hai-Ming Guo*

College of Chemistry and Environmental Science, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Henan Normal University, Xinxiang 453007, Henan, China. School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China.

Fax: +86 373 3329276. E-mail: quguir@sina.com; guohm518@hotmail.com

General information	S1
The optimization of Cu(OTf) ₂ catalyzed C(sp ³)-H amination of 2-alkyl	pyridinesS2
General procedure	S3
Characterization of compounds	
References	
Copies of ¹ H NMR and ¹³ C NMR spectra	S10

General information:

Melting points were recorded with a micro melting point apparatus and uncorrected. NMR spectra were recorded with a 400 MHz spectrometer for ¹H NMR, 100 MHz for ¹³C NMR. Chemical shifts δ are given in ppm relative to tetramethylsilane as internal standard, residual CHCl₃ for ¹H NMR or CDCl₃ in ¹³C NMR spectroscopy. Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), triplet (t), quartet (q), multiplet (m). High resolution mass spectra were taken with a 3000 mass spectrometer, using Waters Q-TofMS/MS system. For column chromatography silica gel (200-300 mesh) was used as the stationary phase. All reactions were monitored by thin layer chromatography (TLC). DMSO and tetrahydrofuran used in reactions were reagent grade and distilled from calcium hydride and sodium. All reagents and solvents were purchased from commercial sources and purified commonly before used. All known quinolones were prepared according to literature procedures.^[11] All pyridines and azodicarboxylate are commercially available compounds.

	СH ₃ 4с	+ N OEt OEt O Solvent, 12 h				
Entry	Catalyst	Ligand	Solvent	T/°C	Yield/ % ^b	
1	Pd(OAc) ₂	1,10-phenanthroline	DMSO	90	trace	
2	$Pd(OAc)_2$	1,10-phenanthroline	DMSO	110	27	
3	$Pd(OAc)_2$	1,10-phenanthroline	DMSO	120	25	
4	Cu(OTf) ₂	1,10-phenanthroline	DMSO	110	35	
5	Cu(OTf) ₂	1,10-phenanthroline	THF	110	58	
6	Cu(OAc) ₂	1,10-phenanthroline	THF	110	41	
7	CuI	1,10-phenanthroline	THF	110	38	
8	Cu(OTf) ₂	1,10-phenanthroline	toluene	110	0	
9	Cu(OTf) ₂	1,10-phenanthroline	<i>i</i> -PrOH	110	0	
10	Cu(OTf) ₂	1,10-phenanthroline	dioxane	110	28	
11	Cu(OTf) ₂	none	THF	110	7	
^a Unless otherwise stated, all reactions were carried out with 4c (0.75 mmol), 2a (0.3 mmol),						
catalyst (10 mol %), ligand (10 mol %), solvent (1.5 mL), 12 h. ^b Isolated yield.						

Table S1. The optimization of $Cu(OTf)_2$ catalyzed $C(sp^3)$ -H amination of 2,6-dimethyl pyridine

General procedure

Palladium-catalyzed direct C(sp³)-H amination of 2-alkylquinolines

Under nitrogen, $Pd(OAc)_2$ (3.4 mg, 5 mol %), 1,10-phenanthroline (2.7 mg, 5 mol %), 2-methylquinoline **1a** (0.75 mmol), diethyl azodicarboxylate **2a** (0.3 mmol), and dry DMSO (1.0 mL) were added to a Schlenk tube. The mixture was stirred at 90 °C and monitored by TLC. After completion of the reaction, the reaction was extracted with ethyl acetate, then the organic phase was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to give the desired product.

Palladium-catalyzed direct C(sp³)-H diamination of 2-alkylquinolines

Under nitrogen, $Pd(OAc)_2$ (6.8 mg, 10 mol %), 1,10-phenanthroline(5.4 mg, 10 mol %), 2-methylquinoline **1a** (0.3mmol), diethyl azodicarboxylate **2a** (0.9 mmol), dry DMSO (1.0 ml) were added to a a Schlenk tube. The mixture was kept stirring at 110 °C for 24 h and monitored by TLC. After completion of the reaction, the reaction was extracted with ethyl acetate, then, organic phase was evaporated under reduced pressure and the residue purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to give the desired product.

Copper-catalyzed direct C(sp³)-H amination of 2-alkylpyridines

Cu(OTf)₂ (10.9 mg, 10 mol %), 1,10-phenanthroline (5.4 mg, 10 mol %), 2,6-dimethylpyridine **4c** (88 μ L, 0.75 mmol) and diethyl azodicarboxylate **2a** (48 μ L, 0.3 mmol) were mixed in the screw cap vial and then dry THF (0.8 mL) was added. The mixture was stirred at 110 °C under nitrogen in a closed reaction vessel containing a stir bar. The reaction was monitored by TLC. After completion of the reaction, the solvent was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to give the desired product.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Characterization of compounds

Diethyl 1-(quinolin-2-ylmethyl)hydrazine-1,2-dicarboxylate (3a):

White solid; m.p. 77-79 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, *J* = 8.4 Hz, 1H), 8.02 (d, *J* = 8.4 Hz, 1H), 7.79 (d, *J* = 8.4 Hz, 1H), 7.70 (t, *J* = 7.2 Hz, 1H), 7.52 (t, *J* = 7.2 Hz, 1H), 7.35-7.33 (m, 1H), 5.02 (s, 2H), 4.23-4.16 (m, 4H), 1.31-1.19 (m, 6H); ¹³C NMR (400 MHz, CDCl₃): δ 157.3, 156.8, 145.8, 135.8, 132.1, 130.7, 130.5, 127.9, 126.2, 62.8, 62.1,61.9, 14.4; HRMS: calcd for C₁₆H₂₀N₃O₄ [M+H]⁺ 318.1448, found 318.1452.

Diethyl 1-((6-nitroquinolin-2-yl)methyl)hydrazine-1,2-dicarboxylate (3b):

Weak yellow solid; m.p. 123-125 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.76 (s, 1H), 8.45 (d, J = 8.8Hz, 1H), 8.31 (d, J = 7.6Hz, 1H), 8.14 (d, J = 9.2Hz, 1H), 7.56 (s, 1H), 5.06 (s, 2H), 4.25-4.16 (m, 4H), 1.31-1.16 (m, 6H); ¹³C NMR (400 MHz, CDCl₃): δ 156.7, 149.6, 145.4, 138.4, 130.9, 126.1, 124.3, 123.1, 63.0, 62.1, 14.4; HRMS: calcd for C₁₆H₁₈N₄NaO₆ [M+Na]⁺ 385.1119, found 385.1124.

Diethyl 1-((6-(trifluoromethyl)quinolin-2-yl)methyl)hydrazine-1,2-dicarboxylate (3c):

Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 8.18 (s, 1H), 8.09 (s, 2H), 7.84 (d, *J* = 7.6Hz, 1H), 7.47 (d, *J* = 0.8Hz, 1H), 5.04 (s, 2H), 4.24-4.16 (m, 4H), 1.30-1.16 (m, 6H); ¹³C NMR (400 MHz, CDCl₃): δ 156.9, 136.7, 136.7, 129.6, 129.5, 129.0, 128.8, 127.5, 127.2, 126.4, 62.7, 61.8, 14.4; HRMS: calcd for C₁₇H₁₈F₃N₃NaO₄ [M+Na]⁺ 408.1142, found 408.1138.

Diethyl 1-((6-chloroquinolin-2-yl)methyl)hydrazine-1,2-dicarboxylate (3d):

White solid; m.p. 72-74 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.96 (t, *J* = 16.0 Hz, 2H); 7.74 (s, 1H), 7.59 (s, 1H), 7.37 (s, 1H), 4.98 (s, 2H), 4.22-4.15(m, 4H), 1.29-1.16 (m, 6H); ¹³C NMR (400 MHz, CDCl₃): δ 156.9, 147.4, 136.7, 129.5, 127.5, 127.2, 126.3, 62.7, 62.0, 61.8, 14.5, 14.4; HRMS: calcd for C₁₆H₁₉ClN₃O₄[M+H]⁺ 352.1059, found 352.1057.

Diethyl 1-((6-bromoquinolin-2-yl)methyl)hydrazine-1,2-dicarboxylate (3e):

Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.98-7.84 (m, 3H), 7.73 (s, 1H), 7.36 (d, *J* = 4.8Hz, 1H), 4.98 (s, 2H), 4.23-4.16 (m, 4H), 1.23 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (400 MHz, CDCl₃): δ 157.3, 157.3, 156.8, 146.1, 135.7, 133.0, 129.6, 128.4, 120.2, 62.8, 61.9, 14.5, 14.4; HRMS: calcd for C₁₆H₁₈BrN₃NaO₄ [M+Na]⁺ 418.0373, found 418.0381.

Diethyl 1-((6-methoxyquinolin-2-yl)methyl)hydrazine-1,2-dicarboxylate (3f):

Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.98 (s, 1H), 7.89 (d, J = 8.0Hz, 1H), 7.32 (d, J = 9.6Hz, 2H), 7.03 (s, 1H), 4.96 (s, 2H), 4.22-4.16 (m, 4H), 3.91 (s, 3H), 1.30-1.19 (m, 6H); ¹³C NMR (400 MHz, CDCl₃): δ 157.7, 156.9, 143.6, 135.6, 130.5, 128.3, 122.2, 105.1, 62.7, 61.9, 55.5, 14.5, 14.4; HRMS: calcd for C₁₇H₂₁N₃NaO₅ [M+Na]⁺ 370.1373, found 370.1370.

Diethyl 1-((8-methoxyquinolin-2-yl)methyl)hydrazine-1,2-dicarboxylate (3g):

White solid; m.p. 128-130 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.05 (d, J = 1.2Hz, 1H), 7.43 (t, J =

8.0 Hz, 2H), 7.34 (d, J = 8.0Hz, 1H), 7.03 (d, J = 6.8Hz, 1H), 5.04 (s, 2H), 4.25-4.14 (m, 4H), 4.05 (s, 3H), 1.23 (t, J = 7.2 Hz, 6H); ¹³C NMR (400 MHz, CDCl₃): δ 156.7, 156.1, 155.0, 139.4, 136.7, 128.4, 126.5, 119.5, 108.1, 62.8, 61.9, 56.1, 14.5, 14.4; HRMS: calcd for C₁₇H₂₁N₃NaO₅ [M+Na]⁺ 370.1373, found 370.1378.

Diethyl 1-((8-methylquinolin-2-yl)methyl)hydrazine-1,2-dicarboxylate (3h):

Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 8.10 (d, J = 8.4Hz, 1H), 7.65 (d, J = 8.4Hz, 1H), 7.56 (d, J = 6.8Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.28 (d, J = 7.6Hz, 1H), 5.02 (s, 2H), 4.26-4.17 (m, 4H), 2.75 (s, 3H), 1.34-1.14 (m, 6H); ¹³C NMR (400 MHz, CDCl₃): δ 157.5, 157,3, 156.1, 146.5, 137.2, 129.9, 127.2, 126.1, 125.6, 62.7, 61.8, 17.9, 14.4; HRMS: calcd for C₁₇H₂₁N₃NaO₄ [M+Na]⁺ 354.1424, found 354.1418.

Diethyl 1-(1-(6-nitroquinolin-2-yl)ethyl)hydrazine-1,2-dicarboxylate (3i):

Weak yellow solid; m.p. 124-126 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.74 (d, J = 2.4Hz, 1H), 8.43-8.40 (m, 1H), 7.29 (d, J = 8.8Hz, 1H), 8.12 (d, J = 9.2Hz, 1H), 7.56-7.48 (m, 1H), 5.68 (t, J = 2.4 Hz, 1H), 4.19-4.15 (m, 4H), 1.67 (d, J = 6.4Hz, 3H), 1.27-1.21 (m, 6H); ¹³C NMR (400 MHz, CDCl₃): δ 165.7, 156.7, 149.4, 145.4, 138.4, 126.0, 124.2, 123.0, 62.7, 61.9, 17.2, 14.5, 14.4; HRMS: calcd for C₁₇H₂₀N₄NaO₆ [M+Na]⁺ 399.1275, found 399.1283.

Tetraethyl 1,1'-(quinolin-2-ylmethylene)bis(hydrazine-1,2-dicarboxylate) (3aa):

White solid; m.p. 122-124 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.16 (d, J = 8.4Hz, 1H), 8.01 (d, J =

8.0Hz, 1H), 7.81 (d, J = 8.0Hz, 2H), 7.71-7.68 (m, 1H), 7.56-7.52 (m, 1H), 6.89-6.87 (m, 1H), 4.27-4.11 (m, 8H), 1.27-1.16 (m, 12H); ¹³C NMR (400 MHz, CDCl₃): δ 161.2, 156.8, 149.6, 145.3, 138.5, 130.9, 126.1, 124.4, 123.1, 123.1, 63.0, 62.0, 14.4; HRMS: calcd for C₂₂H₃₀N₅O₈ [M+H]⁺ 492.2089, found 492.90.

Tetraethyl 1,1'-((6-nitroquinolin-2-yl)methylene)bis(hydrazine-1,2-dicarboxylate) (3bb):

White solid; m.p. 136-138 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.07 (d, J = 7.6Hz, 1H), 7.95 (d, J = 8.8Hz, 1H), 7.79 (s, 1H), 7.65 (d, J = 9.2Hz, 2H), 6.88-6.83 (m, 1H), 4.30-4.06 (m, 8H), 1.27 (s, 12H); ¹³C NMR (400 MHz, CDCl₃): δ 156.4, 155.7, 145.2, 135.9, 131.0, 130.4, 128.2, 126.3, 62.9, 62.1, 14.4; HRMS: calcd for C₂₂H₂₉N₆O₁₀ [M+H]⁺ 537.1940, found 537.1944.

Tetraethyl 1,1'-((6-(trifluoromethyl)quinolin-2-yl)methylene)bis(hydrazine-1,2-dicarboxylate) (3cc):

White solid; m.p. 103-105 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.24 (d, *J* = 8.0 Hz, 1H), 8.13-8.00 (m, 2H), 7.87 (s, 1H), 7.69-7.68 (m, 1H), 6.91-6.83 (m, 1H), 4.30-4.20 (m, 8H), 1.32-1.25 (m, 12H); ¹³C NMR (400 MHz, CDCl₃): δ 156.8, 156.4, 155.7, 147.9, 137.5, 130.6, 126.6, 125.5, 125.5, 125.3, 122.6, 121.6, 121.6, 121.5, 63.0, 63.0, 62.2, 14.4; HRMS: calcd for C₂₃H₂₉F₃N₅O₈ [M+H]⁺ 560.1963, found 560.1970.

Tetraethyl 1,1'-((6-chloroquinolin-2-yl)methylene)bis(hydrazine-1,2-dicarboxylate) (3dd):

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

White solid; m.p. 140-142 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.07 (d, *J* = 8.4Hz, 1H), 7.95 (d, *J* = 8.8Hz, 1H), 7.79 (s, 1H), 7.62 (d, *J* = 8.0Hz, 2H), 6.89-6.84 (m, 1H), 4.32-4.19 (m, 8H), 1.35-1.25 (m, 12H); ¹³C NMR (400 MHz, CDCl₃): δ 156.4, 155.7, 145.2, 135.9, 131.0, 130.3, 128.2, 126.3, 62.9, 62.1, 14.4; HRMS: calcd for C₂₂H₂₈ClN₅NaO₈ [M+Na]⁺ 548.1519, found 548.1525.

Diethyl 1-(pyridin-2-ylmethyl) hydrazine-1,2-dicarboxylate (5a):

White solid; m.p. 128-129 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.52 (d, *J* = 4.0Hz, 1H), 7.65 (t, *J* = 7,6Hz, 1H), 7.18 (t, *J* = 6.8Hz, 2H), 4.83 (s, 2H), 4.22-4.15 (m, 4H), 1.25 (t, *J* = 7.6 Hz, 6H); ¹³C NMR (400 MHz, CDCl₃): δ 156.7, 156.6, 156.5, 149,3 122.4, 62.7, 61.8, 58.2, 14.4; HRMS: calcd for C₁₂H₁₇N₃NaO₄ [M+Na]⁺ 290.1111, found 290.1111.

Diethyl 1-((3-methylpyridin-2-yl) methyl) hydrazine-1,2-dicarboxylate (5b):

Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 8.34 (d, J = 4.4Hz, 1H), 7.42 (d, J = 7.6Hz, 1H), 7.11-7.08-4.15 (m, 1H), 4.78 (s, 2H), 4.21-4.16 (m, 4H), 2.26 (s, 3H), 1.28-1.23 (m, 6H); ¹³C NMR (400 MHz, CDCl₃): δ 158.0, 158.0, 156.7, 136.8, 121.8, 62.5, 61.7, 24.3, 14.4; HRMS: calcd for C₁₃H₁₉N₃NaO₄ [M+Na]⁺ 304.1268, found 304.1262.

Diethyl 1-((6-methylpyridin-2-yl)methyl)hydrazine-1,2-dicarboxylate (5c):

White solid; m.p. 75-77 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.51 (t, *J* = 7.6Hz, 1H), 7.01 (d, *J* = 7.6Hz, 2H), 4.77 (s, 2H), 4.17 (t, *J* = 6.8Hz, 4H), 2.47 (s, 3H), 1.23 (t, *J* = 7.6Hz, 6H); ¹³C NMR (400 MHz, CDCl₃): δ 158.0, 158.0, 156.7, 136.8, 121.8, 62.5, 61.7, 24.3, 14.4; HRMS: calcd for C₁₃H₁₉N₃NaO₄ [M+Na]⁺ 304.1268, found 304.1269.

Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 8.46 (d, *J* =4.0Hz, 1H), 7.62 (t, *J* = 7,6Hz, 1H), 7.18 (t, *J* = 6.8Hz, 2H), 4.83 (s, 2H), 4.22-4.15 (m, 4H), 1.25 (t, *J* = 7.6 Hz, 6H); ¹³C NMR (400 MHz, CDCl₃): δ 161.3, 156.8, 156.4, 149,0,136.6 122.2, 62.4, 61.7, 17.6, 14.5, 14.4; HRMS: calcd for C₁₃H₁₉N₃NaO₄ [M+Na]⁺ 304.1268, found 304.1261.

Diethyl 1-(1-(pyridin-2-yl)propyl)hydrazine-1,2-dicarboxylate (5e):

Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 8.48 (d, J = 3.6Hz, 1H), 7.62 (t, J = 7,6Hz, 1H), 7.16 (t, J = 10.0Hz, 2H), 5.20-5.04 (m, 1H), 4.20-4.13 (m, 4H), 1.99-1.89 (m, 2H), 1.24 (t, J = 12.8Hz, 6H), 1.02 (t, J = 7.2Hz, 3H); ¹³C NMR (400 MHz, CDCl₃): δ 160.5, 156.8, 157.1, 149,1,136.4 122.3, 62.4, 61.6, 24.9, 14.5, 14.4, 11.2; HRMS: calcd for C₁₃H₁₉N₃NaO₄ [M+H]⁺ 296.1605, found 296.1611.

References:

1. M. Matsugi, F. Tabusa and J. Minamikawa, Tetrahedron Lett., 2000, 41, 8523-8525.

Copies of ¹H NMR and ¹³C NMR spectra

¹H NMR Spectrum for 3a

¹³C NMR Spectrum for 3a

¹³C NMR Spectrum for 3b

¹H NMR Spectrum for 3c

¹³C NMR Spectrum for 3c

¹H NMR Spectrum for 3d

¹³C NMR Spectrum for 3d

¹³C NMR Spectrum for 3e

¹H NMR Spectrum for 3f

¹³C NMR Spectrum for 3f

¹H NMR Spectrum for 3g

¹³C NMR Spectrum for 3g

¹H NMR Spectrum for 3h

¹³C NMR Spectrum for 3h

¹H NMR Spectrum for 3i

¹³C NMR Spectrum for 3i

¹H NMR Spectrum for 3aa

¹³C NMR Spectrum for 3aa

¹H NMR Spectrum for 3bb

¹³C NMR Spectrum for 3bb

¹H NMR Spectrum for 3cc

¹³C NMR Spectrum for 3cc

¹H NMR Spectrum for 3dd

¹³C NMR Spectrum for 3dd

¹H NMR Spectrum for 5a

¹³C NMR Spectrum for 5a

¹³C NMR Spectrum for 5b

¹H NMR Spectrum for 5c

¹³C NMR Spectrum for 5c

¹H NMR Spectrum for 5d

¹³C NMR Spectrum for 5d

¹H NMR Spectrum for 5e

¹³C NMR Spectrum for 5e

