Supplemental documents

Experimental

General Considerations: All manipulations involving the synthesis and handling of copper(I) compounds were performed in a nitrogen filled drybox. All manipulations involving the synthesis of the pyrrole and the pyrrolidine were preformed in air. The chemicals: CuCl, 2.5M BuLi in hexanes, tert-butyl amine, and diethyl sulfate were purchased from Aldrich Chemical Company and used as received. All solvents used in manipulation of copper(I) compounds were ACS grade and purified from an Mbraun Solvent Purifier System. All other solvents were ACS grade and used as received. Nuclear Magnetic Resonance was done on 300 MHz Avance 3 and 400 MHz Bruker AMX. Canadian Microanalytical Service Ltd. performed combustion analysis. Thermogravimetric analysis was performed on a TA Instruments Q50 apparatus located in an MBraun Labmaster 130 Dry box under a nitrogen atmosphere. *5*, 5-dimethyl-2-pyrrolidone was prepared by literature procedures.ⁱ Tert-butyl ammonium chloride was prepared by addition of HCl_(aq) to tert-butyl amine in ethanol followed by solvent removal.

5-ethoxy-3, 4-dihydro-2,2-dimethyl-2H-pyrrole: Similar to the literature preparation for 5-ethoxy-3, 4-dihydro-2H-pyrrole:ⁱⁱ 5, 5-dimethyl-2-pyrrolidone (9.82 g, 86.8 mmol) and diethyl sulfate (13.38 g, 86.8 mmol) were added to a pressure vessel and heated for 24 h at 60 °C. Et₂O (30 ml) was added and the biphasic mixture was cool in an ice bath. A 25 ml aqueous solution of Na₂CO₃ (9.20 g, 86.8 mmol) was added drop wise. The top organic layer was separated and extraction continued with 3 x 40 ml of Et₂O. The combined extractions were dried over MgSO₄. The majority of Et₂O was removed on a rotovap followed by condensation of the remaining volatiles into a cold trap under reduced pressure thereby transferring remaining Et₂O and product to the cold trap. A solution of the intended product (11.45 g, 93.4%) in 10.65 g of Et₂O was obtained and used without additional purification. ¹H NMR (400 MHz, CDCl₃): δ 4.16 (q, 2H, COC*H*₂CH₃), δ 2.53 (t, 2H, NC(CH₃)₂CH₂CH₂C), δ 1.80 (t, 2H, NC(CH₃)₂CH₂CH₂C), δ 1.30 (t, 3H, COCH₂CH₃), δ 1.23 (s, 6H, NC(CH₃)₂CH₂CH₂C). ¹³C NMR (400 MHz, CDCl₃): δ 170.05 (NCO), δ 67.36 (NC(CH₃)₂), δ 63.67 (OCH₂CH₃), δ 36.73 (NC(CH₃)₂CH₂CH₂C), δ 31.58 (NC(CH₃)₂CH₂CH₂C), δ 14.41 (OCH₂CH₃). HRMS (EI) *m/z* calcd for C₈H₁₅NO M⁺ 141.1154, found 141.1164.

Tertbutyl-imino-2,2-dimethylpyrrolidine: In a pressure vessel, 5-ethoxy-3,4-dihydro-2,2-dimethyl-2H-pyrrole (11.45 g, 81.1 mmol) in 10.65 g of Et₂O, tert-butyl ammonium chloride (8.89 g, 81.1 mmol), and tert butyl amine (11.86g, 162.2 mmol) were dissolved in 80 mL of ethanol. The pressure vessel was heated to 130 °C for 2 days with stirring. The vessels was removed from heat and cooled to room temperature. Volatiles were stripped under reduced pressure. The solid residue was dissolved in 80 mL of H₂O and made basic with 40 mL of 6 M NaOH. The aqueous solution was extracted with 3 x 60 mL of Et₂O. The combined Et₂O extractions were dried over Na₂SO₄ and then the solution was concentrated under reduced pressure to obtain 11.43 g of a light yellow liquid, 83.8%. ¹H NMR (400 MHz, CDCl₃): δ 2.46 (t, 2H, NC(CH₃)₂CH₂CH₂C), δ 1.65 (t, 2H, NC(CH₃)₂CH₂CH₂C), δ 1.34 (s, (H, NC(CH₃)₂), δ 50.81 (NC(*C*H₃)₃), δ 36.60 (NC(CH₃)₂CH₂CH₂C), δ 34.62 (NC(CH₃)₂CH₂CH₂C), δ 29.85 (NC(*C*H₃)₂), δ 29.30 (NC(*C*H₃)₃). HRMS (EI) *m/z* calcd for C₁₀H₂₀N₂ M⁺ 168.1626, found 168.1618.

Copper(I) tertbutyl-imino-2,2-dimethylpyrrolidinate (1): Tertbutyl-imino-2,2-dimethylpyrrolidine (5.103 g, 13.07 mmol) was dissolved in 170 mL of toluene and the solution was cooled on an ice bath. 12.13 ml of 2.5 M BuLi was added dropwise. The solution warmed to r.t as it stirred overnight. CuCl (3.26 g, 32.9 mmol) was added and stirring continued for 18 h. The cloudy, light brown solution was filtered and the filter cake was extracted with 4 x 20 of THF. Volatiles were stripped from the combined toluene and THF solutions to afford an off-white solid. The solid was sublimed at 130°C at 40 mtorr

and 5.795 g, 82.7 %, of a white solid was obtained. Mp >270°C. ¹H NMR (300 MHz, C₆D₆): δ 2.428 (t, 2H, NC(CH₃)₂CH₂CH₂C), δ 1.581 (t, 2H, NC(CH₃)₂CH₂CH₂C), δ 1.328 (s, 9H, NC(CH₃)₃), δ 1.196 (s, 6H, NC(CH₃)₂CH₂CH₂C). ¹³C NMR (300 MHz, C₆D₆): δ 177.617 (NC(CH₃)₂CH₂CH₂C), δ 61.176 (NC(CH₃)₃), δ 53.332 (NC(CH₃)₂CH₂CH₂C), δ 38.095 (NC(CH₃)₂CH₂CH₂C), δ 33.215 (NC(CH₃)₃), δ 31.931 (NC(CH₃)₂CH₂CH₂C), δ 30.940 (NC(CH₃)₂CH₂CH₂C). Combustion analysis, found (calculated): C, 52.44(52.04); H, 8.36(8.30); N, 12.27(12.14).

Crystallography: X-ray structural analysis for 1 : Crystals were selected and mounted on plastic mesh using viscous oil flash-cooled to the data collection temperature. Data were collected on a Bruker-AXS APEX CCD diffractometer with graphite-monochromated Mo-K α radiation (λ =0.71073 Å). Unit cell parameters were obtained from 60 data frames, 0.3° ω , from three different sections of the Ewald sphere. The systematic absences in the data and the unit cell parameters were uniquely consistent to P21/c. The data-sets were treated with SADABS absorption corrections based on redundant multiscan data.ⁱⁱⁱ The structures were solved using direct methods and refined with full-matrix, least-squares procedures on F2. The compound molecules each located on an inversion point. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were treated as idealized contributions. Atomic scattering factors are contained in the SHELXTL 6.12 program library.

Surface Exposure Experiments: The exposure experiments were performed in a home-built reactor. The reaction chamber consisted of a stainless steel ring support covered in 200 stainless steel mesh with a plug of glass wool to prevent loss of silica powder. The system had one inlet from a heated bubbler and one inlet for He (purity of 99.999%). All fittings used in this system were either CF or VCR to ensure a high-vacuum seal. The system was leak checked using a gas thermal conductivity/ leak detector (Gow-Mac Instrument Co.) and an overpressure of He. For the exposure experiments, typically about 1g of high surface area SiO₂ powder (EP10X; PQ Corporation; 300m2/g S.A.; 1.8cm3/g P.V.; 24nm P.S.; 100µm P.D.) was used. The powder was pre-treated in the reactor at 350°C for 16h under vacuum before exposure to the precursor. The reactor and lines were heated to temperature and allowed to equilibrate for 1-2h before introduction of the precursor. The precursor (typically 0.6-0.8g) was then vaporized and transported to the substrate with the system under 10⁻⁴ Torr vacuum. The substrate was exposed to volatilized precursor for 17h before the system was cooled to room temperature for handling. Both precursor and substrate were handled in inert atmosphere.

Characterization of Surface Species: Solid-state NMR experiments were performed at 4.7T on a Bruker Avance III console. All spectra were obtained using a Bruker 7mm ¹H/X/Y probe. ¹³C ($v_0 = 50.3$ MHz) cross-polarization magic angle spinning (CP/MAS) experiments were collected at a spinning rate of 4.5kHz using a 3.4 μ s 90° proton pulse with a contact time of 2ms where the contact pulse was ramped on the ¹H channel. A relaxation delay of 2s was sufficient to prevent saturation and typically total acquisition times were 16-30h. Glycine was used as an external secondary reference for the ¹³C chemical shift scale. Spectra were treated with 40Hz line broadening during processing. All spectra were obtained with high power proton decoupling during acquisition.

Samples were prepared for High Resolution NMR (HR-NMR) by adding a small amount, typically 40-50mg, of modified silica powder to 2mL of D_2O , agitating, and allowed to sit for 15min. The D_2O solution was then decanted and studied via HR-NMR. d_4 -TSP was used as an internal reference.

- i Moffett, R. B. Organic Synthesis, **1952**, *32*, 59; Osby, J. O.; Ganem, B. *Tetrahedron Lett.* **1985**, *26*, 6413.
- ii Beckmann, U, Eichberger, E.; Lindner, M.; Bongartz. M.; Kunz, P. C. Eur. J. Org. Chem. 2008, 24, 4139.
- iii G. M. Sheldrick, Acta Cryst. 2008, A64, 112.

data_seab057

```
SHELXL-97
_audit_creation_method
_chemical_name_systematic
 ?
;
_chemical_name_common
                                   ?
_chemical_melting_point
                                   ?
_chemical_formula_moiety
                                   ?
_chemical_formula_sum
-'C20 H38 Cu2 N4'
_chemical_formula_weight
                                   461.62
loop
 _atom_type_symbol
 _atom_type_description
 _atom_type_scat_dispersion_real
 atom type scat dispersion imag
  _atom_type_scat_source
 ΤC'
     ΤC'
            0.0033
                     0.0016
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'H'
     'H'
            0.0000
                     0.0000
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
     'N'
 'N'
            0.0061 0.0033
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'Cu'
      'Cu'
              0.3201
                       1.2651
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting
                                   Monoclinic
                                   P2(1)/c
_symmetry_space_group_name_H-M
loop_
 _symmetry_equiv_pos_as_xyz
 'x, y, z'
 '-x, y+1/2, -z+1/2'
 '-x, -y, -z'
 'x, -y-1/2, z-1/2'
_cell_length_a
                                   10.202(2)
_cell_length_b
                                   9.535(2)
_cell_length_c
                                   11.980(3)
_cell_angle_alpha
                                   90.00
                                   107.648(3)
_cell_angle_beta
_cell_angle_gamma
                                   90.00
_cell_volume
                                   1110.6(4)
_cell_formula_units_Z
                                   2
_cell_measurement_temperature
                                   200(2)
_cell_measurement_reflns_used
                                   956
_cell_measurement_theta_min
                                   2.99
_cell_measurement_theta_max
                                   27.98
_exptl_crystal_description
                                   block
_exptl_crystal_colour
                                   colourless
_exptl_crystal_size_max
                                   0.48
_exptl_crystal_size_mid
                                   0.43
_exptl_crystal_size_min
                                   0.17
_exptl_crystal_density_meas
                                   ?
_exptl_crystal_density_diffrn
                                   1.380
_exptl_crystal_density_method
                                   'not measured'
_exptl_crystal_F_000
                                   488
_exptl_absorpt_coefficient_mu
                                   1.926
_exptl_absorpt_correction_type
                                   multi-scan
_exptl_absorpt_correction_T_min
                                   0.4590
exptl absorpt correction T max
                                   0.7293
_exptl_absorpt_process_details
                                   'SADABS (Sheldrick, 2003)'
```

_exptl_special_details Data collection is performed with four batch runs at f = 0.00 % (600 frames), at f = 90.00 %(600 frames), at $f = 180 \$ (600 frames) and at f = 270 % (600 frames). Frame width = $0.30 \setminus \&$ in \w . Data is merged, corrected for decay, and treated with multi-scan absorption corrections. diffrn ambient temperature 200(2)diffrn radiation wavelength 0.71073 _diffrn_radiation_type MoK\a 'fine-focus sealed tube' _diffrn_radiation_source diffrn radiation monochromator graphite diffrn measurement_device_type 'Bruker AXS APEX diffractometer' diffrn measurement method ۱w diffrn detector area resol mean 836.6 diffrn standards number 0 diffrn standards interval count 0 diffrn standards interval time 0 _diffrn_standards_decay_% 1 _diffrn_reflns_number 14501 _diffrn_reflns_av_R_equivalents 0.0388 _diffrn_reflns_av_sigmaI/netI 0.0259 _diffrn_reflns_limit_h_min -13 _diffrn_reflns_limit_h_max 13 _diffrn_reflns_limit_k_min - 12 _diffrn_reflns_limit_k_max 12 - 15 _diffrn_reflns_limit_l_min _diffrn_reflns_limit_l_max 15 _diffrn_reflns_theta_min 2.09 _diffrn_reflns_theta_max 28.32 _reflns_number_total 2757 _reflns_number_gt 2490 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'SMART (Bruker, 2002)' 'SAINT (Bruker, 2002)' _computing_cell_refinement _computing_data_reduction SAINT 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_solution _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'SHELXTL (Sheldrick, 2001)' _computing_publication_material 'SHELXTL (Sheldrick, 2001)' _refine_special_details Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2^ > 2sigma(F^2^)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0545P)^2^+0.2574P] where P=(Fo^2^+2Fc^2^)/3'

direct

difmap

constr

geom

_atom_sites_solution_primary _atom_sites_solution_secondary

_atom_sites_solution_hydrogens

_refine_ls_hydrogen_treatment

_refine_ls_extinction_method none refine ls extinction coef ? _____refine_ls_number_reflns 2757 _refine_ls_number_parameters 123 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0337 _refine_ls_R_factor_gt 0.0302 0.0860 _refine_ls_wR_factor_gt 0.0830 _refine_ls_goodness_of_fit_ref 1.050 _refine_ls_restrained_S_all 1.050 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop atom site label _atom_site_type_symbol atom site fract x atom site fract y atom site fract z atom site U iso or equiv atom site adp type atom site occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cu Cu 0.878593(19) 0.02862(2) 0.489253(17) 0.02631(10) Uani 1 1 d . . . N1 N 1.04879(14) -0.18341(14) 0.41692(12) 0.0281(3) Uani 1 1 d . . . N2 N 0.81903(14) -0.13073(15) 0.39402(12) 0.0279(3) Uani 1 1 d . . . C1 C 1.13406(18) -0.28623(17) 0.37703(15) 0.0308(3) Uani 1 1 d . . . C2 C 1.0365(2) -0.4091(2) 0.3328(2) 0.0482(5) Uani 1 1 d . . . H2A H 1.0424 -0.4778 0.3961 0.058 Uiso 1 1 calc R . . H2B H 1.0570 -0.4572 0.2668 0.058 Uiso 1 1 calc R . C3 C 0.8946(2) -0.3391(2) 0.29270(18) 0.0423(4) Uani 1 1 d . . . H3A H 0.8692 -0.3119 0.2091 0.051 Uiso 1 1 calc R . . H3B H 0.8227 -0.4018 0.3048 0.051 Uiso 1 1 calc R . C4 C 0.91513(17) -0.21028(16) 0.37199(13) 0.0269(3) Uani 1 1 d . . . C5 C 1.1835(2) -0.2235(2) 0.28051(19) 0.0457(5) Uani 1 1 d . . . H5A H 1.1045 -0.2071 0.2110 0.068 Uiso 1 1 calc R . . H5B H 1.2475 -0.2886 0.2609 0.068 Uiso 1 1 calc R . . H5C H 1.2303 -0.1344 0.3073 0.068 Uiso 1 1 calc R . C6 C 1.2593(2) -0.3285(2) 0.47933(18) 0.0480(5) Uani 1 1 d . . . H6A H 1.2285 -0.3639 0.5440 0.072 Uiso 1 1 calc R . . H6B H 1.3187 -0.2467 0.5058 0.072 Uiso 1 1 calc R . . H6C H 1.3108 -0.4020 0.4536 0.072 Uiso 1 1 calc R . . C8 C 0.66996(17) -0.16555(19) 0.35011(15) 0.0327(4) Uani 1 1 d . . . C9 C 0.6147(2) -0.1722(3) 0.21601(18) 0.0524(5) Uani 1 1 d . . . H9A H 0.6425 -0.0875 0.1826 0.079 Uiso 1 1 calc R . . H9B H 0.5141 -0.1782 0.1917 0.079 Uiso 1 1 calc R . . H9C H 0.6522 -0.2550 0.1881 0.079 Uiso 1 1 calc R . C10 C 0.6367(2) -0.3016(2) 0.4036(2) 0.0520(5) Uani 1 1 d . . . H10A H 0.6809 -0.3003 0.4885 0.078 Uiso 1 1 calc R . . H10B H 0.6710 -0.3817 0.3694 0.078 Uiso 1 1 calc R . . H10C H 0.5369 -0.3100 0.3871 0.078 Uiso 1 1 calc R . . C11 C 0.5954(2) -0.0459(3) 0.3897(3) 0.0574(7) Uani 1 1 d . . . H11A H 0.6094 0.0413 0.3516 0.086 Uiso 1 1 calc R . . H11B H 0.6320 -0.0352 0.4749 0.086 Uiso 1 1 calc R . . H11C H 0.4969 -0.0669 0.3681 0.086 Uiso 1 1 calc R . .

loop

_atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23

_atom_site_aniso_U_13 atom site aniso U 12 Cu 0.02519(14) 0.02513(14) 0.02687(14) -0.00677(7) 0.00527(9) 0.00078(7) N1 0.0304(7) 0.0241(6) 0.0294(6) -0.0071(5) 0.0082(5) 0.0018(5) N2 0.0264(7) 0.0277(7) 0.0276(6) -0.0061(5) 0.0053(5) -0.0025(5) C1 0.0360(9) 0.0257(8) 0.0326(8) -0.0051(6) 0.0134(7) 0.0038(7) C2 0.0538(12) 0.0340(10) 0.0609(13) -0.0182(9) 0.0235(10) -0.0027(9) C3 0.0465(11) 0.0352(10) 0.0440(10) -0.0190(8) 0.0121(8) -0.0067(8)C4 0.0336(8) 0.0238(7) 0.0232(7) -0.0034(6) 0.0084(6) -0.0019(6) $(5 \ 0.0543(12) \ 0.0431(11) \ 0.0479(11) \ 0.0056(9) \ 0.0279(10) \ 0.0122(9)$ C6 0.0551(12) 0.0448(11) 0.0407(10) -0.0011(9) 0.0096(9) 0.0197(10)C8 0.0282(8) 0.0345(9) 0.0334(8) -0.0050(7) 0.0061(7) -0.0051(7) $(9 \ 0.0459(11) \ 0.0659(15) \ 0.0361(10) \ -0.0001(10) \ -0.0017(9) \ -0.0072(11)$ $(10 \ 0.0490(12) \ 0.0548(13) \ 0.0561(13) \ 0.0054(10) \ 0.0218(10) \ -0.0130(10))$ C11 0.0294(10) 0.0552(14) 0.0851(19) -0.0265(12) 0.0135(11) -0.0021(9) _geom_special_details All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. loop _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cu N1 1.8671(14) 3_756 ? Cu N2 1.8867(14) . ? Cu Cu 2.4728(7) 3_756 ? N1 C4 1.330(2) . ? N1 C1 1.483(2) . - 7 N1 Cu 1.8670(14) 3_756 ? N2 C4 1.328(2) . ? N2 C8 1.488(2) . ? C1 C5 1.517(3) . ? C1 C2 1.525(3) . ? C1 C6 1.532(3) . ? C2 C3 1.533(3) . ? C3 C4 1.528(2) . ? C8 C11 1.524(3) . ? C8 C10 1.530(3) . ? C8 C9 1.534(3) . ? loop _geom_angle_atom_site_label 1 _geom_angle_atom_site_label_ 2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry 1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N1 Cu N2 175.59(6) 3_756 . N1 Cu Cu 84.82(4) 3_756 3_756 ? N2 Cu Cu 90.80(4) . 3_756 ? C4 N1 C1 111.84(13) . . ? C4 N1 Cu 124.53(11) . 3_756 ? C1 N1 Cu 123.52(11) . 3_756 ? C4 N2 C8 122.64(14) . . ? C4 N2 Cu 117.28(11) . . ? C8 N2 Cu 120.04(11) . . ? N1 C1 C5 110.38(15) . . ?

N1 C1 C2 103.60(14) . . ? C5 C1 C2 111.74(17) . . ? N1 C1 C6 110.16(14) . . C5 C1 C6 108.91(17) . . C2 C1 C6 111.98(17) . . C1 C2 C3 103.28(15) . . C4 C3 C2 102.50(15) . . N2 C4 N1 122.53(14) . . N2 C4 C3 127.75(15) . . N1 C4 C3 109.70(14) . . ? N2 C8 C11 106.02(15) . . ? N2 C8 C10 111.95(16) . . ? C11 C8 C10 108.03(18) . . ? N2 C8 C9 113.01(15) . . ? C11 C8 C9 107.28(19) . . ? C10 C8 C9 110.24(17) . . ? loop _geom_torsion_atom_site label 1 _geom_torsion_atom_site_label 2 _geom_torsion_atom_site_label 3 _geom_torsion_atom_site_label_4 geom torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag N1 Cu N2 C4 6.7(9) 3_756 . . . ? Cu Cu N2 C4 -0.49(12) 3_756 . . . ? N1 Cu N2 C8 -175.3(7) 3_756 . . . ? Cu Cu N2 C8 177.51(12) 3_756 . . . ? C4 N1 C1 C5 101.58(18) . . . ? Cu N1 C1 C5 -74.58(18) 3_756 . . . ? C4 N1 C1 C2 -18.2(2) . . . ? Cu N1 C1 C2 165.66(13) 3_756 . . . ? C4 N1 C1 C6 -138.11(17) . . . ? Cu N1 C1 C6 45.7(2) 3_756 . . . ? N1 C1 C2 C3 28.5(2) . . . ? C5 C1 C2 C3 -90.35(19) . . . ? C6 C1 C2 C3 147.16(17) . . . ? C1 C2 C3 C4 -28.4(2) ? C8 N2 C4 N1 -176.00(15) ? Cu N2 C4 N1 1.9(2) . . . ? C8 N2 C4 C3 5.8(3) . . . ? Cu N2 C4 C3 -176.26(14) . . . ? C1 N1 C4 N2 -178.92(14) . . . ? Cu N1 C4 N2 -2.8(2) 3_756 . . . ? C1 N1 C4 C3 -0.4(2) . . . ? Cu N1 C4 C3 175.70(12) 3_756 . . . ? C2 C3 C4 N2 -162.95(18) . . . ? C2 C3 C4 N1 18.7(2) C4 N2 C8 C11 -177.58(18) . . . ? Cu N2 C8 C11 4.5(2) ? C4 N2 C8 C10 64.9(2) . . . ? Cu N2 C8 C10 -113.04(16) ? C4 N2 C8 C9 -60.3(2) ? Cu N2 C8 C9 121.77(16) . . . ? _diffrn_measured_fraction_theta_max _diffrn_reflns_theta_full _diffrn_measured_fraction_theta_full _refine_diff_density_max 0.712 _refine_diff_density_min -0.515

_refine_diff_density_rms

0.997

25.00

0.998

0.079