Supporting Information

An Efficient Organocatalytic Enantioselective Michael Addition of Aryl-ketones with 2-Furanone: Highly Functionalized Chiral 3,4-Substituted Lactones

Wei Wang, Junfeng Wang, Shuo Zhou, Qi Sun, Zemei Ge, Xin Wang,* and Runtao Li*

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China

Content

General Information	- 0
Synthesis of ethyl 5,5-disubstituted-2-oxo-2,5-dihydrofuran-3-carboxylate 1a-c	- 2
General procedure for the organocatalytic Michael reactions	- 3
Scope of the Michael addition reaction	- 3
NMR Spectra for Michael Products 3a-3v	13
HPLC analysis for compounds 3a-3v	35
Crystal information of 3d	79
ESI-MS of intermediate enamine salt of 3a	86

General Information

Unless otherwise stated, all reagents were purchased from commercial suppliers and were used without further purification. Ethyl 5,5-disubstituted-2-oxo-2,5-dihydrofuran-3-carboxylate **1a-c** was not commercially available and was prepared in our lab. Reactions were monitored by thin layer chromatography (TLC) on GF₂₅₄ silica gel plates. ¹H NMR spectra and ¹³C NMR spectra were recorded on a Bruker AVANCE III 400 (400 MHz) spectrometer in needful D-reagents with tetramethylsilane (TMS) as an internal reference. Data for ¹H NMR were reported as follows: chemical shift (ppm), and multiplicity (s = singlet, d = doublet, t = triplet, dd = double of doublet, br = broad, m = multiplet), coupling constants (Hz) and integration; Data for ¹³C NMR were reported as ppm. Melting points were measured on an X₄-type micro-melting point apparatus and were uncorrected. HPLC analyses were performed using a Daicel ChiralPak AS or AD column purchased. Crystal structure determination of Michael product **3d** was carried out on a Rigaku MicroMax 002+ diffractameter. Optical rotations were measured on a AA-10R automatic polarimeter and were reported as follows: [α]_D²⁵ (*c* in g per 100 mL of solvent). HRMS of Michael products were carried out Brucker Apex IV FTMS.

Synthesis of ethyl 5,5-disubstituted-2-oxo-2,5-dihydrofuran-3-carboxylate 1a-c

To the solution of diethylmalonate **A** (50mmol) in toluene (20mL) was added 4-methylpiperidine (8mmol) and acetic acid (40mmol). While the mixture was heated to reflux with a water segregator, Aldehyde **B** (60mmol) was added in 12 batches within 2 hours. After extra 4 hours of reflux, the mixture was cooled down and then diluted with mL ethyl acetate (80mL). The solution was washed with 10% (w/w) NaHCO₃ solution (80mL) and saturated NaCl solution (80mL) successively, dried over anhydrous MgSO₄ and concentrated in vacuo. The residue was purified by silica gel chromatography to afford **C** (yield 78%-94%) as colorless oil.

To the solution of **C** (39mmol) in CCl₄ (100 mL) was added NBS (47 mmol) and benzoyl peroxide (20mg). After 4 hours' reflux, the reaction mixture was cooled down and concentrated on a rotary evaporator. The residue was diluted with mL mixed solvent (petroleum ether: ethyl acetate = 10:1, 55mL) and the suspension was filtered. The filtrate was concentrated in vacuo to give crude product **D** which was used in the next step directly. Crude product **D** and Ag(OCOCH₃) (47mmol) were stirred in 1M dilute HNO₃ (100 mL) away from light under room temperature for 24 hours. Then the PH of the suspension was adjusted to 7 or 8 with 10% (w/w) NaHCO₃ solution. The reaction mixture was diluted with ethyl acetate (100 mL) and the suspension was filtered.. The filtrate was dried over anhydrous MgSO₄ and concentrated in vacuo. The crude product was purified by silica gel chromatography to afford **1a-c** (21%-62% for 2 steps) as white solid or colorless oil

General procedure for the organocatalytic Michael reactions

The mixture of furanone (0.5mmol), arylacetone (0.6mmol), chiral catalyst (1S,2S)-(-)-1,2diphenyl-1,2-ethanediamine (0.1mmol) and p-toluenesulfonic acid monohydrate (0.1mmol) in solvent (1mL) was stirred under 50°C or 70°C for 7 days and then directly purified by silica gel chromarography to provide the products as solid or clear oil.

Scope of the Michael addition reaction

(3S,4R)-ethyl 5,5-dimethyl-2-oxo-4-(2-oxo-2-phenylethyl)tetrahydrofuran-3-carboxylate 3a: Obtained in 82% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.91-7.96 (m, 2H), δ 7.61 (t, *J*=7.2 Hz, 1H) δ 7.50 (t, *J*=7.6 Hz, 2H), δ 4.26 (q, *J* = 7.2 Hz, 2H), δ 3.48 (d, *J* = 11.2 Hz, 1H), δ 3.30-3.38 (m, 1H), δ 3.09-3.26 (m, 2H), δ 1.55 (s, 3H), δ 1.37 (s, 3H), δ 1.29 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 196.9, 170.4, 167.7, 136.1, 133.7, 128.9, 128.1, 85.5, 62.1, 53.4, 45.1, 38.2, 27.4, 23.1, 14.0. HPLC (AS, hexane:*i*-PrOH 70:30, 1.0 mL/min): t_R 20.29 min (major enantiomer), t_R 50.80 min (minor enantiomer); ee 97%; [α]_D²⁵ = +9.5 (*c* = 2.1, CHCl₃); ES-HRMS: Calcd for C₁₇H₂₁O₅[M+H]⁺, 305.13835, Found 305.13875.

(3S,4R)-ethyl 4-(2-(4-fluorophenyl)-2-oxoethyl)-5,5-dimethyl-2-oxotetrahydrofuran-3carboxylate 3b: Obtained in 62% yield, white solid; m.p. 60.2-62.8°C; ¹H NMR (400 MHz, CDCl₃): δ 7.94-8.02 (m, 2H), δ 7.17 (m, *J*=8.4 Hz, 2H), δ 4.28 (q, *J* = 7.2 Hz, 2H), δ 3.47 (d, *J* = 11.6 Hz, 1H), δ 3.29-3.38 (m, 1H), δ 3.06-3.23 (m, 2H), δ 1.56 (s, 3H), δ 1.37 (s, 3H), δ 1.30 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 195.3, 170.3, 167.7, 166.1 (d, 254.4 Hz), 132.5 (d, 3.1 Hz), 130.8 (d, 9.4 Hz), 116.0 (d, 21.8Hz), 85.4, 62.2, 53.3, 45.0, 38.1, 27.4, 23.1, 14.0. HPLC (AS, hexane:*i*-PrOH 70:30, 1.0 mL/min): t_R 15.23 min (major enantiomer), t_R 43.91 min (minor enantiomer); ee 97%; $[\alpha]_D^{25} = +13.8$ (c = 1.2, CHCl₃). ES-HRMS: Calcd for C₁₇H₂₀FO₅[M+H]⁺, 323.12893, Found 323.12951.

(3S,4R)-ethyl 4-(2-(4-chlorophenyl)-2-oxoethyl)-5,5-dimethyl-2-oxotetrahydrofuran-3carboxylate 3c: Obtained in 90% yield, white solid; m.p. 73.1-74.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.92 (m, 2H), δ 7.45-7.49 (m, 2H), δ 4.27 (q, J = 7.2 Hz, 2H), δ 3.47 (d, J = 11.6 Hz, 1H), δ 3.28-3.36 (m, 1H), δ 3.06-3.22 (m, 2H), δ 1.55 (s, 3H), δ 1.37 (s, 3H), δ 1.30 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 195.7, 170.3, 167.6, 140.3, 134.4, 129.5, 129.2, 85.4, 62.2, 53.3, 45.0, 38.2, 27.4, 23.1, 14.0. HPLC (AS, hexane:*i*-PrOH 70:30, 1.0 mL/min): t_R 19.38 min (major enantiomer), t_R 54.57 min (minor enantiomer); ee 94%; [α]_D²⁵ = -16.8 (c = 3.1, CHCl₃). ES-HRMS: Calcd for C₁₇H₂₀ClO₅[M+H]⁺, 339.09938, Found 339.10012.

(3S,4R)-ethyl 4-(2-(4-bromophenyl)-2-oxoethyl)-5,5-dimethyl-2-oxotetrahydrofuran-3carboxylate 3d: Obtained in 63% yield, white solid; m.p. 75.3-76.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.84 (m, 2H), δ 7.64 (d, J = 8.4 Hz, 2H), δ 4.27 (q, J = 7.2 Hz, 2H), δ 3.46 (d, J = 11.6 Hz, 1H), δ 3.27-3.35 (m, 1H), δ 3.05-3.21 (m, 2H), δ 1.55 (s, 3H), δ 1.36 (s, 3H), δ 1.30 (t, J= 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 201.0, 175.2, 172.6, 139.8, 137.2, 134.6, 134.0, 90.4, 67.2, 58.3, 50.0, 43.2, 32.4, 28.1, 19.0. HPLC (AS, hexane:*i*-PrOH 70:30, 1.0 mL/min): t_R 16.71min. (major enantiomer), t_R 45.64 min (minor enantiomer); ee 97%; [α]_D²⁵ = -7.1 (c = 2.6, CHCl₃). ES-HRMS: Calcd for C₁₇H₂₀BrO₅[M+H]⁺, 383.04886, Found 383.04968.

(3S,4R)-ethyl 5,5-dimethyl-4-(2-(4-nitrophenyl)-2-oxoethyl)-2-oxotetrahydrofuran-3carboxylate 3e: Obtained in 56% yield, yellow solid; m.p. 137.9-138.6°C; ¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, *J* = 8.4 Hz, 2H), δ 8.12 (d, *J* = 8.4 Hz, 2H), δ 4.27 (q, *J* = 7.2 Hz, 2H), δ 3.48 (d, *J* = 11.2 Hz, 1H), δ 3.15-3.36 (m, 3H), δ 1.56 (s, 3H), δ 1.38 (s, 3H), δ 1.29 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): 195.6, 170.2, 167.7, 150.6, 140.4, 129.2, 124.1, 85.3, 62.2, 53.2, 44.8, 38.8, 27.4, 23.1, 14.0; HPLC (AS, hexane:*i*-PrOH 70:30, 1.0 mL/min): t_R 31.33 min (major enantiomer), t_R 66.11 min (minor enantiomer); ee >99%; [α]_D²⁵ = -13.3 (*c* = 3.0, CHCl₃). ES-HRMS: Calcd for C₁₇H₂₀NO₇[M+H]⁺, 350.12343, Found 350.12399.

(3S,4R)-ethyl 5,5-dimethyl-2-oxo-4-(2-oxo-2-p-tolylethyl)tetrahydrofuran-3-carboxylate 3f: Obtained in 89% yield white solid; m.p. 118.4-120.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.87 (m, 2H), δ 7.26-7.31 (m, 2H), δ 4.25 (q, J = 7.2 Hz, 2H), δ 3.47 (d, J = 11.6 Hz, 1H), δ 3.28-3.37 (m, 1H), δ 3.06-3.22 (m, 2H), δ 2.42 (s, 3H), δ 1.54 (s, 3H), δ 1.36 (s, 3H), δ 1.28 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 196.5, 170.5, 167.7, 144.7, 133.6, 129.5, 128.2, 85.6, 62.1, 53.4, 45.2, 38.1, 27.4, 23.1, 21.7, 14.0; HPLC (AS, hexane:*i*-PrOH 70:30, 1.0 mL/min): t_R 25.67 min (major enantiomer), t_R 55.84 min (minor enantiomer); ee 82%; [α]_D²⁵ = -20.0 (c = 1.0, CHCl₃). ES-HRMS: Calcd for C₁₈H₂₃O₅[M+H]⁺, 319.15400, Found 319.15443.

(3S,4R)-ethyl 4-(2-(3-chlorophenyl)-2-oxoethyl)-5,5-dimethyl-2-oxotetrahydrofuran-3carboxylate 3g: Obtained in 69% yield, white solid; m.p. 116.4-117.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.90-7.93 (m, 1H), δ 7.81-7.86 (m, 1H), δ 7.58-7.62 (m, 1H), δ 7.46 (t, J = 8.0 Hz, 1H), δ 4.29 (q, J = 7.2 Hz, 2H), δ 3.47 (d, J = 11.6 Hz, 1H), δ 3.30-3.38 (m, 1H), δ 3.07-3.23 (m, 2H), δ 1.57 (s, 3H), δ 1.38 (s, 3H), δ 1.32 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 195.7, 170.3, 167.7, 137.6, 135.2, 133.6, 130.2, 128.2, 126.2, 85.4, 62.2, 53.3, 44.9, 38.3, 27.4, 23.1, 14.0; HPLC (AS, hexane:*i*-PrOH 70:30, 1.0 mL/min): t_R 23.00 min (major enantiomer), t_R 60.46 min (minor enantiomer); ee 82%; $[\alpha]_D^{25}$ = -12.0 (c = 3.0, CHCl₃). ES-HRMS: Calcd for C₁₇H₂₀ClO₅[M+H]⁺, 339.09938, Found 339.10021.

(3S,4R)-ethyl 5,5-dimethyl-4-(2-(3-nitrophenyl)-2-oxoethyl)-2-oxo

(38,4R)-ethyl 4-(2-(3-methoxyphenyl)-2-oxoethyl)-5,5-dimethyl-2-oxotetrahydrofuran-3carboxylate 3i: Obtained in 87% yield, white solid; m.p. 80.1-81.4°C; ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.55 (m, 1H), δ 7.46-7.50 (m, 1H), δ 7.41 (t, J = 8.0 Hz 1H), δ 7.14-7.18 (m, 1H), δ 4.29 (q, J = 7.2 Hz, 2H), δ 3.88 (s, 3H), δ 3.48 (d, J = 11.6 Hz, 1H), δ 3.31-3.39 (m, 1H), δ 3.08-3.24 (m, 2H), δ 1.56 (s, 3H), δ 1.37 (s, 3H), δ 1.31 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 196.7, 170.3, 167.6, 160.0, 137.4, 130.0, 120.6, 120.0, 112.6, 85.5, 62.1, 55.5, 53.3, 45.1, 38.4, 27.4, 23.1, 14.0; HPLC (AS, hexane:*i*-PrOH 70:30, 1.0 mL/min): t_R 18.26 min (major enantiomer), t_R 39.17 min (minor enantiomer); ee 92%; [α]_D²⁵ = -10.8 (c = 2.6, CHCl₃). ES-HRMS: Calcd for C₁₈H₂₃O₆[M+H]⁺, 335.14891, Found 335.14936.

(3S,4R)-ethyl 5,5-dimethyl-2-oxo-4-(2-oxo-2-(pyridin-3-yl)ethyl)tetrahydrofuran-3-

carboxylate 3j: Obtained in 71% yield, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 9.17 (d, J = 1.6 Hz, 1H), δ 8.81-8.85 (m,1H), δ 8.21-8.26 (m, 1H), δ 7.47 (dd, $J_1 = 8.0$ Hz, $J_2=4.8$ Hz, 1H), δ 4.29 (q, J = 7.2 Hz, 2H), δ 3.49 (d, J = 11.6 Hz, 1H), δ 3.31-3.38 (m, 1H), δ 3.09-3.29 (m, 2H), δ 1.58 (s, 3H), δ 1.38 (s, 3H), δ 1.31 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 195.9, 170.2, 167.6, 154.1, 149.5, 135.5, 131.4, 123.9, 85.3, 62.2, 53.2, 44.8, 38.5, 27.4, 23.1, 14.0; HPLC (AS, hexane:*i*-PrOH 70:30, 1.0 mL/min): t_R 18.59 min (major enantiomer), t_R 41.32 min (minor enantiomer); ee 94%; [α]_D²⁵ = -11.4 (c = 2.8, CHCl₃). ES-HRMS: Calcd for C₁₆H₂₀NO₅[M+H]⁺, 306.13360, Found 306.13374.

(3S,4R)-ethyl 4-(2-(furan-2-yl)-2-oxoethyl)-5,5-dimethyl-2-oxotetrahydrofuran-3-carboxylate 3k: Obtained in 91% yield, yellow solid; m.p. 107.8-109.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 1H), δ 7.24 (d, J = 3.2 Hz, 1H), δ 6.56-6.59 (m, 1H), δ 4.23 (q, J = 7.2 Hz, 2H), δ 3.50 (d, J = 11.6 Hz, 1H), δ 3.24-3.32 (m, 1H), δ 2.92-3.10 (m, 2H), δ 1.55 (s, 3H), δ 1.34 (s, 3H), δ 1.27 (t, J= 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.0, 175.3, 172.5, 157.1, 151.8, 122.7, 117.7, 90.4, 67.1, 58.1, 50.0, 42.9, 32.2, 28.0, 19.0; HPLC (AS, hexane:*i*-PrOH 70:30, 1.0 mL/min): t_R 16.69 min (major enantiomer), t_R 53.14 min (minor enantiomer); ee 79%; $[\alpha]_D^{25}$ = +18.2 (c = 1.1, CHCl₃). ES-HRMS: Calcd for C₁₅H₁₉O₆[M+H]⁺, 295.11761, Found 295.11785.

(3S,4R)-ethyl 4-(2-(3-acetamidophenyl)-2-oxoethyl)-5,5-dimethyl-2-oxotetrahydrofuran-3-

carboxylate 3I: Obtained in 64% yield, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), δ 8.13-8.17 (m, 1H), δ 7.75-7.85 (m, 1H), δ 7.58-7.64 (m, 1H), δ 7.36 (t, J = 8.0 Hz, 1H), δ 4.18 (q, J = 7.2 Hz, 2H), δ 3.47 (d, J = 11.2 Hz, 1H), δ 3.05-3.32 (m, 3H), δ 2.17 (s, 3H), δ 1.50 (s, 3H), δ 1.32 (s, 3H), δ 1.21 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 196.8, 171.2, 169.4, 168.1, 139.1, 136.6, 129.4, 124.9, 123.4, 119.2 86.0, 62.1, 53.5, 45.1, 38.2, 27.3, 24.5, 23.0, 13.9; HPLC (AD, hexane:*i*-PrOH 50:50, 1.0 mL/min): t_R 25.38 min (major enantiomer), t_R 65.17 min (minor enantiomer); ee 93%; [α]_D²⁵ = -16.7 (c = 1.2, CHCl₃). ES-HRMS: Calcd for C₁₉H₂₇N₂O₆[M+H]⁺, 362.15981, Found 362.15983.

(3S,4R)-ethyl 5,5-dimethyl-2-oxo-4-(2-oxo-2-m-tolylethyl)tetrahydrofuran-3-carboxylate 3m: Obtained in 94% yield, white solid; m.p. 72.2-74.8°C; ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.78 (m, 2H), δ 7.35-7.45 (m, 2H), δ 4.27 (q, J = 7.2 Hz, 2H), δ 3.47 (d, J = 11.6 Hz, 1H), δ 3.31-3.38 (m, 1H), δ 3.08-3.24 (m, 2H), δ 2.43 (s, 3H), δ 1.56 (s, 3H), δ 1.37 (s, 3H), δ 1.30 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.1, 170.5, 167.7, 138.7, 136.1, 134.5, 128.7, 128.6, 125.3, 85.5, 62.1, 53.4, 45.1, 38.3, 27.4, 23.1, 21.4, 14.0; HPLC (AS, hexane:*i*-PrOH 70:30, 1.0 mL/min): t_R 13.60 min (major enantiomer), t_R 25.12 min (minor enantiomer); ee 95%; [α]_D²⁵ = -10.9 (c = 4.4, CHCl₃). ES-HRMS: Calcd for C₁₈H₂₃O₅[M+H]⁺, 319.15400, Found 319.15426.

(3S,4R)-ethyl 4-(2-(3-fluorophenyl)-2-oxoethyl)-5,5-dimethyl-2-oxotetrahydrofuran-3carboxylate 3n: Obtained in 69% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 8 Hz, 1H), δ 7.58-7.65 (m, 1H), δ 7.45-7.52 (m, 1H), δ 7.28-7.35 (m, 1H), δ 4.27 (q, *J* = 7.2 Hz, 2H), δ 3.47 (d, *J* = 11.6 Hz, 1H), δ 3.27-3.36 (m, 1H), δ 3.07-3.24 (m, 2H), δ 1.55 (s, 3H), δ 1.37 (s, 3H), δ 1.29 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 195.7, 170.3, 167.7, 162.8 (d, 246.9 Hz), 138.1 (d, 6.1 Hz), 130.6 (d, 7.6 Hz), 123.9 (d, 3.1Hz), 120.7 (d, 21.4 Hz), 114.8 (d, 22.4 Hz), 85.4, 62.1, 53.3, 44.9, 38.4, 27.4, 23.1, 14.0; HPLC (AS, hexane:*i*-PrOH 70:30, 1.0 mL/min): t_R 22.36 min (major enantiomer), t_R 51.43 min (minor enantiomer); ee 94%; $[\alpha]_D^{25} =$ -7.3 (*c* = 3.8, CHCl₃). ES-HRMS: Calcd for $C_{17}H_{20}FO_5[M+H]^+$, 323.12893, Found 323.12950.

(3S,4R)-ethyl 5,5-dimethyl-2-oxo-4-(2-oxo-2-(thiophen-2-yl)ethyl)tetrahydrofuran-3carboxylate 30: Obtained in 74% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 3.2 Hz, 1H), δ 7.70 (d, *J* = 4.8 Hz, 1H), δ 7.15-7.19 (m, 1H), δ 4.24 (q, *J* = 7.2 Hz, 2H), δ 3.51 (d, *J* = 11.6 Hz, 1H), δ 3.28-3.36 (m, 1H), δ 3.02-3.16 (m, 2H), δ 1.55 (s, 3H), δ 1.36 (s, 3H), δ 1.28 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 189.7, 170.2, 167.5, 143.2, 134.7, 132.5, 128.4, 85.4, 62.2, 53.1, 45.4, 38.8, 27.4, 23.0, 14.0; HPLC (AS, hexane:*i*-PrOH 70:30, 1.0 mL/min): t_R 29.58 min (major enantiomer), t_R 112.54 min (minor enantiomer); ee 92%; Calcd for C₁₅H₁₉O₅S[M+H]⁺, 311.09477, Found 311.09532.

(3S,4R)-ethyl 4-(2-(4-acetamidophenyl)-2-oxoethyl)-5,5-dimethyl-2-oxotetrahydrofuran-3carboxylate 3p: Obtained in 94% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.0 Hz, 2H), δ 7.85 (s, 1H), δ 7.67 (d, *J* = 8.0 Hz, 2H), δ 4.27 (q, *J* = 6.8 Hz, 2H), δ 3.47 (d, *J* = 11.2 Hz, 1H), δ 3.28-3.37 (m, 1H), δ 3.04-3.22 (m, 2H), δ 2.23 (s, 3H), δ 1.55 (s, 3H), δ 1.37 (s, 3H), δ 1.29 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 195.5, 170.6, 168.8, 167.8, 143.0, 131.6, 129.5, 119.0, 85.7, 62.2, 53.5, 45.2, 38.0, 27.4, 24.7, 23.1, 14.0; HPLC (AS, hexane:*i*-PrOH 70:30, 1.0 mL/min): t_R 22.82 min (major enantiomer), t_R 54.16 min (minor enantiomer); ee 96%; [α]_D²⁵ = 9.6 (*c* =4.6, CHCl₃). ES-HRMS: Calcd for C₁₉H₂₄NO₆[M+H]⁺, 362.1604, Found 362.1604.

(3S,4R)-ethyl 5,5-dimethyl-2-oxo-4-(2-oxo-2-(3,4,5-trimethoxyphenyl)ethyl)tetrahydrofuran-3-carboxylate 3q: Obtained in 95% yield, white solid; m.p. 102.8.2-105.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.21 (s, 2H), δ 4.29 (q, J = 7.2 Hz, 2H), δ 3.94 (s, 9H), δ 3.49 (d, J = 11.6 Hz, 1H), δ 3.31-3.39 (m, 1H), δ 3.05-3.19 (m, 2H), δ 1.53 (s, 3H), δ 1.38 (s, 3H), δ 1.32 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 195.9, 170.0, 167.6, 153.2, 143.2, 131.1, 105.8, 85.4, 62.2, 61.0, 56.4, 53.2, 45.4, 38.1, 27.5, 23.0, 14.0; HPLC (AS, hexane:*i*-PrOH 70:30, 1.0 mL/min): t_R 29.09 min (major enantiomer), t_R 69.52 min (minor enantiomer); ee 94%; [α]_D²⁵ = -18.6 (*c* =7.3, CHCl₃). ES-HRMS: Calcd for C₂₀H₂₇O₈[M+H]⁺, 395.1706, Found 395.1699.

(3S,4R)-ethyl 4-(2-(benzo[d][1,3]dioxol-5-yl)-2-oxoethyl)-5,5-dimethyl-2-oxotetrahydrofuran-3-carboxylate 3r: Obtained in 78% yield, white solid; m.p. 100.1-102.7°C; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 7.6 Hz,1H), δ 7.39 (s, 1H), δ 6.86 (d, *J* = 8.0 Hz, 1H), δ 6.06 (s, 2H), δ 4.25 (q, *J* = 6.8 Hz, 2H), δ 3.45 (d, *J* = 11.6 Hz, 1H), δ 3.25-3.34 (m, 1H), δ 2.98-3.16 (m, 2H), δ 1.53 (s, 3H), δ 1.35 (s, 3H), δ 1.29 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 194.9, 170.4, 167.7, 152.3, 148.4, 130.9, 124.5, 108.0, 107.8, 102.0, 85.5, 62.1, 53.3, 45.3, 38.0, 27.4, 23.0, 14.0; HPLC (AS, hexane:*i*-PrOH 70:30, 1.0 mL/min): t_R 36.95 min (major enantiomer), t_R 104.12 min (minor enantiomer); ee 87%; [α]_D²⁵ = -12.9 (*c* =5.6, CHCl₃). ES-HRMS: Calcd for C₁₈H₂₁O₇[M+H]⁺, 349.1287, Found 349.1293.

(3S,4R)-ethyl 5,5-dimethyl-2-oxo-4-(2-oxo-2-(2-oxo-2,3-dihydrobenzo[d]thiazol-6-yl)ethyl)tetrahydrofuran-3-carboxylate 3s: Obtained in 94% yield, white solid; m.p. 177.3-181.9°C; ¹H NMR (400 MHz, DMSO) δ 8.26 (s, 1H), δ 7.90 (d, J = 8.4 Hz, 1H), δ 7.22 (d, J = 8.4 Hz, 1H), δ 4.09 (q, J = 6.4 Hz, 2H), δ 3.38 (d, J = 17.6 Hz, 1H), δ 3.20-3.30 (m, 1H), δ 2.99-3.06 (m, 1H), δ 1.48 (s, 3H), δ 1.35 (s, 3H), δ 1.14 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, DMSO): δ 196.7, 171.8, 170.9, 168.8, 140.8, 131.4, 127.5, 124.1, 123.8, 111.7, 86.3, 61.5, 53.2, 45.7, 37.8, 27.3, 23.2, 14.2; HPLC (AS, hexane:*i*-PrOH 70:30, 1.0 mL/min): t_R 44.30 min (major enantiomer), t_R 89.48 min (minor enantiomer); ee 98%; [α]_D²⁵ = -5.9 (c =6.1, CHCl₃). ES-HRMS: Calcd for C₁₈H₂₀NO₆S[M+H]⁺, 378.1011, Found 378.1008.

(3S,4R)-ethyl 5,5-dimethyl-2-oxo-4-(2-oxo-2-(quinolin-3-yl)ethyl)tetrahydrofuran-3carboxylate 3t: Obtained in 54% yield, white solid; m.p. 103.8-105.6°C; ¹H NMR (400 MHz, CDCl₃) δ 9.37 (s, 1H), δ 8.71 (s, 1H), δ 8.14 (d, J = 8.4 Hz, 1H), δ 7.95 (d, J = 7.6 Hz, 1H), δ 7.85 (t, J = 7.2 Hz, 1H), δ 7.64 (t, J = 7.2 Hz, 1H), δ 4.25 (q, J = 6.8 Hz, 2H), δ 3.52 (d, J = 11.2 Hz, 1H), δ 3.20-3.42 (m, 3H), δ 1.56 (s, 3H), δ 1.39 (s, 3H), δ 1.26 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 195.9, 170.2, 167.7, 150.0, 148.7, 137.3, 132.4, 129.5, 129.4, 128.3, 127.8, 126.7, 85.4, 62.2, 53.3, 44.9, 38.5, 27.4, 23.1, 14.2; HPLC (AS, hexane:*i*-PrOH 70:30, 1.0 mL/min): t_R 23.31 min (major enantiomer), t_R 43.32 min (minor enantiomer); ee 93%; [α]_D²⁵ = -11.3 (c =6.0, CHCl₃). ES-HRMS: Calcd for C₂₀H₂₂NO₅[M+H]⁺, 356.1498, Found 356.1495.

(3S,4R)-ethyl 5,5-diethyl-2-oxo-4-(2-oxo-2-phenylethyl)tetrahydrofuran-3-carboxylate 3u: Obtained in 73% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.91-7.97 (m, 2H), δ 7.61 (t, *J*=7.2 Hz, 1H) δ 7.50 (t, *J*=7.6 Hz, 2H), δ 4.27 (q, *J* = 7.2 Hz, 2H), δ 3.53-3.60 (m, 1H), δ 3.46 (d, *J* = 11.2 Hz, 1H), δ 3.11-3.29 (m, 2H), δ 1.90-2.02 (m, 1H), δ 1.65-1.77 (m, 3H), δ 1.30 (t, *J* = 7.2 Hz, 3H), δ 0.97-1.07 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 197.0, 171.0 168.0, 136.1, 133.7, 128.8, 128.1, 89.4, 62.1, 53.9, 41.3, 38.3, 29.1, 28.0, 14.0, 7.9, 7.6; HPLC (AS, hexane:*i*-PrOH 70:30, 1.0 mL/min): t_R 13.58 min (major enantiomer), t_R 33.38 min (minor enantiomer); ee 93%; $[\alpha]_D^{25} = -9.7$ (*c* =4.8, CHCl₃). ES-HRMS: Calcd for C₁₉H₂₅O₅[M+H]⁺, 333.16965, Found 333.17025.

(3S,4R)-ethyl 2-oxo-4-(2-oxo-2-phenylethyl)-1-oxaspiro[4.5]decane-3-carboxylate 3v: Obtained in 92% yield, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.92-7.98 (m, 2H), δ 7.62 (t, *J*=7.2 Hz, 1H) δ 7.50 (t, *J*=7.6 Hz, 2H), δ 4.27 (q, *J* = 7.2 Hz, 2H), δ 3.48 (d, *J* = 11.2 Hz, 1H), δ 3.21-3.29 (m, 2H), δ 3.05-3.15 (m, 1H), δ 1.83-1.92 (m, 1H), δ 1.64-1.80 (m, 7H), δ 1.29 (t, *J* = 7.2 Hz, 3H), δ 1.16-1.26 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 197.0, 170.6 167.9, 136.2, 133.7, 128.8, 128.1, 86.8, 62.1, 53.1, 45.4, 38.2, 36.3, 32.2, 25.1, 22.5, 21.5, 14.0; HPLC (AS, hexane:*i*-PrOH 70:30, 1.0 mL/min): t_R 42.76 min (major enantiomer), t_R 34.69 min (minor enantiomer); ee 93%; [α]_D²⁵ = -10.4 (*c* =5.1, CHCl₃). ES-HRMS: Calcd for C₂₀H₂₅O₅[M+H]⁺, 345.16965, Found 345.16982.

NMR Spectra for Michael Product 3a-3v ¹H NMR and ¹³C NMR spectra of 3a

250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 fl (ppm)

¹H NMR and ¹³C NMR spectra of 3b

250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 fl (ppm)

¹H NMR and ¹³C NMR spectra of 3c

¹H NMR and ¹³C NMR spectra of 3d

¹H NMR and ¹³C NMR spectra of 3e

¹H NMR and ¹³C NMR spectra of 3f

¹H NMR and ¹³C NMR spectra of 3g

¹H NMR and ¹³C NMR spectra of 3h

¹H NMR and ¹³C NMR spectra of 3i

¹H NMR and ¹³C NMR spectra of 3j

¹H NMR and ¹³C NMR spectra of 3k

¹H NMR and ¹³C NMR spectra of 3l

250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 fl (ppm)

¹H NMR and ¹³C NMR spectra of 3m

¹H NMR and ¹³C NMR spectra of 3n

¹H NMR and ¹³C NMR spectra of 30

¹H NMR and ¹³C NMR spectra of 3p

¹H NMR and ¹³C NMR spectra of 3q

¹H NMR and ¹³C NMR spectra of 3r

¹H NMR and ¹³C NMR spectra of 3s

¹H NMR and ¹³C NMR spectra of 3u

HPLC analysis for compounds 3a-3v

HPLC analysis for compounds 3a

Data File C:\HPCHEM\1\DATA\WW\11112430.D Sample Name: none-rac(70:30) _____ Injection Date : 11/29/2011 12:59:50 PM : none-rac(70:30) Location : Sample Name -Acq. Operator : WW Acq. Method : C:\HPCHEM\1\METHODS\LYH.M : 11/29/2011 11:18:56 AM by WW (modified after loading) Last changed Analysis Method : C:\HPCHEM\1\METHODS\LYH.M Last changed : 11/30/2011 2:00:06 PM by WW (<u>modified after loading</u>) DAD1 B, Sig=259,16 Ref=360,100 (WWA11112430.D) mAU. 250 21.062 200 80,600 150 3a racemic 100 14.774 g. 8 50 0 -50 <u>10</u> <u>20</u> <u>30</u> 50 40 ----------Area Percent Report _____ Sorted By : Signal Multiplier 1.0000 : Dilution : 1.0000 10.00000 [ng/ul] (not used in calc.) Sample Amount : Signal 1: DAD1 B, Sig=259,16 Ref=360,100 Height Peak RetTime Type Width Area Area [mAU*s] [mAU] ÷ # [min] [min] -- | ------ | ----- | -------|-----|-----|-----| 1 14.774 BB 2 16.588 MM 0.6180 1467.91064 34.24862 3.8719 0.6790 902.18018 1.2071 1.78398e4 22.14597 2.3797 203.83644 47.0563 21.052 BB 3 4 50.509 BB 1.4768 1.77017e4 144.33984 46.6921 Totals : 3.79117e4 404.57087 Results obtained with enhanced integrator! *** End of Report ***

Instrument 1 11/30/2011 2:00:11 PM WW

Page 1 of 1

Instrument 1 11/30/2011 1:58:42 PM WW

HPLC analysis for compounds **3b**

Data File C:\HPCHEM\1\DATA\WW\11101700.D

Sample Name: 4-F-rac

Instrument 1 10/17/2011 6:17:50 PM WW

Instrument 1 10/17/2011 6:22:13 PM WW

HPLC analysis for compounds **3**c

Data File C:\HPCHEM\1\DATA\WW\12043004.D

Sample Name: 4-cl-rac

Injection Date : Sample Name : Acq. Operator : Acq. Method : Last changed : Last changed :	4/30/2012 8:53:33 PM 4-Cl-rac Location : Vial 1 WW C:\HPCHEN\1\METHODS\LYH.M 4/30/2012 4:36:12 PM bv cdc (modified after loading) C:\HPCHEN\1\METHODS\LYH.M 5/1/2012 4:44:49 PM bv WW (modified after loading) CO2046 2.5000000000000000000000000000000000000
mAU]	-280, 10 Ket-300, 100 (000(12043004.0)
175	
150	
125	* <u>~</u> ~~ °
100	
75	3c racemic
50	
25	
-25	
-50 1	10 20 30 40 50 mir
	Area Percent Report
Sorted By	: Signal
Dilution	: 1.000
Sample Amount	: 1.00000 [ng/ul] (not used in calc.)
Signal 1: DAD1 A,	Sig=280,16 Ref=360,100
Peak RetTime Type # [min]	: Width Area Height Area [min] [mAU*s] [mAU] %
1 19.848 VB 2 54.052 BV	0.7673 4659.41650 91.61997 50.6794 1.5172 4534.49121 35.23917 49.3206
Totals :	9193.90771 126.85915
Results obtained	l with enhanced integrator!
	*** End of Report ***

Instrument 1 5/1/2012 4:45:04 PM WW

Instrument 1 5/1/2012 4:43:37 PM WW

HPLC analysis for compounds **3d**

Data File C:\HPCHEM\1\DATA\WW\12043002.D

Sample Name: 4-br-rac

Instrument 1 5/1/2012 4:41:57 PM WW

Instrument 1 5/1/2012 4:39:39 PM WW

HPLC analysis for compounds **3e**

Data File C:\HPCHEM\1\DATA\WW\11101709.D

Sample Name: 4-no2-rac

						=		
Injection Date :	10/18/2011	1:20:49	AM					
Sample Name :	4-no2-rac			Locatio	n: -			
Acq. Operator :	WW C.) UDCUEW)	DURTHODS						
Last changed :	10/18/2011	1.12.52	ALIN.N AM by UN					
	(modified	after loa	ding)					
Analysis Method :	C:\HPCHEM\	1\METHODS	LYH.M					
Last changed :	10/18/2011	4:32:16	AM by UU					
DAD1 A Sig	<u>(modified</u> -254.48 Rote260	<u>after loa</u> 1400.00000444	<u>ding)</u> 104709 D)					
	-204,10 Kel=300	,100 (000011	101708.0)					
80								
			0	+ °.				
			ort	トレー				
					"NO ₂			
				3e recemic				
				de l'adenno				
40-								
1 1 1								
			8					
20 - 1						L.	o	
1 1 1			Ä			i	- 0	
1 1 1			$\{\chi\}$				Ŝ,	
			$ \chi $			/	1	
°]] L	<u>۸</u> ۸	_	f X				1	
							<u>_</u>	-
-20 +								
0	10	20	30	40	50	60	70	mir
						=		
	Are	a Percent	Report					
						=		
Sorted By		Simal						
Multiplier	-	1.0000						
Dilution		1.0000						
Sample Amount	:	1.00000	[ng/ul]	(not used	in calc.)			
Signal 1. Dabl a	Sig-254 16	Dof-260	100					
SIGNAL I: DADI A,	51y=254,10	Re1=300,	100					
Peak RetTime Type	Width	Area	Height	Area				
# [min]	[min] [mAU*s]	[mAU]	*				
1 31.326 BB	1.3834 25	18.93579	21.49086	52.8154				
2 66.115 BB	1.8626 22	30.38818	14.14095	47.1846				
Totals :	47	69.32397	35,63181					
	-17		50.00101					
Results obtained	l with enhan	ced integ	rator!					
						=		
		and the state of t	ロール・シャナー ナナナー					

Instrument 1 10/18/2011 4:33:22 AM WW

Instrument 1 10/18/2011 4:35:18 AM WW

HPLC analysis for compounds **3f**

Data File C:\HPCHEM\1\DATA\WW\11112432.D

Sample Name: 4-Me-rac(80:20)

Instrument 1 11/30/2011 1:50:05 PM WW

Instrument 1 11/30/2011 1:52:23 PM WW

HPLC analysis for compounds **3**g

Data File C:\HPCHEM\1\DATA\WW\12041302.D

Sample Name: 3cl-rac

Instrument 1 4/13/2012 1:49:02 PM WW

Instrument 1 4/13/2012 2:00:59 PM WW

HPLC analysis for compounds **3h**

Data File C:\HPCHEM\1\DATA\WW\11112414.D

Sample Name: 3-N02-rac

Injection Date : Sample Name : Acg. Operator : Acg. Method : Last changed : Analysis Method : Last changed :	11/27/20 3-N02-ra WW C:\HPCHE 11/27/20 (modifie C:\HPCHE 11/27/20 (modifie	11 12:43:16 c M\1\METHODS 11 10:45:36 d after loa M\1\METHODS 11 2:42:29 d after loa	PM LYH.M AM by WW dinq) LYH.M PM by WW dinq) LYH.A	Location : -	====	
mAU]	204,16 Ket=3	360,100 (0000/111	112414.0)			
50 -						
40						
30			828	attyr.		
20			ľ.	cooe 3h racemic	55	
10					<u>≩</u> ∧	
0						
-10	88	81.80 80	Har Alar		\sum	
-20	ᡢ᠆᠆᠆᠘ᢣ᠆᠆᠆	·⁄`		•••••••••••••••••••••••••••••••••••••••		
-30	20			60 80		
	 A	rea Percent	Report		====	
Sorted By	:	Signal				
Dilution		1.0000				
Sample Amount	:	10.00000	[ng/ul]	(not used in calc	.)	
Signal 1: DAD1 A,	Sig=254,	16 Ref=360,	100			
Peak RetTime Tvoe # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %		
1 20.991 BB	0.5220	132.35056	3.05149	1.0724		
2 41.300 MM	1.7333	163.73595	1.57440	1.3267		
3 43.020 BB 4 104.975 BB	2.8750	6027.12012	24.54311	40.7043 48.8366		
Totals :		1.23414e4	68.27874			
Results obtained	with enh	anced integ	rator!			
		*** End of 1	= Report ***			

Instrument 1 11/27/2011 2:42:37 PM WW

Instrument 1 11/27/2011 1:47:17 PM WW

HPLC analysis for compounds **3i**

Data File C:\HPCHEM\1\DATA\WW\11112421.D

Sample Name: 3-ome-ee

Injection Date	- 11/28/2011 2·20·40 PM
Sample Name	· 3-000-00
Acq. Operator	
Acg. Method	C. HPCHEMALAMETHODSALYH. M
Last changed	11/28/2011 2:19:09 PM by MM
habe endineed	(modified after loading)
Analysis Method	C. HDCHEMALLMETHODSLLYH M
Lest changed	$1/28/2011$ $A \cdot 12 \cdot 31$ DM by UW
hast changed	(modified after loading)
DAD1 B S	
	19-200,10 Mei-000,100 (www.11112-21.0)
mAU j	
3507	
300-	
1 1	4 o les 0 oue
	* • • • · · · · ·
2507	
1	3i racenic
200-	
	i i i i i i i i i i i i i i i i i i i
450	l) Ä
1007	
1 1	
100-	
1 1	
1 501	
1 00]	
- i	10 20 30 40 m
	Area Percent Report
	· · · · · · · · · · · · · · · · · · ·
Sorted Bv	: Signal
Multinlier	: 1.0000
Dilution	1.0000
Semple Amount	• 100000 [ng/ul] (not used in celc.)
Sample Amount	. 10.00000 [ng/ar] (not used in carc.)
Comella Diri	R. 64 - 250 10 R-6-250 100
signai 1: DADI .	D, 319=239,10 KEE=360,100
:	
Peak RetTime Tv	pe Width Area Height Area
# [min]	[min] [mAU*s] [mAU] %
	!!!!
1 13.330 PB	0.4714 941.91302 31.26915 2.7174
2 16.119 BB	0.5639 949.04150 24.71791 2.7379
3 18.341 BB	0.9678 1.63930e4 252.38571 47.2930
4 39.560 BB	1.4401 1.63787e4 161.10323 47.2517
Totals :	3.46627e4 469.47600
Totals :	3.46627e4 469.47600
Totals : Results obtain	3.46627e4 469.47600 ed with enhanced integrator!
Totals : Results obtain	3.46627e4 469.47600 ed with enhanced integrator!
Totals : Results obtain	3.46627e4 469.47600 ed with enhanced integrator! **** End of Report ***

Instrument 1 11/28/2011 4:12:35 PM WW

Instrument 1 11/28/2011 4:14:25 PM WW

Data File C:\HPCHEM\1\DATA\WW\11112417.D

Sample Name: 3-py-rac

Instrument 1 11/28/2011 2:13:01 PM WW

Instrument 1 11/28/2011 2:14:37 PM WW

HPLC analysis for compounds 3k Data File C:\HPCHEM\1\DATA\WW\11101702.D Sample Name: 2-furan-rac -----------_____ Injection Date : 10/17/2011 6:13:55 PM : 2-furan-rac : WW Sample Name Location : Acq. Operator Acq. Method : C:\HPCHEM\1\METHODS\LYH.M : 10/17/2011 4:02:26 PM by WW (modified after loading) Last changed Analysis Method : C:\HPCHEM\1\METHODS\LYH.M Last changed : 10/17/2011 7:13:38 PM by WW (<u>modified after loading</u>) DAD1 B, Sig=265,16 Ref=360,100 (WWM11101702.D) mAU -175 150 8 ģ 125 100 3k racemic 75 £ ġ 50 25 12.229 14.374 0 10 20 30 40 50 Area Percent Report ------------Sorted By : Signal 1.0000 Multiplier : Dilution ÷ 1.0000 Sample Amount : 1.00000 [ng/ul] (not used in calc.) Signal 1: DAD1 B, Sig=265,16 Ref=360,100 Height Peak RetTime Type Width Area Area [min] [min] [mAU*s] [mAU] ÷ # ----| 0.3757 333.27261 0.4302 330.41159 12.229 BB 13.42262 2.8885 1 2 14.374 BB 11.53449 2.8637 3 16.789 VB 4 53.116 BB 0.6253 5453.09229 132.73445 47.2619 1.3395 5421.25684 48.44752 46.9860 Totals : 1.15380e4 206.13907

Results obtained with enhanced integrator! -----*** End of Report ***

Instrument 1 10/17/2011 7:13:44 PM WW

Instrument 1 10/17/2011 8:16:10 PM WW

HPLC analysis for compounds **3**

Data File C:\HPCHEM\1\DATA\WW\11110721.D

Sample Name: 3-NHAc-rac-AD

Instrument 1 11/9/2011 12:56:56 PM WW

Instrument 1 11/9/2011 1:01:44 PM WW

HPLC analysis for compounds **3m**

Data File C:\HPCHEM\1\DATA\WW\11112402.D

Sample Name: 3-Me-rac

Instrument 1 11/24/2011 4:33:00 PM WW

Instrument 1 11/24/2011 4:34:59 PM WW

HPLC analysis for compounds **3n**

Data File C:\HPCHEM\1\DATA\WW\12041301.D

Sample Name: 3f-rac

Injection Date	• 4/13/2012 10.40.12 MM		
Sample Name	: 3f-rac	Location : Vial 1	
Acg. Operator	: UU	1000001011 . (101 1	
Acg. Method	: C:\HPCHEM\1\METHODS\LYH.M		
Last changed	: 4/13/2012 10:48:12 AM by WW		
	(modified after loading)		
Analysis Method	: C:\HPCHEM\1\METHODS\LYH.M		
Last changed	: 4/13/2012 1:47:28 PM by WW		
	(modified after loading)		
DAD1 A, S	ig=254,16 Ref=360,100 (MMA12041301.D)		
mAU			
200			
1			
1 1			
150 -	٨.		
1 1			
1 1	5 [.] .	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
1	Sin Star	° \	8
	<u>А</u> `	EDOC []]	Ŕ
100-	11	~	ለ
1 1	J{		11
1 1]		(}
	J		11
	{		ſ {
50 -	{		
1 1	\		<i>[</i> {
			1 1
			11
		30 40	
		 30 40	50 mi
	Area Percent Report	 30 	50 mi
	Area Percent Report	 30 40	50 mi
	Area Percent Report	 30 40	
Sorted By	Area Percent Report	 30 40	
Sorted By Multiplier Dilution	Area Percent Report : Signal : 1.0000 . 1.0000	 30 40	
Sorted By Multiplier Dilution	Area Percent Report : Signal : 1.0000 : 1.0000 : 0.0000 [ng/ul]	30 40	50 mi
Sorted By Multiplier Dilution Sample Amount	Area Percent Report : Signal : 1.0000 : 1.0000 : 1.0000 [ng/ul]	30 40 	
Sorted By Multiplier Dilution Sample Amount	Area Percent Report : Signal : 1.0000 : 1.0000 : 1.0000 [ng/ul]	30 40 	
Sorted By Multiplier Dilution Sample Amount	Area Percent Report : Signal : 1.0000 : 1.0000 : 1.0000 [mg/ul] A. Sig=254.16 Ref=360.100	30 40 40	
Sorted By Multiplier Dilution Sample Amount Signal 1: DAD1	Area Percent Report : Signal : 1.0000 : 1.0000 : 1.0000 (ng/ul] A, Sig=254,16 Ref=360,100	30 40	50 mir
Sorted By Multiplier Dilution Sample Amount Signal 1: DAD1	Area Percent Report : Signal : 1.0000 : 1.0000 : 1.0000 (ng/ul] A, Sig=254,16 Ref=360,100 pe Width Area Height	30 40 	50 mi
Sorted By Multiplier Dilution Sample Amount Signal 1: DAD1	Area Percent Report : Signal : 1.0000 : 1.0000 : 1.0000 : 1.0000 [ng/ul] A, Sig=254,16 Ref=360,100 pe Width Area Height [min] [mAU [*] s] [mAU ¹	 30 40 	50 mi
Sorted By Multiplier Dilution Sample Amount Signal 1: DADI Peak RetTime Tv # [min]	Area Percent Report : Signal : 1.0000 : 1.0000 : 1.0000 : 1.0000 [ng/ul] A, Sig=254,16 Ref=360,100 pe Width Area Height [min] [mAU*s] [mAU]	30 40 	
Sorted By Multiplier Dilution Sample Amount Signal 1: DAD1 Peak RetTime Tv # [min] 	Area Percent Report : Signal : 1.0000 : 1.0000 : 1.0000 (mg/ul] A, Sig=254,16 Ref=360,100 be Width Area Height [min] [mAU*s] [mAU] 	30 40 	50 mir
sorted By Multiplier Dilution Sample Amount Signal 1: DAD1 Peak RetTime Tv # [min] 	Area Percent Report : Signal : 1.0000 : 1.0000 : 1.0000 (min1 [mAU*s] [mAU] 	30 40 (not used in calc.) Area * 	50 mi
Sorted By Multiplier Dilution Sample Amount Signal 1: DAD1 Peak RetTime Tv # [min] 	Area Percent Report : Signal : 1.0000 : 1.0000 : 1.0000 (mg/ul] A, Sig=254,16 Ref=360,100 be Width Area Height [min] [mAU*s] [mAU] 	30 40 (not used in calc.) Area % 	50 mi
Sorted By Multiplier Dilution Sample Amount Signal 1: DAD1 Peak RetTime TV # [min] 	Area Percent Report : Signal : 1.0000 : 1.0000 : 1.0000 : 1.0000 [ng/ul] A, Sig=254,16 Ref=360,100 be Width Area Height [min] [mAU [*] s] [mAU] 	30 40 	
Sorted By Multiplier Dilution Sample Amount Signal 1: DAD1 Peak RetTime Tv # [min] 	Area Percent Report : Signal : 1.0000 : 1.0000 : 1.0000 (max) A, Sig=254,16 Ref=360,100 be Width Area Height [min] [mAU*s] [mAU] 1.7476 1.14317e4 109.02094 1.3941 1.18321e4 100.02488 2.32638e4 209.04581	30 40 (not used in calc.) Area % 	
Sorted By Multiplier Dilution Sample Amount Signal 1: DAD1 Peak RetTime Tv # [min] 	Area Percent Report : Signal : 1.0000 : 1.0000 : 1.0000 (mg/ul] A, Sig=254,16 Ref=360,100 be Width Area Height [min] [mAU*s] [mAU] 	30 40 	50 mir
sorted By Multiplier Dilution Sample Amount Signal 1: DAD1 Peak RetTime Tv # [min] 	Area Percent Report : Signal : 1.0000 : 1.0000 : 1.0000 (mg/ul] A, Sig=254,16 Ref=360,100 be Width Area Height [min] [mAU*s] [mAU] 	30 40 (not used in calc.) Area % 	50 mir
Sorted By Multiplier Dilution Sample Amount Signal 1: DAD1 Peak RetTime Tv # [min] 	Area Percent Report : Signal : 1.0000 : 1.0000 : 1.0000 (mg/ul] A, Sig=254,16 Ref=360,100 be Width Area Height [min] [mAU*s] [mAU] 	30 40 (not used in calc.) Area % 	50 mi

Instrument 1 4/13/2012 1:47:32 PM WW

Instrument 1 4/13/2012 10:50:37 AM WW

HPLC analysis for compounds **30**

Data File C:\HPCHEM\1\DATA\WW\12043006.D

Sample Name: 2-thia-rac

Instrument 1 5/1/2012 4:47:01 PM WW

Instrument 1 5/1/2012 4:48:20 PM WW

Data File C:\HPCHEM\1\DATA\WW\12032012.D

Sample Name: 030902

Instrument 1 3/23/2012 8:09:46 PM WW

Instrument 1 3/23/2012 8:13:15 PM WW

HPLC analysis for compounds **3q**

Data File C:\HPCHEM\1\DATA\WW\12032015.D

Sample Name: 030901

Instrument 1 3/23/2012 8:22:35 PM WW

Instrument 1 3/23/2012 8:26:53 PM WW

Data File C:\HPCHEM\1\DATA\WW\12032018.D

Sample Name: 030903

Instrument 1 3/23/2012 8:29:09 PM WW

Data File C:\HPCHEM\1\DATA\WW\12032019.D Sample Name: 030803 Injection Date : 3/23/2012 4:42:36 PM Sample Name : 030803 Location : Acq. Operator : WW : C:\HPCHEM\1\METHODS\LYH.M : 3/23/2012 4:38:32 PM bv WW (modified after loading) Acq. Method Last changed Analysis Method : C:\HPCHEM\1\METHODS\LYH.M Last changed : 3/23/2012 8:30:36 PM by WW (modified after loading) DAD1 A, Sig=254,16 Ref=360,100 (WWM12032019.D) mAU -35 30 25 1.986 98 o Ś 20 Et00 (3S,4R)-3r 15 i NADES 10 6 8 8 s^{de} 5 0 -5 20 40 60 80 100 Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : Sample Amount : 1.00000 [ng/ul] (not used in calc.) Signal 1: DAD1 A, Sig=254,16 Ref=360,100 Peak RetTime Type Width Area Height Area [min] [min] [mAU*s] [mAU] ÷ # ----|-----|-----|-----|-----| 2.4501 1987.98486 13.52329 3.1390 144.08461 7.65034e-1 13.52329 93.2420 .65034e-1 6.7580 36.948 MM 1 2 104.120 MM Totals : 2132.06947 14.28832 Results obtained with enhanced integrator! *** End of Report ***

Instrument 1 3/23/2012 8:31:16 PM WW

HPLC analysis for compounds **3s**

Data File C:\HPCHEM\1\DATA\WW\12032010.D

Sample Name: 030604

Instrument 1 3/23/2012 7:40:14 PM WW

Instrument 1 3/23/2012 8:03:46 PM WW

HPLC analysis for compounds **3**t

Data File C:\HPCHEM\1\DATA\WW\12032006.D

Sample Name: 030602

Instrument 1 3/23/2012 7:23:41 PM WW

Data File C:\HPCHEM\1\DATA\WW\12032009.D Sample Name: 030501 Injection Date : 3/22/2012 2:04:24 PM Sample Name : 030501 Location : Acq. Operator : WW : C:\HPCHEM\1\METHODS\LYH.M : 3/22/2012 2:03:32 PM bv WU (modified after loading) Acq. Method Last changed Analysis Method : C:\HPCHEM\1\METHODS\LYH.M Last changed : 3/23/2012 7:32:25 PM by WW (modified after loading) DAD1 A, Sig=254,16 Ref=360,100 (WWN12032009.D) mAU. 1400 1200 101531 8 0: 840 1000 FIDOO (3S,4R)-3t 800 600 400 3 ⁷004 200 0 10 20 30 40 Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : Sample Amount : 1.00000 [ng/ul] (not used in calc.) Signal 1: DAD1 A, Sig=254,16 Ref=360,100 Peak RetTime Type Width Area Height Area [min] [min] [mAU*s] [mAU] ÷ # ----|-----|-----|-----|-----| 1.8568 1.07531e5 965.20502 96.4099 1.5935 4004.18091 41.88075 3.5901 23.305 MM 1 ž 43.324 MM Totals : 1.11535e5 1007.08577 Results obtained with enhanced integrator! *** End of Report ***

Instrument 1 3/23/2012 7:34:58 PM WW

HPLC analysis for compounds **3u**

Data File C:\HPCHEM\1\DATA\WW2\12092000.D Sample Name: diethyl-rac Injection Date : 9/20/2012 10:51:20 AM Sample Name : diethvl-rac Location : -Acq. Operator : WW : C:\HPCHEM\1\METHODS\GE.M : 9/20/2012 10:35:24 AM Acg. Method Last changed (modified after loading) Analysis Method : C:\HPCHEM\l\METHODS\GE.M Last changed : 9/20/2012 4:46:08 PM by WW (modified after loading) MWD1 A, Sig=254,16 Ref=off(WWW2\12092000.D) mAU 250 the shad 200 10 84 80 81 10 11 150 100 Ŧ 50 <u>@</u> o 30 35 mii ۱Ĥ Area Percent Report -----Sorted By Simal : Multiplier 1.0000 : Dilution : 1.0000 Signal 1: MWD1 A, Sig=254,16 Ref=off Peak RetTime Type Width Height Àrea Area [mAU*s] [mAU] * [min] [min] # --|----|----|-----|-----|------|---------|----| 11.318 MM 12.743 MM 3.5868 0.6238 604.15839 16.14061 1 0.7021 8113.56836 2 192.59084 48.1692 3 29.031 MM 1.0830 8126.17090 125.05698 48.2440 1.68439e4 Totals : 333.78843 Results obtained with enhanced integrator! *** End of Report ***

Instrument 1 9/20/2012 4:46:17 PM WW

Instrument 1 9/20/2012 4:51:59 PM WW

HPLC analysis for compounds **3v**

Data File C:\HPCHEM\1\DATA\WW2\12092002.D Sample Name: hexane-rac Injection Date : 9/20/2012 12:34:51 PM Sample Name : hexane-rac Location : -Acq. Operator Acg. Method Last changed : WW : C:\HPCHEM\1\METHODS\GE.M : 9/20/2012 10:35:24 AM (modified after loading) Analysis Method : C:\HPCHEM\1\METHODS\GE.M Last changed : 9/20/2012 4:54:36 PM by WW (modified after loading) MWD1 A, Sig=254,16 Ref=off(WWW2\12092002.D) mAU Street Holds 80 60 1886-1523^{1,11} <u>4</u>26 40 20 0 30 50 10 20 40 mir Area Percent Report ------Sional Sorted By : Multiplier 1.0000 : Dilution : 1.0000 Signal 1: MWD1 A, Sig=254,16 Ref=off Peak RetTime Type Width Height Àrea Area -1 1.08201e4 103.04377 Totals : Results obtained with enhanced integrator! _____ *** End of Report ***

Instrument 1 9/20/2012 4:54:40 PM WW

Instrument 1 9/20/2012 4:57:03 PM WW

Crystal information of 3d

 Table 1. Crystal data and structure refinement for 3d.

Identification code	3d	
Empirical formula	C17 H19 O5Br	
Formula weight	383.24	
Temperature	295(2) K	
Wavelength	1.54184 Å	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2(1)	
Unit cell dimensions	a = 6.941(3) Å	□ = 90°
	b = 11.055(4) Å	□ = 90°
	c = 22.261(8) Å	□=90°
Volume	1708.1(11) Å ³	
Z	4	
Density (calculated)	1.490 Mg/m ³ 79	

Absorption coefficient	3.480 mm ⁻¹
F(000)	784
Crystal size	0.10 x 0.13 x 0.31 mm ³
Theta range for data collection	3.97 to 72.64°.
Index ranges	-8<=h<=8, -13<=k<=12, -27<=l<=27
Reflections collected	3012
Independent reflections	$3330(R_{int} = 0.0619)$
Completeness to theta = 27.48°	98.8 %
Absorption correction	Multi-scan
Refinement method	Full-matrix least-squares on F ²
Goodness-of-fit on F ²	1.059
R indices (all data)	R1 = 0.0347, wR2 = 0.0894
Refine number parameter	209
Absolute structure flack	-0.008(19)
Extinction coefficient	0.0102(5)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å $^{2}x 10^{3}$) for 3d. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)
Br(1)	-7750(1)	-146(1)	524(1)	83(1)
0(1)	-8462(3)	-7108(2)	-2832(1)	62(1)
0(2)	-5895(5)	-8296(3)	-2766(1)	95(1)
0(3)	-7025(3)	-8440(2)	-1352(1)	67(1)
0(4)	-4235(3)	-7425(2)	-1271(1)	51(1)
0(5)	-7621 (3)	-5807(2)	-699(1)	57(1)
C(2)	-6843(4)	-7486(3)	-2568(1)	59(1)
C(3)	-6446(4)	-6751(3)	-2000(1)	46(1)
C (4)	-8314(4)	-6036(2)	-1915(1)	41(1)
C(5)	-9173(4)	-5979(3)	-2553(1)	49(1)
C (6)	-8113(4)	-4795(2)	-1626(1)	46(1)
C(7)	-7783(3)	-4854(2)	-953(1)	43(1)
C (8)	-7712(4)	-3680(2)	-613(1)	44(1)
C (9)	-7708(4)	-3718(2)	10(1)	55(1)
C(10)	-7691(4)	-2670(3)	345(1)	60(1)
C(11)	-7701(4)	-1585(2)	58(1)	59(1)
C(12)	-7682(5)	-1494(2)	-559(1)	69(1)
C(13)	-7696(5)	-2564(2)	-891(1)	61(1)
C(14)	-5965(4)	-7631(2)	-1500(1)	48(1)
C(15)	-3648(4)	-8211(3)	-781(1)	60(1)
C(16)	-1535(5)	-8062(3)	-686(1)	58(1)
C(17)	-11325(5)	-6037(3)	-2545(2)	70(1)
C(18)	-8416(6)	-4947(3)	-2936(1)	75(1)
H(3A)	-5365	-6197	-2067	55
H(4A)	-9182	-6521	-1664	49
H (6A)	-7042	-4372	-1811	56
H(6B)	-9272	-4331	-1704	56
H (9A)	-7717	-4462	204	65
H(10A)	-7672	-2705	762	72
H(12A)	-7660	-744	-747	82
H(13A)	-7695	-2524	-1309	74
H(15A)	-3939	-9046	-879	73
H(15B)	-4340	-7998	-418	73
H(16A)	-1123	-8578	-364	87
H(16B)	-1261	-7235	-586	87
H(16C)	-861	-8277	-1047	87
H(17A)	-11804	-6002	-2950	105

81

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

_

Н	(17B) –	11824	-5365	-2320	105
Н	(17C) –	11729	-6779	-2361	105
Н	(18A)	-9010	-4976	-3326	113
Н	(18B)	-7045	-5022	-2979	113
Н	(18C)	-8715	-4190	-2747	113

Br(1)-C(11)	1.899(2)
0(1) - C(2)	1.335(4)
0(1) - C(5)	1.478(3)
0(2) - C(2)	1.196(4)
0(3) - C(14)	1.205(3)
0(4) - C(14)	1.324(3)
0(4)-C(15)	1.453(3)
0(5) - C(7)	1.202(3)
C(2) - C(3)	1.528(4)
C(3)-C(14)	1.515(4)
C(3) - C(4)	1.531(3)
C(3)-H(3A)	0.9800
C(4)-C(6)	1.522(3)
C(4) - C(5)	1.543(3)
C(4)-H(4A)	0.9800
C(5)-C(17)	1.496(5)
C(5)-C(18)	1.518(4)
C(6) - C(7)	1.516(3)
C(6) - H(6A)	0.9700
C(6)-H(6B)	0.9700
C(7) - C(8)	1.503(3)
C(8)-C(13)	1.380(4)
C(8)-C(9)	1.388(3)
C(9)-C(10)	1.378(4)
C (9) –H (9A)	0.9300
C(10)-C(11)	1.358(4)
C(10)-H(10A)	0.9300
C(11)-C(12)	1.377(4)
C(12)-C(13)	1.395(4)
C(12)-H(12A)	0.9300
C(13)-H(13A)	0.9300
C(15)-C(16)	1.491(5)
C(15)-H(15A)	0.9700
C(15)-H(15B)	0.9700
C(16)-H(16A)	0.9600
C(16)-H(16B)	0.9600
C(16)-H(16C)	0.9600
С(17)-Н(17А)	0.9600
С(17)-Н(17В)	0.9600
С(17)-Н(17С)	0.9600
C(18)-H(18A)	0.9600

Table 3. Bond lengths [Å] and angles $[\circ]$ for 3d.

C(18)-H(18B)	0.9600
С(18)-Н(18С)	0.9600
C(2) - O(1) - C(5)	111.1(2)
C(14) - O(4) - C(15)	116.1(2)
0(2) - C(2) - 0(1)	122.3(3)
0(2) - C(2) - C(3)	127.2(3)
0(1)-C(2)-C(3)	110.5(2)
C(14) - C(3) - C(2)	107.9(2)
C(14) - C(3) - C(4)	115.3(2)
C(2) - C(3) - C(4)	103.0(2)
С (14) – С (3) – Н (ЗА)	110.2
С(2)-С(3)-Н(ЗА)	110.2
C(4) - C(3) - H(3A)	110.2
C(6) - C(4) - C(3)	116.1(2)
C(3) - C(4) - C(5)	103.5(2)
C(6) - C(4) - H(4A)	108.0
C(3) - C(4) - H(4A)	108.0
C(5) - C(4) - H(4A)	108.0
0(1) - C(5) - C(17)	107.6(2)
0(1) - C(5) - C(18)	106.5(2)
С (17) –С (5) –С (18)	112.6(3)
0(1) - C(5) - C(4)	102.9(2)
C(17) - C(5) - C(4)	111.9(2)
C(18) - C(5) - C(4)	114.5(2)
C(7) - C(6) - C(4)	113.1(2)
C(7) - C(6) - H(6A)	109.0
C(4) - C(6) - H(6A)	109.0
C(7) - C(6) - H(6B)	109.0
C(4) - C(6) - H(6B)	109.0
H (6A) –C (6) –H (6B)	107.8
0(5) - C(7) - C(8)	121.1(2)
0(5) - C(7) - C(6)	121.2(2)
C(8) - C(7) - C(6)	117.7(2)
С (13) –С (8) –С (9)	118.3(2)
С (13) –С (8) –С (7)	123.1(2)
C(9) - C(8) - C(7)	118.5(2)
С (10) –С (9) –С (8)	121.1(2)
С (10) –С (9) –Н (9А)	119.5
C(8) - C(9) - H(9A)	119.5
C(11) - C(10) - C(9)	119.2(2)
С(11) – С(10) – Н(10А)	120.4
C(9)-C(10)-H(10A)	120.4
C (10) –C (11) –C (12)	122.2(2)
C(10) - C(11) - Br(1)	118.9(2)

C(12) - C(11) - Br(1)	118.9(2)
С (11) –С (12) –С (13)	117.9(3)
С (11) –С (12) –Н (12А)	121.0
С (13) –С (12) –Н (12А)	121.0
C(8) - C(13) - C(12)	121.3(3)
С(8)-С(13)-Н(13А)	119.3
С (12) –С (13) –Н (13А)	119.3
0(3) - C(14) - 0(4)	125.2(2)
0(3)-C(14)-C(3)	122.9(2)
0(4) - C(14) - C(3)	111.9(2)
0(4) - C(15) - C(16)	108.5(3)
0(4)-C(15)-H(15A)	110.0
С (16) –С (15) –Н (15А)	110.0
0(4) - C(15) - H(15B)	110.0
С (16) –С (15) –Н (15В)	110.0
H(15A)-C(15)-H(15B)	108.4
С (15) –С (16) –Н (16А)	109.5
С (15) –С (16) –Н (16В)	109.5
H(16A)-C(16)-H(16B)	109.5
С (15) –С (16) –Н (16С)	109.5
H(16A) - C(16) - H(16C)	109.5
H(16B) - C(16) - H(16C)	109.5
С(5)-С(17)-Н(17А)	109.5
C(5)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5
C(5) - C(17) - H(17C)	109.5
H(17A) - C(17) - H(17C)	109.5
H(17B) - C(17) - H(17C)	109.5
C(5)-C(18)-H(18A)	109.5
C(5)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
С (5) –С (18) –Н (18С)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5

Acq. File: MT20120612114854.wiff

Printing Date: Tuesday, June 12, 2012

Workstation: QSTAR

ESI-MS of intermediate enamine salt

