Syntheses of a pillar[4]arene[1]quinone and a difunctionalized pillar[5]arene by partial oxidation

Chengyou Han, Zibin Zhang, Guocan Yu and Feihe Huang*

Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.

Fax: +86-571-8795-1895; Tel: +86-571-8795-3189; Email address: fhuang@zju.edu.cn.

Electronic Supplementary Information (11 pages)

1.	Materials and Methods	<i>S2</i>
2.	Synthetic routes for DMP4A1Q and 4DM1HQP5	<i>S2</i>
3.	Synthesis of DMP4A1Q	<i>S3</i>
4.	Synthesis of 4DM1HQP5	<i>S5</i>
5.	X-ray crystal data of DMP4A1Q and 4DM1HQP5	<i>S</i> 7
6.	The determination of the association constant of complex $4DM1HQP5 \square 3$	<i>S8</i>
7	Electrospray ionization mass spectrum of a solution of $4DM1HQP5$ and 3	<i>S10</i>
	References	<i>S11</i>

1. Materials and Methods:

 $(DMP5)^{S1}$ 1,4-dimethoxypillar[5]arene and *n*-octylethyl ammonium hexafluorophosphate $(3)^{S2}$ were synthesized according to literature procedures. Solvents were either employed as purchased or dried according to procedures the literature. ¹H NMR spectra described in were collected on а temperature-controlled 400 MHz spectrometer. ¹³C NMR spectra were recorded on a Bruker AVANCE DMX-500 spectrometer at 100 MHz. Low-resolution electrospray ionization (LRESI) mass spectra were obtained on a Bruker Esquire 3000 plus mass spectrometer (Bruker-Franzen Analytik GmbH Bremen, Germany) equipped with an ESI interface and an ion trap analyzer.

2. Synthetic routes for DMP4A1Q and 4DM1HQP5

Scheme S1 Synthetic routes for DMP4A1Q and 4DM1HQP5.

3. Synthesis of DMP4A1Q

A solution of DMP5 (3.00 g, 4.00 mmol) in THF (100 mL) was stirred in a 250 mL round-bottom flask while an aqueous solution (NH₄)₂[Ce(NO₃)₆] (2.19 g, 4.00 mmol) was added dropwise. The mixture was stirred at room temperature for 24 h. The organic solvent was removed and water layer was extracted by dichloromethane (50 mL \times 3). The combined organic phase was washed with water (100 mL) and saturated NaCl solution (100 mL), and dried over anhydrous Na₂SO₄. After being filtered and evaporated, the residue was purified by chromatography on silica gel (petroleum ether/dichloromethane, v/v 4:1 \rightarrow 2:1) to obtain DMP5 (1.50 g) and red solid DMP4A1Q (430 mg, 30%). M.p. 148.6–149.9 °C. The ¹H NMR spectrum of DMP4A1Q is shown in Figure S1. ¹H NMR (400 MHz, CDCl₃, room temperature) δ (ppm): 6.84 (s, 2H), 6.81 (s, 2H), 6.79 (s, 2H), 6.67 (s, 4H), 3.79 (br, 6H), 3.75 (s, 6H), 3.71 (s, 12H), 3.63 (s, 6H), 3.59 (s, 4H). The ¹³C NMR spectrum of DMP4A1Q is shown in Figure S2. ¹³C NMR (100 MHz, CDCl₃, room temperature) δ (ppm): 188.8, 151.2, 150.9, 150.9, 146.7, 133.5, 129.5, 128.5, 128.0, 123.7, 114.4, 114.4, 113.9, 113.9, 56.1, 56.0, 55.9, 55.9, 55.6, 53.4, 29.5, 28.2. LRESIMS: m/z 721.0 $[M + H]^+$ (100%). HRESIMS: m/z calcd for $[M]^+$ C₄₃H₄₄O₁₀, 720.2934, found 720.2950, error 2.2 ppm.

Fig. S2 ¹³C NMR spectrum (100 MHz, CDCl₃, room temperature) of DMP4A1Q.

Fig. S3 LRESI mass spectrum of DMP4A1Q.

4. Synthesis of 4DM1HQP5

A solution of DMP4A1Q (200 mg, 0.278 mmol) in CH₂Cl₂ (10 mL) was stirred in a 50 mL round–bottom flask while an aquous solution of Na₂S₂O₄ (0.960 g, 5.56 mmol) was added. The mixture was stirred roughly at room temperature for 12 h. The water layer was extracted by CH₂Cl₂ (50 mL × 3). The combined organic phase was washed with water (100 mL) and saturated NaCl solution (100 mL), and dried over anhydrous Na₂SO₄. After being filtered and evaporated, 4DM1HQP5 was obtained as a white solid quantitatively. M.p. 173.8–174.5 °C. The ¹H NMR spectrum of 4DM1HQP5 is shown in Figure S4. ¹H NMR (400 MHz, CDCl₃, room temperature) δ (ppm): 7.18 (s, 2H), 6.91 (s, 2H), 6.84 (s, 2H), 6.81 (s, 2H), 6.61 (s, 2H), 6.59 (s, 2H), 3.84 (s, 6H), 3.77 (br, 12H), 3.74 (s, 6H), 3.69 (s, 6H), 3.68 (s, 4H). The ¹³C NMR spectrum of 4DM1HQP5 is shown in Figure S5. ¹³C NMR (100 MHz, CDCl₃, room temperature) δ (ppm): 152.1, 150.9, 150.8, 148.5, 147.5, 129.3, 128.5, 127.7, 127.2, 126.8, 118.3, 114.7, 114.2, 113.9, 113.2, 56.6, 55.9, 55.9, 30.9, 29.9, 29.2. LRESIMS: *m/z* 723.1 [M + H]⁺ (100%). HRESIMS: *m/z* calcd for [M]⁺ C₄₃H₄₆O₁₀, 722.3091, found 722.3082, error –1.2 ppm.

Fig. S5 ¹³C NMR spectrum (100 MHz, CDCl₃, room temperature) of 4DM1HQP5.

Fig. S6 LRESI mass spectrum of 4DM1HQP5.

5. X-ray crystal data of DMP4A1Q and 4DM1HQP5

Crystal data of DMP4A1Q: yellow, $C_{89}H_{94}Cl_6O_{20}$, *FW* 1696.34, monoclinic, space group $P2_1/c$, a = 36.5565(4), b = 20.67542(18), c = 22.5397(2) Å, $\alpha = 90.00^{\circ}$, β $= 92.9319(9)^{\circ}$, $\gamma = 90.00^{\circ}$, V = 17013.7(3) Å³, Z = 8, $D_c = 1.325$ g cm⁻³, T = 140(2) K, $\mu = 2.425$ mm⁻¹, 102790 measured reflections, 30386 independent reflections, 2103 parameters, 0 restraints, F(000) = 7120, $R_1 = 0.0806$, $wR_2 = 0.1838$ (all data), $R_1 =$ 0.0654, $wR_2 = 0.1692$ [$I > 2\sigma(I)$], max. residual density 1.418 e•Å⁻³, and goodness-of-fit (F^2) = 1.044. CCDC-893117.

Crystal data of 4DM1HQP5: yellow, $C_{45}H_{50}Cl_4O_{10}$, *FW* 892.65, monoclinic, space group *C*2, *a* = 21.1700(12), *b* = 12.0046(5), *c* = 17.9282(9) Å, *α* = 90.00°, *β* = 99.384(5)°, γ = 90.00°, *V* = 4495.3(4) Å³, *Z* = 4, *D*_c = 1.319 g cm⁻³, *T* = 140(2) K, *μ* = 0.319 mm⁻¹, 9225 measured reflections, 4295 independent reflections, 510 parameters, 5 restraints, *F*(000) = 1872, *R*₁ = 0.1332, *wR*₂ = 0.2784 (all data), *R*₁ = 0.1174, *wR*₂ = 0.2693 [*I* > 2 σ (*I*)], max. residual density 1.410 e•Å⁻³, and goodness-of-fit (*F*²) = 1.036. CCDC-893116.

6. The determination of the association constant of complex 4DM1HQP5_3

To determine the stoichiometry and association constant for the complexation between 4DM1HQP5 and *n*-octylethyl ammonium hexafluorophosphate (**3**), NMR titrations were done with solutions which had a constant concentration of 4DM1HQP5 (2.00 mM) and varying concentrations of **3**. By a non-linear curve-fitting method, the association constant (K_a) of 4DM1HQP5 \supset **3** was estimated to be about 1.70 (± 0.70) × 10³ M⁻¹. By a mole ratio plot, a 1:1 stoichiometry was obtained.

The non-linear curve-fitting was based on the equation:^{S3}

 $\Delta \delta = (\Delta \delta_{\infty} / [H]_0) (0.5[G]_0 + 0.5([H]_0 + 1/K_a) - (0.5 ([G]_0^2 + (2[G]_0 (1/K_a - [H]_0)) + (1/K_a + [H]_0)^2)^{0.5}))$ (Eq. S1)

Where $\Delta\delta$ is the chemical shift change of H₂₀ on 4DM1HQP5 at [G]₀, $\Delta\delta_{\infty}$ is the chemical shift change of H₂₀ when the host is completely complexed, [H]₀ is the fixed initial concentration of the host, and [G]₀ is the initial concentration of **3**.

Fig. S7 Partial ¹H NMR spectra (400 MHz, CDCl₃, room temperature) of 4DM1HQP5 at a concentration of 2.00 mM upon addition of **G** (15 mM): (a) 0.00 μ L, (b) 10.0 μ L to a, (c) 10.0 μ L to b, (d) 10.0 μ L to c, (e) 10.0 μ L to d, (f) 25.0 μ L to e, (g) 25.0 μ L to f, (h) 25.0 μ L to g, (i) 50.0 μ L to h, (j) 50.0 μ L to i, (k) 100 μ L to j, (l) 100 μ L to k.

Fig. S8 Mole ratio plot for the complexation between 4DM1HQP5 and **3**, indicating a 1:1 stoichiometry.

Fig. S9 The chemical shift change of H_{20} on 4DM1HQP5 upon addition of **3**. The red solid line was obtained from the non-linear curve-fitting using Eq. S1.

7. Electrospray ionization mass spectrum of a solution of 4DM1HQP5 and 3

Fig. S10 Electrospray ionization mass spectrum of a solution of 4DM1HQP5 and 3.

References:

- S1. T. Ogoshi, K. Kitajima, T. Aoki, S. Fujinami, T. Yamagishi and Y. Nakamoto, J. Org. Chem., 2010, 75, 3268–3273.
- S2. G. W. Kabalka, G. W. McCollum and S. A. Kunda, J. Org. Chem., 1984, 49, 1656–1658.
- S3. K. A. Connors, *Binding Constants*; Wiley: New York, 1987; P. S. Corbin, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, 1999; P. R. Ashton, R. Ballardini, V. Balzani, M. Belohradsky, M. T. Gandolfi, D. Philp, L. Prodi, F. M. Raymo, M. V. Reddington, N. Spencer, J. F. Stoddart, M. Venturi and D. J. Williams, *J. Am. Chem. Soc.*, 1996, **118**, 4931–4951.