Supporting Information

Facile Synthesis of Electrophilic Vinyl Boranes: Reactions of Alkynyl-borates and Diazonium Salts

Xiaoxi Zhao, Liyuan Liang and Douglas W. Stephan

General Considerations. All manipulations were performed under an atmosphere of dry, oxygen-free N₂ by means of standard Schlenk or glovebox techniques (Innovative Technology glovebox equipped with a -38° C freezer). Pentane, dichloromethane and toluene were dried using an Innovative Technologies solvent system and degassed prior to use. Dichloromethane-d² and Benzene-d⁶ were purchased from Aldrich, dried on CaH₂ and was vacuum distilled onto 4Å molecular sieves prior to use. NMR spectra were obtained on a Bruker Avance 400 MHz or a Varian 400 MHz and spectra were referenced to residual solvent of C₆D₆ (¹H = 7.16 ppm for meta proton; ¹³C = 128.06 ppm for carbon), and CD₂Cl₂ (¹H = 5.32 ppm; ¹³C = 53.84 ppm). Chemical shifts (δ) listed are in ppm and absolute values of the coupling constants are in Hz. NMR assignments are supported by additional 2D experiments. Elemental analyses (C, N, H) and X-ray crystallography were performed in house. (*t*Bu)₃P, HBF₄, NaBF₄, Aniline, 4-methoxyaniline, , 4-chloroaniline, phenylacetylene and 4-trifluoromethylphenylacetylene were purchased from Aldrich and used without further purification. B(C₆F₅)₃ was purchased from Boulder Scientific. Potassium tetrakis(pentafluorophenyl)borate was purchased from Bolder and used without further treatment.

The compounds $\mathbf{1}^1$ and $\mathbf{2}^2$ were prepared according to the references.

1. M. A. Dureen, C. C. Brown, D. W. Stephan, Organometallics 2010, 29, 6594-6607.

2. C. Combellas, D. Jiang, F. Kanoufi, J. Pinson, F. I. Podvorica, Langmuir 2009, 25, 286-293.

Synthesis of $(C_6H_4Cl)(Ph)CC(C_6F_5)(B(C_6F_5)_2)$ 3 (*E*-isomer): To a suspension of $[Cl(C_6H_4)N_2][B(C_6F_5)_4]$ (60 mg, 0.073 mmol) in CH₂Cl₂ (2.0 mL) was added a solution of $[HPtBu_3][PhCCB(C_6F_5)_3]$ (60 mg, 0.073 mmol) in CH₂Cl₂ (3.0 mL) at RT. The reaction mixture was stirred for 10 min-hours, during which time the all components dissolved and turned brownish. All volatiles were pumped off, pentane (10 mL) added, and the mixture stirred for 3 h. The yellow precipitate was filtered off through a plug of Celite. The green-brown filtrate was pumped down to 2 mL and kept at -35 °C to give yellow crystalline precipitate as the product. Yield: 31 mg, 58 %. Single crystals suitable for X-ray diffraction studies were obtained from a pentane solution.

Ratio of E-isomer : Z-isomer = somewhere between 94:6 and 80:20 by 19 F NMR. 31mg, 58 %.

¹H NMR (400 MHz, C₆D₆, 298 K): δ 6.97-6.86 (multiple multiplets, 5H, Ar), 6.71 (br, 4H, Ar). ¹⁹F NMR (376 MHz, C₆D₆, 298 K): δ -129.16 (dm, 4F, ${}^{3}J_{FF}$ = 21 Hz, *o*-C₆F₅, B(C₆F₅)₂), -139.03 (m, 2F, *o*-C₆F₅, C=C(C₆F₅)), -145.80 (br, 2F, *p*-C₆F₅, B(C₆F₅)₂), -153.51 (t, 1F, ${}^{3}J_{FF}$ = 22 Hz, *p*-C₆F₅, C=C(C₆F₅)), -160.84 (m, 4F, *m*-C₆F₅, B(C₆F₅)₂), -161.46 (m, 2F, *m*-C₆F₅, C=C(C₆F₅)). ¹¹B NMR (128 MHz, C₆D₆, 298 K): δ 57.9 (br). ¹³C {¹H} NMR (101 MHz, C₆D₆, 298 K): δ 167.67 (s, =C(Ph)(C6H4Cl)), 147.95 (dm, ¹*J*_{CF} = 249 Hz, *o*-C₆F₅, B(C₆F₅)₂), 144.66 (dm, ¹*J*_{CF} = 247 Hz, *o*-C₆F₅, C=C(C₆F₅)), 143.75 (dm, ¹*J*_{CF} = 258 Hz, *p*-C₆F₅, B(C₆F₅)₂), 143.49 (s, Ar), 140.94 (dm, ¹*J*_{CF} = 248 Hz, *p*-C₆F₅, C=C(C₆F₅)), 140.40 (s, Ar), 138.33 (s, Ar), 137.96 (dm, ¹*J*_{CF} = 252 Hz, *m*-C₆F₅, C=C(C₆F₅)), 137.55 (dm, ¹*J*_{CF} = 254 Hz, *m*-C₆F₅, B(C₆F₅)₂), 132.27 (s, Ar), 130.76 (s, Ar), 130.57 (s, Ar), 128.71 (s, Ar), 128.68 (s, Ar). The signals for carbon atoms adjacent to B were not observed. Elem. Anal.: C₃₂H₉BF₁₅Cl, calc. C:53.04, H:1.25; found C: 53.59, H: 1.95.

The compounds 4-7 were prepared in a similar fashion: The diazonium salt 2 (0.05 mmol) was added in one portion to a solution of 1 (0.05 mmol) in CH_2Cl_2 (2 mL) at -35°C, the solution turned from light yellow to dark green or brown red (for 2) after 10 min, and it was allowed to stir for another 30min. to several hours at R.T. Then CH_2Cl_2 was removed, the product was taken up by stirring in pentane (2 mL) for a few hours, after which the supernatant was filtered on celite, the green pentane solution was stored in freezer to precipite the residue byproduct then filtered again before evaporated pentane to give the crude product as a yellow green powder.

Crystals suitable for X-ray crystal structure analysis were obtained by recrystallization from pentane at -35°C overnight.

(C₆H₄MeO)(Ph)CC(C₆F₅)(B(C₆F₅)₂) 4:

Ratio of major isomer : minor isomer ~ about 1:0.2 by ¹⁹F NMR. 21mg, yield 58%.¹H NMR (400 MHz, CD₂Cl₂, 298 K) δ = 7.39 (tt, 1H, *J*_{HH} =7.4 Hz, *o*-Ph); 7.30 (tt, 2H, *J*_{HH} =7.8 Hz, *m*-Ph); 7.17 (dd, 2H, *J*_{HH} =8.0 Hz, *o*-PhOMe); 7.08 (d, 2H, *J*_{HH} =8.4 Hz, *o*-Ph); 6.71 (d, 2H, *J*_{HH} =8.8 Hz, *m*-PhOMe); 3.73 (s, 3H, *CH*₃O).¹⁹F NMR (377 MHz, CD₂Cl₂, 298 K) δ = -130.6 (d, 4F, *J*_{FF} =17.6 Hz, *o*-(C₆*F*₅)₂); -141.1 (s, 2F, *p*-(C₆*F*₅)₂); -150.1 (s, 2F, *o*-C₆*F*₅); -157.1 (t, 1F, *J*_{FF} =20.8 Hz, *p*-C₆*F*₅); -163.4 (s, br., 4F, *m*-(C₆*F*₅)₂); -163.9 (td, 2F, *J*_{FF} =21.1 Hz, *m*-C₆*F*₅) ppm. ¹¹B NMR (128 MHz, CD₂Cl₂, 298 K) δ = 58.1 (s, br) ppm. ¹³C NMR (101 MHz, CD₂Cl₂, 298 K): δ 170.3 (s, =*C*(Ph)), 163.7(=*C*B), 148.9 (*o*-C₆*F*₅, B(C₆*F*₅)₂), 146.4 (C_q, =C(C₆*F*₅)), 145.8 (C_q, B(C₆*F*₅)₂), 144.5 (*o*-C₆*F*₅, C=C(C₆*F*₅)), 143.4 (*p*-C₆*F*₅, B(C₆*F*₅)₂), 142.0 (*p*-C₆*F*₅, B(C₆*F*₅)₂), 140.8 (t, C_q, Ph), 138.8 (*m*-C₆*F*₅, C=C(C₆*F*₅)), 138.3 (*C*-OCH₃), 136.3 (dm, *m*-C₆*F*₅, B(C₆*F*₅)₂), 134.3, 132.7, 132.1 (t, *p*-Ph), 131.4 (*o*-Ph), 130.5 (*o*-Ph), 129.8, 129.4 (*m*-Ph), 127.8 (*m*-Ph), 119.3, 115.0, 113.4, 58.1, 56.7 (*C*H₃O), 55.3. Elem. Anal.: C₃₃H₈BF₁₈Cl, calc. C:55.11, H:1.54, found C: 56.43, H: 1.77.

(C₆H₄Ph)(Ph)CC(C₆F₅)(B(C₆F₅)₂) 5:

Phenyldiazonium tetrafluoroborane salt was used for the reaction without ion exchange. 14mg, yield 42%. ¹H NMR (400 MHz, CD₂Cl₂, 298 K) δ = 7.39 (tt, 1H, *J*_{HH} =7.6 Hz, *CH*, Ph); 7.30 (t, 3H, *J*_{HH} =7.4 Hz, *CH*, Ph); 7.20 (t, 2H, *J*_{HH} =7.8 Hz, *CH*, Ph); 7.14 (m, 4H, *CH*, Ph). ¹⁹F NMR (377 MHz, CD₂Cl₂, 298 K) δ = -130.2 (dt, 4F, *J*_{FF} =20.3 Hz, *o*-B(C₆*F*₅)₂); -140.6 (d, 2F, *J*_{FF} =16.4 Hz, *o*-(C₆*F*₅)); -149.4 (s, 2F, *p*-B(C₆*F*₅)₂); -156.6 (t, 1F, *J*_{FF} =20.7 Hz, *p*-C₆*F*₅); -163.3 (s, br., 4F, *m*-B(C₆*F*₅)₂); -163.6 (td, 2F, *J*_{FF} =21.3 Hz, *m*-C₆*F*₅) ppm. ¹¹B NMR (128 MHz, CD₂Cl₂, 298 K) δ = 58.8 (s, br.) ppm. ¹³C NMR {¹H} (101 MHz, CD₂Cl₂, 298 K): δ 164.7 (s, =*C*(Ph)), 147.8 (dm, overlapped signals of *o*-C₆*F*₅), 145.3 (dm, *p*-C₆*F*₅), 145.2 (s, Ar), 142.8 (dm, *p*-C₆*F*₅), 140.9 (s, Ar), 137.5 (dm, *m*-C₆*F*₅), 132.0 (s, *C*H, Ph), 131.5 (s, *C*H, Ph), 131.1 (s, *C*H, Ph), 130.5 (s, *C*H, Ph), 128.8 (s, *C*H, Ph), 128.7 (s, *C*H, Ph), =*C*B was not observed. Elem. Anal.: C₃₂H₈BF₁₅, calc. C: 55.85, H:1.17; found C: 55.55, H: 1.32.

(CF₃C₆H₄)(ClC₆F₄)CC(C₆F₅)(B(C₆F₅)₂) 6:

Ratio of major isomer : minor isomer ~ about 1:0.04 by ¹⁹F NMR. 31mg, yield 78%. ¹H NMR (400 MHz, CD₂Cl₂, 298 K) δ = 7.58 (d, 2H, ³J_{HH} = 8.3 Hz, *m*-Ph-CF₃); 7.28 (d, 2H, ³J_{HH} =8.0 Hz, *o*-Ph-CF₃); 7.21 (d, 2H, ³J_{HH} =8.3 Hz, *m*-Ph-Cl); 7.03 (d, 2H, ³J_{HH} = 8.3 Hz, *o*-Ph-Cl). ¹⁹F NMR (377 MHz, CD₂Cl₂, 298 K) δ = -63.3 (s, 3F, CF₃); -129.0 (dt, 4F, J_{FF} =20.2 Hz, *o*-B(C₆F₅)₂); -139.2 (d, 2F, J_{FF} =15.7 Hz, *o*-(C₆F₅)); -146.8 (s, 2F, *p*-B(C₆F₅)₂); -154.0 (t, 1F, J_{FF} =20.8 Hz, *p*-C₆F₅); -161.5 (td, 4F, J_{FF} =19.7 Hz, *m*-B(C₆F₅)₂); -161.7 (td, 2F, J_{FF} =21.1 Hz, *m*-C₆F₅) ppm. ¹¹B NMR (128 MHz, CD₂Cl₂, 298 K) δ = 59.0 (s, br) ppm. ¹³C NMR {¹H} (101 MHz, CD₂Cl₂, 298 K): δ 164.7 (s, =*C*(Ph)), 148.2 (dm, overlapped signals of *o*-C₆F₅), 144.5 (m, *p*-C₆F₅), 144.2 (m, *p*-C₆F₅), 144.1 (s, Ar), 143.0 (s, Ar), 138.8 (s, Ar), 138.2 (m, *m*-C₆F₅), 137.8 (m, *m*-C₆F₅), 132.5 (s, CH, *o*-Ph-Cl), 131.4 (s, *o*-Ph-CF₃), 129.4 (s, CH, *m*-Ph-Cl), 126.0 (q, ³J_{CF} = 3.7 Hz, *m*-Ph-CF₃), 124.4 (q, ¹J_{CF} = 272 Hz, CF₃), =CB was not observed. Elem. Anal.: C₃₃H₈BF₁₈Cl, cale. C:50.0, H:1.02, found C: 50.87, H: 1.21.

(CF₃C₆H₄)(MeOC₆F₄)CC(C₆F₅)(B(C₆F₅)₂) 7:

Ratio of *E*-isomer : *Z*- isomer ~ about 1:0.05 by ¹⁹F NMR. **16** mg, yield 41%. ¹H NMR (400 MHz, CD₂Cl₂, 298 K) δ = 7.57 (d, 2H, ³*J*_{HH} = 8.2 Hz, *m*-Ph-CF₃); 7.32 (d, 2H, ³*J*_{HH} =8.1 Hz, *o*-Ph-CF₃); 7.03 (d, 2H, ³*J*_{HH} =8.3 Hz, *m*-Ph-OMe); 6.72 (d, 2H, ³*J*_{HH} = 8.6 Hz, *o*-Ph-OMe), 3.75 (s, 3H, CH₃O). ¹⁹F NMR (377 MHz, CD₂Cl₂, 298 K) δ = -63.2 (s, 3F, CF₃); -129.3 (d, 4F, *J*_{FF} =19.9 Hz, *o*-B(C₆F₅)₂); -139.8 (s, 2F, *o*-(C₆F₅)); -148.2 (s, 2F, *p*-B(C₆F₅)₂); -154.9 (t, 1F, *J*_{FF} =20.8 Hz, *p*-C₆F₅); -162.1 (td, 6F, *J*_{FF} =21.2 Hz, *m*-B(C₆F₅)₂ and *m*-C₆F₅) ppm. ¹¹B NMR (128 MHz, CD₂Cl₂, 298 K) δ = 62.0 (s, br) ppm. ¹³C NMR {¹H} (101 MHz, CD₂Cl₂, 298 K): δ 163.8 (s, =*C*(Ph)), 147.9 (dm, overlapped signals of *o*-C₆F₅), 144.3 (s, Ar), 137.6 (s, Ar), 133.2 (s, CH, *o*-Ph-OMe), 131.5 (s, *o*-Ph-CF₃), 125.7 (q, ³*J*_{CF} = 3.7 Hz, *m*-Ph-CF₃), 56.7 (s, CH₃O). Elem. Anal.: C₃₄H₁₁BF₁₈O, calc. C:51.81, H:1.41; found C: 51.32, H: 2.0.

file: ...data/xzhao/nmr/Shokei12_23_d/2/jid expt: <zg30> transmitter freq:: 376.677101 MHz time domain size: 131072 points width: 7500.00 Hz = 199.1095 ppm = 0.572205 Hz/pt number of scans: 16

freq. of 0 ppm: 376.724192 MHz processed size: 131072 complex points LB: 0.300 GF: 0.0000 Hz/cm: 3000.000 ppm/cm: 7.96438

¹³C NMR of **3**

¹¹B NMR of **4**

¹⁹F NMR of **4**

PPM -133 -135 -137 -139 -141 -143 -145 -147 -149 -151 -153 -155 -157 -159 -161 -163 -165

¹⁹F NMR of **5**

PPM -127 -129 -131 -133 -135 -137 -139 -141 -143 -145 -147 -149 -151 -153 -155 -157 -159 -161 -163 -165 -167

11 B NMR of **6**

 19 F NMR of **6**

PPM -65 -75 -85 -95 -105 -115 -125 -135 -145 -155 -165

¹¹B NMR of 7

¹⁹F NMR of **7**

