N-H Activation of Hydrazines by a Heterobimetallic Zr-Co Complex: Promotion of One-electron Chemistry at Zr

SUPPORTING INFORMATION

J.W. Napoline, Mark W. Bezpalko, Bruce M. Foxman, Christine M. Thomas*

CONTENTS

Experimental Section	\$3-\$5
Figure S1. ¹ H NMR spectrum of $(\eta^2$ -NHNH ₂)Zr(MesNP ⁱ Pr ₂) ₃ CoN ₂ (2)	S6
Figure S2. ¹ H NMR spectrum of $(\eta^2 - MeN_2H_3)Zr(MesNP^iPr_2)_3CoN_2$ (3)	S6
Figure S3. ¹ H NMR spectrum of $(\eta^2$ -NPhNH ₂)Zr(MesNP ⁱ Pr ₂) ₃ CoN ₂ (4)	S7
Figure S4. ¹ H NMR spectrum of $(\eta^2$ -NPhNH ₂)Zr(MesNP ⁱ Pr ₂) ₃ Co(NHPh) (5)	S7
Figure S5 . ¹ H NMR spectrum of volatiles resulting from formation of complex 2	S8
Figure S6 . ¹ H NMR spectrum of volatiles resulting from formation of complex 3	S8
Figure S7. CV of $(\eta^2$ -NHNH ₂)Zr(MesNP ⁱ Pr ₂) ₃ CoN ₂ (2)	S9
Figure S8. CV of $(\eta^2$ -MeN ₂ H ₃)Zr(MesNP ⁱ Pr ₂) ₃ CoN ₂ (3)	S10
Figure S9. CV of $(\eta^2$ -NPhNH ₂)Zr(MesNP ⁱ Pr ₂) ₃ CoN ₂ (4)	S11
Table S1. X-ray Diffraction Experimental Details for 2, 4, and 5	S12
Figure S10. Fully labeled ellipsoid representation of $(\eta^2 - NHNH_2)Zr(MesNP^iPr_2)_3CoN_2$ (2)	S13
X-Ray data collection, solution, and refinement details for 2.	S14
Figure S11. Fully labeled ellipsoid representation of $(\eta^2 - PhN_2H_3)Zr(MesNP^iPr_2)_3CoN_2$ (4)	S15
X-Ray data collection, solution, and refinement details for 4	S16
Figure S12. Fully labeled ellipsoid representation of $(\eta^2 -$	S17

$NPhNH_2)Zr(MesNP^{i}Pr_2)_3Co(NHPh) (5)$	
X-Ray data collection, solution, and refinement details for 5 .	S18
Figure S13. Plot of Mulliken spin density surface derived from DFT calculations	S19
Figure S14. Donor-acceptor interactions in complex 2 between the filled d_{z2} orbital on Co and the empty d_{z2} orbital on Zr.	S19
Figure S15. Calculated LUMO and SOMO (isodensity 0.04) of complex 2 (BP86/LANL2TZ(f)/6-311G(d)/D95V).	S20
Table S2. X, Y, Z coordinates of the optimized structure of 2.	S21-24
Table S3. X, Y, Z coordinates of the optimized structure of 1.	S25- S28

Experimental Section

<u>General Considerations</u>. All syntheses reported were carried out using standard glovebox and Schlenk techniques in the absence of water and dioxygen, unless otherwise noted. Benzene, pentane, diethyl ether, tetrahydrofuran, and toluene were degassed and dried by sparging with N₂ gas followed by passage through an activated alumina column. All solvents were stored over 3 Å molecular sieves. Deuterated benzene was purchased from Cambridge Isotope Laboratories, Inc., degassed via repeated freeze-pump-thaw cycles, and dried over 3 Å molecular sieves. Solvents were frequently tested using a standard solution of sodium benzophenone ketyl in tetrahydrofuran to confirm the absence of oxygen and moisture. (THF)Zr(MesNPⁱPr₂)₃CoN₂ (1) was synthesized using literature procedures.¹ All other chemicals were purchased from commercial vendors and used without further purification. NMR spectra were recorded at ambient temperature on a Varian Inova 400 MHz instrument. ¹H NMR chemical shifts were referenced to residual solvent. IR spectra were recorded on a Varian 640-IR spectrometer controlled by Resolutions Pro software. UV-vis spectra were recorded on a Cary 50 UV-vis spectrophotometer using Cary WinUV software. Elemental microanalyses were performed by Complete Analysis Laboratories, Inc., Parsippany, NJ.

<u>X-ray Crystallography Procedures</u>. All operations were performed on a Bruker-Nonius Kappa Apex2 diffractometer, using graphite monochromated Mo K α radiation. All diffractometer manipulations, including data collection, integration, scaling, and absorption corrections were carried out using the Bruker Apex2 software.² Preliminary cell constants were obtained from three sets of 12 frames. Fully labeled diagrams and data collection and refinement details are included in Table S1 and on pages S8-S16 of the Supporting Information file. Further crystallographic details may be found in the CIF files deposited in the CCDC (892502-892504).

Electrochemistry. Cyclic voltammetry measurements were carried out in a glovebox under a dinitrogen atmosphere in a one-compartment cell using a CH Instruments electrochemical analyzer. A glassy carbon electrode and platinum wire were used as the working and auxiliary electrodes, respectively. The reference electrode was Ag/AgNO₃ in THF. Solutions (THF) of electrolyte (0.40 M [n Bu₄N][PF₆]) and analyte (2 mM) were also prepared in the glovebox. Cyclic voltammograms shown in Figures S7-S9 are the result of the first scan measured for each compound.

¹ Greenwood, B. P.; Rowe, G. T.; Chen, C.-H.; Foxman, B. M.; Thomas, C. M. J. Am. Chem. Soc. **2010**, *132*, 44-45.

² Apex2, Version 2 User Manual, M86-E01078, Bruker Analytical X-ray Systems, Madison, WI, June 2006.

<u>Computational Details.</u> All calculations were performed using Gaussian09, Revision A.02 for the Linux operating system.³ Density functional theory calculations were carried out using a combination of Becke's 1988 gradient-corrected exchange functional⁴ and Perdew's 1986 electron correlation functional⁵ (BP86). A mixed-basis set was employed, using the LANL2TZ(f) triple zeta basis set with effective core potentials for cobalt and zirconium,⁶ Gaussian09's internal 6-311+G(d) for heteroatoms (nitrogen, oxygen, phosphorus), and Gaussian09's internal LANL2DZ basis set (equivalent to D95V⁷) for carbon and hydrogen. Using crystallographically determined geometries as a starting point, the geometries were optimized to a minimum, followed by analytical frequency calculations to conform that no imaginary frequencies were present.

(η²-NHNH₂)Zr(MesNPⁱPr₂)₃CoN₂ (2)

A solution of hydrazine (1.8 μ L, 0.056 mmol) in C₆H₆ (1 mL) was layered onto a frozen solution of **1** (0.0375 g, 0.0375 mmol) in C₆H₆ (7 mL). The reaction mixture was warmed to room temperature and stirred for 30 min. The resulting yellow/orange solution was filtered through Celite, and the volatiles were removed from the filtrate in vacuo to yield a yellow/orange residue. The resulting residue was washed with cold (-35°C) *n*-pentane (4 mL) to yield analytically pure product as a yellow powder (0.029 g, 0.030 mmol, 80.6%). Crystals suitable for X-ray diffraction were grown from a concentrated diethyl ether solution at -35°C. ¹H NMR (400 MHz, C₆D₆): δ 7.7 (s, 6H, H-Ar), 5.55 (bs, 18H, CH(CH₃)₂), 2.86 (bs, 2H, NH₂), 2.65 (s, 18H CH(CH₃)₂), 2.23 (s, 9H, *p*-Me-Ar), -1.94 (bs, 18H, *o*-Me -Ar), -20.17 (bs, 1H, NH) (not observed; CH(CH₃)₂). UV-vis (C₆H₆, λ (nm) (ϵ , M⁻¹cm⁻¹)): 341 (2.0 x 10³), 456 (450), 507 (260), 613 (140), 674 (140). Evans' method (C₆D₆): 2.00 μ B. IR (C₆H₆): 2043 cm⁻¹ (Co-N₂). Anal. Calcd for C₄₅H₇₈N₇P₃CoZr: C, 56.29; H, 8.19; N, 10.21. Found: C, 56.11; H, 8.24; N, 10.14.

³ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

1976; Vol. 3, p 1-28.

⁵ Perdew, J. P. *Physical Review B* **1986**, *33*, 8822.

⁶ (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299-310. (b) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299-310. (c) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299-310. (d) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270-283.
⁷ Dunning, T. H.; Hay, P. J. In Modern Theoretical Chemistry: Schaefer, H. E. Ed.; Plenum:

⁷ Dunning, T. H.; Hay, P. J. In *Modern Theoretical Chemistry*; Schaefer, H. F., Ed.; Plenum: New York,

$(\eta^{2}-MeN_{2}H_{3})Zr(MesNP^{i}Pr_{2})_{3}CoN_{2}$ (3)

A solution of methylhydrazine (3.0 μ L, 0.056 mmol) in C₆H₆ (1 mL) was layered onto a frozen solution of **1** (0.0375 g, 0.0375 mmol) in C₆H₆ (7 mL). The reaction mixture was warmed to room temperature and stirred for 30 min. The resulting yellow/orange solution was filtered through Celite, and the volatiles were removed from the filtrate in vacuo to yield a yellow/orange residue. The resulting residue was washed with cold (-35°C) *n*-pentane (4 mL) to yield analytically pure product as a yellow powder (0.031 g, 0.032 mmol, 84.9%). Crystals suitable for X-ray diffraction were grown from a concentrated diethyl ether solution at -35°C. ¹H NMR (400 MHz, C₆D₆): δ , 7.73 (s, 6H, H-Ar), 5.62 (bs, 18H, CH(CH₃)₂), 3.61 (s, 3H, Me-N), 2.64 (s, 18H, CH(CH₃)₂), 2.35 (bs, 2H, NH₂), 2.20 (s, 9H, *p*-Me-Ar), -1.89 (bs, 18H, *o*-Me -Ar), (Not observed; CH(CH₃)₂). UV-vis (C₆H₆, λ (nm) (ϵ , M⁻¹cm⁻¹)): 332 (1.6 x 10³), 448 (3300), 505 (148), 596 (55), 670 (48). Evans' method (C₆D₆): 1.88 μ B. IR (C₆H₆): 2038 cm⁻¹ (Co-N₂). Anal. Calcd for C₄₆H₈₀N₇P₃CoZr: C, 56.71; H, 8.28; N, 10.06. Found: C, 56.54; H, 8.23; N, 9.96.

$(\eta^2-NPhNH_2)Zr(MesNP^iPr_2)_3CoN_2$ (4)

A solution of phenylhydrazine (3.7 μ L, 0.037 mmol) in C₆H₆ (1 mL) was layered onto a frozen solution of **1** (0.0375 g, 0.0375 mmol) in C₆H₆ (7 mL). The reaction mixture was warmed to room temperature and stirred for 30 min. The resulting yellow/orange solution was filtered through Celite, and the volatiles were removed from the filtrate in vacuo to yield a yellow/orange residue. The resulting residue was washed with cold (-35°C) *n*-pentane (4 mL) to yield product as a yellow-red powder (0.026 g, 0.025 mmol, 66.8%). Crystals suitable for X-ray diffraction were grown from a concentrated diethyl ether solution at -35°C. ¹H NMR (400 MHz, C₆D₆): δ 7.69 (s, 6H, H-Ar), 7.34 (t, 1H, *p*-H(N-Ar)), 7.02 (m, 2H, *m*-H(N-Ar)), 6.58 (d, 2H, *o*-H(N-Ar)), 5.82 (bs, 18H, CH(CH₃)₂), 2.58 (s, 18H, CH(CH₃)₂), 2.13 (s, 9H, *p*-Me-Ar), -1.56 (bs, 18H, *o*-Me -Ar), (not observed; NH₂ and CH(CH₃)₂). UV-vis (C₆H₆, λ (nm) (ϵ , M⁻¹cm⁻¹)): 344 (2.5 x 10³), 456 (450), 513(340), 681 (50). Evans' method (C₆D₆): 2.02 μ B. IR (C₆H₆): 2044 cm⁻¹ (Co-N₂). Despite repeated attempts, samples of **4** suitable for combustion analysis could not be obtained owing to small amounts of impurities, including decomposed byproducts of H-atom addition and small amounts of **5**.

$(\eta^2-NPhNH_2)Zr(MesNP^iPr_2)_3Co(NHPh)$ (5)

A solution of phenylhydrazine (7.4 μ L, 0.075 mmol) in C₆H₆ (1 mL) was layered onto a frozen solution of **1** (0.0375 g, 0.0375 mmol) in C₆H₆ (7 mL). The reaction mixture was warmed to room temperature and stirred for 30 min. The resulting red/purple solution was filtered through Celite, and the volatiles were removed from the filtrate in vacuo to yield a red/purple residue. The resulting residue was extracted into cold (-35°C) *n*-pentane (4 mL) and filtered through Celite. Volatiles were removed from the filtrate in vacuo to yield analytically pure product as a purple/red powder (0.030 g, 0.030 mmol, 72.8%). Crystals suitable for X-ray diffraction were grown from a concentrated pentane solution at -35°C. ¹H NMR (400 MHz, C₆D₆): δ 13.65 (bs), 7.08 (s), 7.06 (s), 6.73(t), 6.46 (bs), 6.36 (d), 5.54 (bs), 5.25(bs), 2.10 (bs), 1.81 (s), -0.60 (bs). UV-vis (C₆H₆, λ (nm) (ϵ , M⁻¹cm⁻¹)): 336 (2.3 x 10³), 430 (880), 578 (990), 515 (1.1 x 10³), 690 (280), 807 (140). Evans' method (C₆D₆): 2.78 μ B. IR (C₆H₆): 3468, 3381, 3280 cm⁻¹ (N-H). Anal. Calcd for C₄₅H₇₈N₇P₃CoZr: C, 62.21; H, 8.06; N, 7.64. Found: C, 62.25; H, 8.17; N, 7.64.

Figure S2. ¹H NMR spectrum of $(\eta^2$ -MeN₂H₃)Zr(MesNPⁱPr₂)₃CoN₂ (3) (C₆D₆, 400 MHz).

Figure S4. ¹H NMR spectrum of $(\eta^2$ -NPhNH₂)Zr(MesNPⁱPr₂)₃Co(NHPh) (5) (C₆D₆, 400 MHz).

Figure S5. ¹H NMR spectrum of volatiles resulting from formation of complex 2 (C_6D_6 , 400 MHz).

Figure S6. ¹H NMR spectrum of volatiles resulting from formation of complex 3 (C_6D_6 , 400 MHz).

Note: In the presence of exchangeable protons, NH_3 is often difficult to detect by ¹H NMR and either appears as a broad singlet or a very broad hump. As shown in Figure S6, a mixture of NH_3 and $MeNH_2$ leads to a very sharp peak for the Me group of $MeNH_2$, but a broad lump around 0 corresponding to protons exchanging between the nitrogens of $MeNH_2$ and NH_3 . NH_3 was unambiguously identified in Figure S5 via comparison with a literature spectrum.⁸

⁸ Askevold, B.; Nieto, J. T.; Tussupbayev, S.; Diefenbach, M.; Herdtweck, E.; Hotlhausen, M. C.; Schneider, S. *Nature Chem.* **2011**, *3*, 532-537

Figure S7. Cyclic voltammogram of $(\eta^2$ -NHNH₂)Zr(MesNPⁱPr₂)₃CoN₂ (2) (2 mM in 0.4 M [ⁿBu4N][PF6] in THF, scan rate = 100 mV/s, potentials are referenced to Fc, starting potential: 1.02 V, lowest potential: -3.25 V)

Figure S9. Cyclic voltammogram of $(\eta^2$ -NPhNH₂)Zr(MesNPⁱPr₂)₃CoN₂ (4) (2 mM in 0.4 M [ⁿBu4N][PF6] in THF, scan rate = 100 mV/s, potentials are referenced to Fc, starting potential: 0.97 V, lowest potential: -2.99 V)

	2	4	5
chemical formula	$C_{49}H_{88}CoN_7O_1P_3Zr$	$C_{57}H_{97}CoN_7O_{1.5}P_3Zr$	$C_{59}H_{93}CoN_6O_{0.5}P_3Zr$
CCDC #	892503	892502	892504
fw	1034.36	1147.53	1137.50
Т (К)	120 К	120 K	120 К
λ (Å)	0.71073 Å	0.71073	0.71073
a (Å)	12.1683(4)	13.6949(8)	12.4014(10)
b (Å)	12.8589(4)	20.9745(12)	12.4582(10)
<i>c</i> (Å)	17.2789(5)	21.5785(12)	21.3579(16)
lpha (deg)	97.3550(10)	97.813(3)	94.279(4)
eta (deg)	96.2060(10)	91.989(3)	98.424(4)
γ (deg)	94.278(2)	104.989(3)	114.230(5)
V (Å ³)	2654.94(14)	5917.9(6)	2943.2(4)
space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
Ζ	2	4	4
D _{calcd} (g/cm ³)	1.294	1.288	1.283
μ (cm ⁻¹)	6.40	5.82	5.83
R1 (I > 2σ)	0.0265	0.0477	0.0441
wR2 (all data)	0.0655	0.1240	0.0896

Table S1. X-ray Diffraction Experimental Details for 2, 4, and 5.

Figure S10. Fully labeled ellipsoid representation of $(\eta^2$ -NHNH₂)Zr(MesNPⁱPr₂)₃CoN₂ (2)

X-Ray data collection, solution, and refinement for 2. Data collection was carried out at 120K, using a frame time of 10 sec and a detector distance of 60 mm. The optimized strategy used for data collection consisted of eight phi and five omega scan sets, with 0.5° steps in phi or omega; completeness was 99.2%. A total of 4745 frames were collected. Final cell constants were obtained from the xyz centroids of 9794 reflections after integration. From the systematic

absences, the observed metric constants and intensity statistics, space group P1 was chosen initially; subsequent solution and refinement confirmed the correctness of this choice. The structure was solved using *SIR-92*,⁹ and refined (full-matrix-least squares) using the Oxford University *Crystals for Windows* program.¹⁰ All non-hydrogen atoms were refined using anisotropic displacement parameters. After location of H atoms on electron-density difference maps, the H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C---H in the range 0.93--0.98 Å and U_{iso} (H) in the range 1.2-1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.¹¹ The H atoms bonded to the hydrazine were readily located on a ΔF map calculated using only low angle data. The final least-squares refinement converged to R₁ = 0.0265 ($I > 2\sigma(I)$, 12688 data) and wR₂ = 0.0655 (F^2 , 15426 data, 559 parameters). The final CIF is available as supporting material.

⁹ Altomare, A; Cascarano, G; Giacovazzo, G.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M. J. Appl. Cryst. **1994**, 27, 435. Palatinus, L., Chapuis, G.; J. Appl. Cryst. **2007**, 40, 786.

¹⁰ Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, K.; Watkin, D. J. *J. Appl. Cryst.* **2003**, *36*, 1487; Prout, C.K;. Pearce, L.J. CAMERON, Chemical Crystallography Laboratory, Oxford, UK, 1996.

¹¹ Cooper, R. I.; Thompson, A. L.; Watkin, D. J. J. Appl. Cryst. 2010, 43, 1100–1107.

Figure S11. Fully labeled ellipsoid representation of $(\eta^2 - PhN_2H_3)Zr(MesNP^iPr_2)_3CoN_2$ (4)

X-Ray data collection, solution, and refinement for 4. Data collection was carried out at 120K, using a frame time of 20 sec and a detector distance of 60 mm. The optimized strategy used for data collection consisted of four phi and two omega scan sets, with 0.5° steps in phi or omega; completeness was 99.3%. A total of 3175 frames were collected. Final cell constants were obtained from the xyz centroids of 9806 reflections after integration.

From the systematic absences, the observed metric constants and intensity statistics, space

group P1 was chosen initially; subsequent solution and refinement confirmed the correctness of this choice. The asymmetric unit contains two molecules of the complex. The second molecule is numbered similarly to the first, with atom sequence numbers exactly 100 greater than those of the reference molecule. The structure was solved using *SuperFlip*,¹² and refined (full-matrix-least squares) using the Oxford University *Crystals for Windows* program. All non-hydrogen atoms were refined using anisotropic displacement parameters. After location of H atoms on electron-density difference maps, the H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C---H in the range 0.93--0.98 Å and U_{iso} (H) in the range 1.2-1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints. The final least-squares refinement converged to $R_1 = 0.0477$ ($I > 2\sigma(I)$, 23306 data) and w $R_2 = 0.1240$ (F^2 , 31756 data, 1270 parameters). The final CIF is available as supporting material.

¹² Palatinus, L.; Chapuis, G.; J. Appl. Cryst. 2007, 40, 786.

Figure S12. Fully labeled ellipsoid representation of $(\eta^2$ -NPhNH₂)Zr(MesNPⁱPr₂)₃Co(NHPh) (5)

X-Ray data collection, solution, and refinement for 5. Data collection was carried out at 120K, using a frame time of 40 sec and a detector distance of 60 mm. The optimized strategy used for data collection consisted of three phi and five omega scan sets, with 0.5° steps in phi or omega; completeness was 99.6%. A total of 2486 frames were collected. Final cell constants were obtained from the xyz centroids of 5383 reflections after integration.

From the systematic absences, the observed metric constants and intensity statistics, space

group *P*1 was chosen initially; subsequent solution and refinement confirmed the correctness of this choice. The structure was solved using *SIR-92*, and refined (full-matrix-least squares) using the Oxford University *Crystals for Windows* program. All non-hydrogen atoms were refined using anisotropic displacement parameters. After location of H atoms on electron-density difference maps, the H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C---H in the range 0.93--0.98 Å and U_{iso} (H) in the range 1.2-1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints. The asymmetric unit contains one-half molecule of ether solvate, disordered about a center of symmetry at (0, 0, $\frac{1}{2}$). The midpoint of one of the O-C bonds lies on the center of symmetry. The disorder was modeled by assigning fixed occupancies (required by symmetry) of 0.5 to methyl atom C(59), and 1.0 to atom C(58) [both a -CH₂ or -CH₃ moiety]. Methylene atom C(60) was assigned the same coordinates as atom O(1) and was refined using an EQUIVALENCE constraint; ¹⁰ each had a fixed occupancy, as above, required by symmetry, of 0.5. The final least-squares refinement converged to R₁ = 0.0441 (*I* > 2 σ (*I*), 7845 data) and wR₂ = 0.0896 (*F*², 10798 data, 633 parameters). The final CIF is available as supporting material.

Figure S13. Plot of Mulliken spin density surface derived from DFT calculations (BP86/LANL2TZ(f)/6-311+G(d)/D95V).

Figure S14. Donor-acceptor interactions in complex **2** between the filled d_{z2} orbital on Co and the empty d_{z2} orbital on Zr. Both alpha ($E_{del} = 41.3 \text{ kcal/mol}$) and beta ($E_{del} = 68.4 \text{ kcal/mol}$) spin contributions are shown.

Alpha spin *E_{del}* = 41.3 kcal/mol

Beta spin *E_{del}* = 68.4 kcal/mol

Figure S15. Calculated LUMO and SOMO (isodensity 0.04) of complex **2** (BP86/LANL2TZ(f)/6-311G(d)/D95V).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Table S2. X, Y, Z coordinates of the optimized structure of 2.

Tag		Symbol	Х	Υ	Z
	1	Со	0.1549	0.011371	-2.10161
	2	Zr	-0.01837	-0.03798	0.648073
	3	Р	-0.8278	2.002413	-1.40285
	4	Р	2.311192	-0.04637	-1.29238
	5	Р	-1.2365	-1.73289	-1.52553
	6	Ν	-0.69069	2.005461	0.317947
	7	Ν	2.141216	-0.42121	0.370744
	8	Ν	-1.49334	-1.59841	0.171038
	9	Ν	0.142346	0.231899	-3.90434
	10	Ν	0.137772	0.317841	-5.04129
	11	Ν	0.427548	-0.27452	2.653452
	12	Ν	-0.95993	-0.00092	2.822806
	13	С	-0.01918	3.595751	-2.08621
	14	С	0.016482	3.63354	-3.6388
	15	С	-0.55762	4.963993	-1.57273
	16	С	-2.68677	2.134861	-1.81358
	17	С	-3.00668	1.762079	-3.28583
	18	С	-3.42502	3.447698	-1.43244
	19	С	-1.01673	3.006843	1.30737
	20	С	-2.27035	2.97359	2.01832
	21	С	-2.53255	3.92219	3.040624
	22	С	-1.60142	4.92178	3.408946
	23	С	-0.36024	4.924596	2.731313
	24	С	-0.04932	3.996613	1.705072
	25	С	-3.34	1.938582	1.719628

26	С	-1.92374	5.95238	4.481304
27	С	1.321476	4.096766	1.05858
28	С	3.374867	1.530469	-1.44253
29	С	3.368429	2.119411	-2.87918
30	С	4.827336	1.487441	-0.88976
31	С	3.300221	-1.43126	-2.1716
32	С	4.751847	-1.69761	-1.67802
33	С	3.312976	-1.2777	-3.71778
34	С	3.121354	-0.80766	1.359112
35	С	3.654256	0.152192	2.292445
36	С	4.580851	-0.25884	3.282453
37	С	5.004703	-1.60388	3.418037
38	С	4.430265	-2.54847	2.539099
39	С	3.500834	-2.18383	1.529176
40	С	3.221659	1.605571	2.275747
41	С	6.032409	-2.00876	4.465187
42	С	2.924517	-3.29959	0.673699
43	С	-0.31196	-3.37718	-1.82437
44	С	-1.04311	-4.69323	-1.44114
45	С	0.289699	-3.49302	-3.25115
46	С	-2.90581	-1.90782	-2.44629
47	С	-2.71434	-1.89666	-3.9893
48	С	-3.83647	-3.09451	-2.06143
49	С	-2.32952	-2.34386	1.081032
50	С	-3.7272	-2.04319	1.246009
51	С	-4.49597	-2.74599	2.212017
52	С	-3.94293	-3.74078	3.048643
53	С	-2.55702	-4.00056	2.910068
54	С	-1.74664	-3.32787	1.961592
55	С	-4.44689	-0.98067	0.429661
56	С	-4.79589	-4.50702	4.049304
57	С	-0.26543	-3.65947	1.920657
58	Н	1.023237	3.476786	-1.72859
59	Н	0.404045	2.706086	-4.0853
60	Н	0.667255	4.46883	-3.96694
61	Н	-0.98913	3.819968	-4.05791
62	Н	-1.44863	5.274319	-2.1454
63	Н	-0.82365	4.963088	-0.50473
64	Н	0.216816	5.741208	-1.73458
65	Н	-3.07772	1.320453	-1.16847
66	Н	-4.09717	1.596268	-3.40177
67	Н	-2.72279	2.572904	-3.98072
68	Н	-2.48121	0.847269	-3.60004

69	Н	-4.51712	3.257915	-1.3889
70	Н	-3.10864	3.858277	-0.45954
71	Н	-3.26552	4.225511	-2.20041
72	Н	0.955292	-0.48819	3.509771
73	Н	-1.17283	0.873312	3.324801
74	Н	-1.52422	-0.7864	3.17922
75	Н	-3.49891	3.871183	3.562121
76	Н	0.400813	5.668599	3.007223
77	Н	-2.88964	0.980011	1.424733
78	Н	-3.98068	1.770681	2.605556
79	Н	-4.00228	2.258887	0.893822
80	Н	-2.67063	5.569092	5.200192
81	Н	-2.3416	6.877076	4.034903
82	Н	-1.02055	6.243101	5.048775
83	Н	1.550631	3.181148	0.494272
84	Н	2.10508	4.247832	1.822598
85	Н	1.375493	4.953259	0.359653
86	Н	2.786025	2.216508	-0.79818
87	Н	2.368457	2.070246	-3.3407
88	Н	3.689407	3.180354	-2.85479
89	Н	4.07426	1.580123	-3.53654
90	Н	5.178024	2.520072	-0.68737
91	Н	4.919843	0.906882	0.042644
92	Н	5.519059	1.051898	-1.63229
93	Н	2.685886	-2.32113	-1.92793
94	Н	5.457147	-0.9779	-2.12931
95	Н	5.069423	-2.70908	-2.00443
96	Н	4.860153	-1.64103	-0.58346
97	Н	3.661707	-2.22361	-4.17883
98	Н	4.011066	-0.48252	-4.03557
99	Н	2.321617	-1.03995	-4.13466
100	Н	4.976826	0.499558	3.972591
101	Н	4.702792	-3.60923	2.637032
102	Н	3.69109	2.161888	3.107839
103	Н	3.495662	2.109696	1.333928
104	Н	2.12507	1.683845	2.379531
105	Н	5.9031	-1.43729	5.403246
106	Н	7.064793	-1.82	4.107939
107	Н	5.959978	-3.08451	4.70805
108	Н	2.020572	-2.95438	0.15006
109	Н	2.660976	-4.17247	1.298838
110	Н	3.648764	-3.64886	-0.08716
111	Н	0.534364	-3.24284	-1.1195

112	Н	-0.29816	-5.50182	-1.29512
113	Н	-1.63489	-4.60386	-0.51482
114	Н	-1.72041	-5.02059	-2.24974
115	Н	1.048416	-4.30133	-3.2739
116	Н	0.775456	-2.55737	-3.57505
117	Н	-0.48355	-3.7478	-3.99748
118	Н	-3.41243	-0.96254	-2.16744
119	Н	-1.98235	-1.14596	-4.32679
120	Н	-3.68325	-1.67562	-4.4798
121	Н	-2.38175	-2.88473	-4.35578
122	Н	-3.86113	-3.30181	-0.9803
123	Н	-3.52465	-4.01942	-2.57715
124	Н	-4.87073	-2.8721	-2.39461
125	Н	-5.56246	-2.49619	2.30806
126	Н	-2.0849	-4.75022	3.560462
127	Н	-5.12572	-1.43582	-0.31636
128	Н	-3.73097	-0.34215	-0.1079
129	Н	-5.0661	-0.33987	1.083821
130	Н	-5.71702	-3.95224	4.304203
131	Н	-5.10504	-5.49035	3.641571
132	Н	-4.24398	-4.70284	4.987427
133	Н	-0.02004	-4.43262	2.671443
134	Н	0.04078	-4.0367	0.930776
135	Н	0.35514	-2.76844	2.130472

Table S3. X, Y, Z coordinates of the optimized structure of 1.

Tag		Symbol	Х	Y	Z
	1	Zr	-0.00491	0.080652	0.175459
	2	Со	-0.13708	-1.09638	-1.91933
	3	Р	1.413117	-2.2208	-0.71369
	4	Р	0.494825	1.005572	-2.47509
	5	Р	-2.2202	-1.2136	-1.03062
	6	0	0.250961	1.424382	2.257018
	7	Ν	1.710862	-1.1857	0.660835
	8	Ν	0.350851	1.882024	-0.98114
	9	Ν	-2.06456	-0.51961	0.565854
	10	Ν	-0.274	-1.98899	-3.49246
	11	Ν	-0.36902	-2.54951	-4.48339
	12	С	2.696803	-1.24388	1.704401
	13	С	2.323532	-1.66973	3.031025
	14	С	3.282473	-1.6914	4.072457
	15	С	4.625739	-1.28365	3.875155
	16	С	4.967816	-0.80443	2.590927
	17	С	4.041937	-0.76691	1.514036
	18	С	0.896854	-2.06827	3.351367
	19	С	5.651005	-1.36221	4.9969
	20	С	4.53202	-0.18788	0.196568
	21	С	3.063125	-2.61031	-1.60663
	22	С	4.164506	-3.34452	-0.78935
	23	С	2.840219	-3.37053	-2.94373
	24	С	0.824679	-3.88438	0.021916
	25	С	1.760966	-4.63539	1.010262
	26	С	0.29248	-4.86439	-1.05791
	27	С	0.521316	3.263921	-0.62703
	28	С	-0.56532	4.203833	-0.72385
	29	С	-0.39	5.541189	-0.27849

30	С	0.825216	6.007639	0.271464
31	С	1.881719	5.070635	0.386573
32	С	1.756716	3.727213	-0.0452
33	С	-1.92468	3.832871	-1.29723
34	С	0.999844	7.455698	0.706535
35	С	2.952016	2.807557	0.123031
36	С	-0.5534	1.879255	-3.81673
37	С	-0.25014	3.37381	-4.12568
38	С	-0.56752	1.079385	-5.14888
39	С	2.310052	1.188573	-3.03913
40	С	2.834367	2.609865	-3.38114
41	С	2.676014	0.195617	-4.17469
42	С	-3.00961	-0.43958	1.648998
43	С	-3.10639	-1.48653	2.634222
44	С	-4.00194	-1.35812	3.726098
45	С	-4.82858	-0.22401	3.903856
46	С	-4.70742	0.814649	2.95103
47	С	-3.82341	0.733873	1.84486
48	С	-2.28356	-2.75962	2.543828
49	С	-5.8103	-0.1306	5.06314
50	С	-3.74148	1.925822	0.908714
51	С	-2.94389	-2.97814	-0.86848
52	С	-3.03128	-3.68863	-2.24852
53	С	-4.29773	-3.17018	-0.12329
54	С	-3.54794	-0.18237	-1.93627
55	С	-3.52408	-0.39749	-3.47325
56	С	-5.01107	-0.2638	-1.42051
57	С	1.453721	1.767709	3.064436
58	С	0.877357	2.033175	4.46047
59	С	-0.41534	2.840973	4.137395
60	С	-0.83981	2.33921	2.727864
61	Н	2.966685	-2.03515	5.067582
62	Н	5.989391	-0.44068	2.409211
63	Н	0.794814	-2.33538	4.419184
64	Н	0.186065	-1.24817	3.136647
65	Н	0.571384	-2.9324	2.7497
66	Н	5.202949	-1.11181	5.976577
67	Н	6.496707	-0.67272	4.821385
68	Н	6.071768	-2.3842	5.08281
69	Н	5.217181	-0.88364	-0.32328
70	Н	3.688497	0.02403	-0.47687
71	Н	5.090233	0.750886	0.369548
72	Н	3.426147	-1.59607	-1.86305

73	Н	3.976758	-4.43286	-0.7735
74	Н	4.243805	-2.9974	0.252825
75	Н	5.147893	-3.19489	-1.2805
76	Н	3.784601	-3.36771	-3.52493
77	Н	2.054333	-2.9195	-3.56734
78	Н	2.568426	-4.42654	-2.76749
79	Н	-0.05158	-3.5165	0.596278
80	Н	1.158399	-5.3168	1.645658
81	Н	2.490735	-5.26347	0.469346
82	Н	2.322017	-3.95777	1.673846
83	Н	-0.34398	-5.63948	-0.58437
84	Н	-0.30591	-4.34649	-1.82509
85	Н	1.121497	-5.39017	-1.56545
86	Н	-1.23849	6.234592	-0.37034
87	Н	2.838496	5.392969	0.822196
88	Н	-2.74008	4.170889	-0.63172
89	Н	-2.08808	4.315853	-2.27933
90	Н	-2.01298	2.745447	-1.43976
91	Н	1.511693	8.050263	-0.0766
92	Н	1.611284	7.533712	1.624971
93	Н	0.025851	7.939708	0.902413
94	Н	3.642854	3.194918	0.894606
95	Н	3.528486	2.714805	-0.81576
96	Н	2.646724	1.788096	0.405823
97	Н	-1.56666	1.810046	-3.37334
98	Н	-0.00061	3.965125	-3.23091
99	Н	0.589862	3.465073	-4.83621
100	Н	-1.13483	3.835178	-4.61028
101	Н	-0.69076	-0.00376	-4.9961
102	Н	-1.40259	1.434434	-5.78567
103	Н	0.366607	1.238338	-5.71791
104	Н	2.821953	0.842011	-2.11766
105	Н	3.942552	2.621214	-3.32597
106	Н	2.563454	2.89493	-4.41358
107	Н	2.448209	3.387694	-2.70157
108	Н	2.30797	0.548919	-5.15476
109	Н	3.777964	0.09794	-4.25241
110	Н	2.248674	-0.80309	-3.99073
111	н	-4.05107	-2.17825	4.456953
112	н	-5.31417	1.724126	3.067335
113	н	-1.82831	-3.00621	3.520188
114	н	-2.91099	-3.62216	2.24779
115	н	-1.48482	-2.65016	1.796036

116	Н	-6.0066	0.92021	5.344623
117	Н	-5.43274	-0.65971	5.957513
118	Н	-6.78546	-0.5875	4.799999
119	Н	-2.77809	1.936207	0.379531
120	Н	-4.53708	1.902323	0.140513
121	Н	-3.85361	2.874446	1.466966
122	Н	-2.14728	-3.47873	-0.28297
123	Н	-2.11399	-3.58211	-2.8473
124	Н	-3.21735	-4.77037	-2.09222
125	Н	-3.87517	-3.29589	-2.84514
126	Н	-4.38216	-4.22561	0.207926
127	Н	-4.41293	-2.52452	0.760516
128	Н	-5.14934	-2.97657	-0.79843
129	Н	-3.16136	0.838203	-1.73289
130	Н	-2.4973	-0.39854	-3.86999
131	Н	-3.99617	-1.35647	-3.75328
132	Н	-4.0954	0.410437	-3.97448
133	Н	-5.08369	-0.2913	-0.32095
134	Н	-5.58193	0.615485	-1.78397
135	Н	-5.51868	-1.16065	-1.81915
136	Н	1.913315	2.678009	2.634475
137	Н	2.144551	0.916264	2.99517
138	Н	0.635894	1.077789	4.959577
139	Н	1.577303	2.596935	5.101902
140	Н	-0.19601	3.92338	4.11258
141	Н	-1.20727	2.669166	4.886052
142	Н	-0.93107	3.159518	1.993254
143	Н	-1.75821	1.734654	2.744892